Peer-to-peer Hardware-software Interfaces for Reconfigurable Fabrics

Mihai Budiu, Mahim Mishra, Ashwin R. Bharambe and Seth Copen Goldstein
{mihaib,mahim,ashu,seth} @cs.cmu.edu
Carnegie Mellon University

Abstract

In this paper we describe a peer-to-peer interface be-
tween processor cores and reconfigurable fabrics. The
main advantage of the peer-to-peer model is that it greatly
expands the scope of application for reconfigurable com-
puting and hence its potential benefits. The primary ex-
tension in our model is that “code” on the reconfigurable
hardware unit is allowed to invoke routines both on the re-
configurable unit itself and on the fixed logic processor. We
describe the software constructs and compilation mecha-
nisms needed for such an architecture, including a detailed
description of the interface between the two parts of the
application.

1 Introduction

Reconfigurable hardware (RH) devices have been re-
ported to provide spectacular computational performance
on a variety of applications [1]. Despite this and a wealth
of other potential advantages, RH devices aren’t used on a
wide scale, especially in general-purpose computing sys-
tems. Several reasons can be cited for the lack of suc-
cess in their adoption by the industry. Perhaps the major
problem of RH devices is the difficulty of integrating them
into a system, at all levels: for the published and imple-
mented systems electrical, physical and software interfaces
are generally ad-hoc and custom-designed. The lack of
interface standardization increases costs, prolongs system
development and complicates the task of software develop-
ment.

This paper proposes a partial solution to the interface
problem, addressing the software layer. We argue that RH
devices should be integrated in a computing system not as
subordinates of the processor, but as equal peers. More-
over, we propose a procedural interface between software
on the processor and the RH, in the style of Remote Pro-
cedure Calls [2]. Processor-executed programs should be
able to invoke code on the RH device in the same way
they invoke library functions; RH-based code should also
be able to call code on the processor.

Our proposal is not a panacea for solving the problem
of hardware-software partitioning: we are proposing here a
mechanism and not a policy for how the two sides of an ap-
plication should interface. But we think that the choice of
a good interface is extremely important for unleashing the
full potential of a new computing paradigm. Witness the
success of such interfaces as libraries, system calls, remote
procedure calls, sockets, etc.

1.1 Contributions of thiswork

The following aspects are novel contributions of this pa-
per:

e We describe (Section 2) a hardware-independent,
language-independent hardware-software interface
similar to remote procedure calls, which can be used
between the code executed on a processor and the
code executed on a RH device.

e We propose to treat the processor and RH devices as
equal peers in the process of computation, and not as
forming a master-slave relationship.

e We describe (Section 3) how a compiler can automat-
ically generate the stubs for interfacing the CPU and
the RH device.

e We analyze (Section 4.1) realistic pointer-based high-
level language programs and estimate, as a function
of architectural constraints, how much of the compu-
tation can be assigned to the RH devices when using
our interfacing scheme.

2 A Hardware-Software I nterface

The computing system used throughout this paper con-
tains both a conventional processor (CPU) and a recon-
figurable hardware (RH) device. The RH device is re-
programmable under software control. This paper de-
scribes a proposal for a high-level interface between the

code running on the processor and on the reconfigurable
hardware.

In this paper we are mainly focusing on single-threaded
applications. We do not study parallel applications,
which run simultaneously on both computation engines.
However, our proposal is not incompatible with multi-
threading, and is easily adaptable to handle parallel appli-
cations.

The application domain under study consists of integer-
based desktop and media-processing programs written in
high-level languages, containing pointer-intensive code.
We analyze programs from the SpecInt95 [3] and Medi-
abench [4] benchmark suites to evaluate the effectiveness
of the implementation we describe. While these applica-
tions are implemented in C, the interface we describe is
language-independent, and, moreover, can be used even if
the two parts of the application are developed using differ-
ent languages and tools.

Our proposal entails the following:

e The computation is mapped to the CPU or RH at the
procedure granularity.

e Code is invoked from either the CPU or RH by using
regular procedure calls. When a call crosses the CPU-
RH boundary it is implemented in a way similar to a
remote procedure call.

e The CPU and the RH device should both be able
to request services from the other side. From this
point of view, the two computing devices behave like
peers, without a clear master-slave relationship be-
tween them. In practice the actual implementation
may have some limitations (for example, the RH de-
vice may not be re-entrant), but the RH is assigned a
more important role than traditionally.

e A call should appear to be invoked in the same way,
independent of where the implementation actually re-
sides. The way a software program invokes a com-
putation on the RH should be the exact same way it
invokes a computation on the CPU.

Figure 1 displays a legal invocation sequence under our
proposal.

Because our proposal is hardware-independent, we do
not describe how procedure calls (local or remote) are im-
plemented on the RH side. In the following section we
discuss how remote service invocation is implemented on
the CPU side.

2.1 Stubs

The way hardware-independent service invocation is ac-
complished is similar to the technique used in implement-

Program Implementation
r0{s0:} r

sO {t0; } CPU TS oy
t) {u0; } tr

u) ¢ Tu

Figure 1: A sample partitioned program and a legal imple-
mentation and invocation sequence.

ing remote procedure calls: instead of calling the remote
procedure, a stub procedure is called on the same side, with
the correct arguments, and using the local calling conven-
tions. The stub procedure is hardware-dependent and takes
care of all low-level communication, by marshaling the ar-
guments and invoking the remote service.

Stubs mediate calls crossing the CPU-RH boundary
originating from either side. Each procedure residing on
the RH which is invoked from the CPU has a stub, and each
procedure on the CPU called from the RH has a stub. Fig-
ure 2 shows how the example in Figure 1 is implemented.

CPU RH

r—+s'H
I
th—

t/

N (-
U ‘\a>u

Figure 2: Implementation of the example in Figure 1. The
primed boxes are stubs for the respective procedures, i.e. s'
is a stub for s. Stubs mediate the low-level communication
but otherwise look like ordinary procedures.

A stub requires the existence of several simple, low-
level, hardware-dependent mechanisms to accomplish its
task:

e A mechanism is needed to send data from the CPU
to the RH. This mechanism is used to send procedure
arguments when calling RH functions (e.g., s’ calls s
in Figure 2) and to return values when returning to RH
callers (e.g., t' returns to s);

e A second mechanism is needed for the CPU to re-
trieve data from the RH. This mechanism is used to re-
turn values from RH procedures (e.g., s returns to s’)
and to receive arguments for procedures invoked from
the RH (e.g., s calls t');

e The hardware must provide a method to select the pro-
cedure to be invoked on the RH, because multiple pro-
cedures may reside simultaneously on the RH (e.g., is
s or u called by r?);

e The CPU must have a method to obtain from the RH
the address of a procedure for calls originating on the
RH (e.g., does s call r or ¢?);

In Section 3 we describe precisely our prototype stub
implementation in terms of a particular (simulated) ar-
chitecture. We quantify the overhead of the stub-based
scheme in Section 4.2.

2.2 Discussion

The proposed interface has several advantages over the
current state-of-the-art approaches:

e The treatment of RH as equal peer to the CPU
greatly increases the percentage of code which can be
mapped to the RH, as we show in Section 4.1. The re-
striction of mapping only self-contained code on the
RH, which has no external procedure calls, severely
restricts the hardware/software partitioning choices.

e The interface is simple and clean, having a well-
understood semantics.

e Such an interface decouples the development of the
two parts of the application in a precise way: the code
executed on the processor and the RH configuration
can be independently developed.

o This type of interface offers portability of the software
among various RH architectures. The view provided
by the RH to the software layer is always the same, in-
dependent of the actual details of the hardware imple-
mentation and hardware capabilities. Moreover, de-
velopment of applications is substantially eased: the
initial implementation is customarily done entirely in
software; when migrating to a mixed CPU+RH, the
software side remains completely unchanged, and the
required stubs can be automatically generated by a
compiler.

e The search-space of the program partitioning algo-
rithm (hardware/software partitioning) is dramatically
reduced: procedures are considered as atomic units to
be mapped to RH. If desired, the programmer (or even
an automatic compiler) can control the position of the
interface by decomposing the application into proce-
dures in a suitable way.

e The exact details of the low-level interface between
the CPU and RH are left unspecified. Our interface is
adaptable enough to handle all major paradigms pro-
posed in the literature: memory-based communica-
tion, bus-based, coprocessor-style and even datapath-
integrated reconfigurable functional units.

e The hardware/software interface can even be dynam-
ically changed during program run-time. The caller
of a procedure doesn’t have any knowledge whether
the actual procedure resides in hardware or software;
the calling sequence is always the same. The com-
piler can generate more complicated stubs which at
run-time decide which way to steer the actual execu-
tion.

e Finally, a lot of the tedious work for interfacing the
CPU and RH can be automated. As we will show in
this paper, the generation of the low-level stub inter-
faces can be automatically done by a compiler once
the partition of the program is known.

We can envision situations where an RPC-like in-
terface is unsuitable because it is too heavyweight or
doesn’t match the semantics of the underlying computa-
tional model. An important example is the configurable-
instruction model, which has been explored in prior work,
e.g. [5, 6]: under this model a single instruction simulta-
neously sends the input data (usually from the CPU reg-
isters), starts the computation and collects the result(s).
This invocation model is orthogonal to the procedure-call
model, and the two can coexist in a single architecture.
The configurable-instruction model however is applicable
only to relatively small computations, because the instruc-
tion size does not provide enough room to encode many
inputs/outputs.

We believe that our proposal has wide enough applica-
bility, and that its generality will only increase with time.
We present here a set of assumptions which led us to design
this interface:

e Technology advances will make Moore’s law hold for
at least the next five years, continuing to grow the
amount of available hardware resources at an expo-
nential pace. As a consequence, we expect that larger
reconfigurable hardware devices will be built, and that
multi-million-gate devices will be affordable enough
to be included in common computer systems. The
computing-system model we have in mind contains
one or several general-purpose processors and a large
(by today’s standards) amount of reconfigurable hard-
ware. Large devices will provide enough hardware
resources to migrate whole procedures, if not whole
applications into RH.

e RH devices are beneficial mostly on compute-
intensive parts of the application. We expect that,
with adequate compiler support, most, if not all, of
the compute-intensive kernels of applications will be
executed on the RH. The processor will continue to
handle “odd jobs”, such as the operating system, vir-
tual memory, resource management and arbitration,
and RH configuration management.

Moving just small pieces of code on RH enables only
modest speed-ups. The much touted high perfor-
mance of RH devices is due to the massive parallelism
(including pipeline parallelism) they provide, and also
partly to the application-specific customizations they
enable. In order to obtain important speed-ups one
must be able to exploit the parallelism and customiza-
tion on large code fragments. The attainable speed-
up is proportional to the parallelized code coverage
and inversely proportional to the overhead of CPU-
RH crossings. Small code fragments on the RH imply
either low coverage or many crossings.

An important consequence of the fact that RH devices
are expected to execute a substantial portion of the ap-
plication is that the RH device must have a way to ac-
cess the CPU-side of the application address-space.
Partitioning the code, while a difficult task, is a much
simpler task than partitioning the data of the applica-
tion, especially for pointer-based code. While some
data may be co-located on the RH with the code ac-
cessing it, in general the RH should be able to access
any data dynamically.

Finally, a very important motivation for our proposal
is the observation that in production-quality software
there are very few leaf functions. Most program func-
tions call library functions, either for basic operations,
or, very importantly, for error handling. If we restrict
the selection for RH to functions doing pure computa-
tions there will be very few choices. The RH has to be
able to invoke services from the processor if we want
to move large parts of the computation on that side.

The importance of these last two observation has
been noticed before by researchers in the GARP
project [7, 8]; these constraints have fundamentally
affected their architecture and compiler algorithms.
The definition of a formal interface between the hard-
ware and software layers is however missing from
their proposals.

3 A Peer-to-peer CPU-RH Architecture

In this section we describe an example implementation
of our proposed hardware/software interface on a simu-
lated computer architecture comprising a superscalar pro-
cessor and a tightly-coupled reconfigurable hardware unit.

The CPU is a 4-wide issue superscalar processor us-
ing the MIPS instruction set architecture (ISA). We have
extended the ISA with the following RH-specific instruc-
tions:

rhinput RlL, R2, R3, R4: sends four integer
register! values to the RH inputs; if more than 4
values need to be sent (for instance to invoke a
procedure with more than four scalar arguments),
several r h_i nput instructions have to be used in
sequence. For sending fewer values the zero-constant
RO is used. The four values are deposited in a queue
inside the RH, from where they are extracted by the
configuration that will be executed next?.

rh_out put R1, R2, R3: reads into integer registers
three values from the RH output; same comments as
above apply.

rhstart R starts the execution of the R-th procedure
loaded on the RH.

rh_load R “loads” the binary configuration describing
the R-th procedure into the RH.

rh_cont: reads one address from the RH and branches
to it. If the RH hasn’t finished execution yet, this
instruction behaves like a no-operation. When the
RH terminates execution, it sends to the CPU the ad-
dress of a continuation procedure, to which r h_cont
branches.

The RH can generate virtual addresses in the entire ap-
plication address space (globals, heap, stack) and can ac-
cess the corresponding memory locations for reading or
writing. The reads and writes of the RH are sent to the
CPU, which injects them in the load-store queue used to
parallelize memory accesses. In this way memory coher-
ence between CPU and RH is ensured. Excepting the inter-
face to the load-store queue, in our implementation there is
no other architectural feature of the processor visible from
the RH; the processor has no other control over the RH

1The current implementation doesn’t support passing floating-point
inputs to a RH procedure.

2An alternative choice would have contained a procedure identifier
in the i nput instruction. We have preferred this encoding due to its
increased compactness when supporting procedures with multiple argu-
ments.

except through the indicated instructions. We are consid-
ering adding also a second non-coherent memory interface
to the RH, in the style of GARP [7], which can for instance
be used for decoupled execution [9]. Decoupled execution
has been proven to be extremely beneficial to streaming-
data applications (see e.g. [7, 10]).

The way configurations are represented and manipu-
lated is not explicitly represented in our simulator. The
RH is tightly coupled to the CPU in the sense that the
rh_i nput,rh_out put,andrh_st art instructions can
each be executed in a single clock cycle®; also, the RH
can inject memory operations into the processor load-store
queue in zero clock cycles. As the size of the RH fabric
grows, we should expect RH—-CPU communication to take
longer and longer, so these latency values may have to be
ammended.

Instructions dealing with the RH are never executed
speculatively by the processor; before issuing such an in-
struction the CPU waits for all preceding branches to be
validated. Because the RH instructions depend on each
other, two RH operations cannot be executed in paral-
lel; the RH invocations are strictly sequential and non-
speculative.

Using these building blocks, a pseudo-assembly-
language implementation of sample stub structures is given
in Figure 3.

rh_input(...)
rh_start (s)
repeat: call RH proc S
rh_cont;
goto repeat;

done_cont:
o =rh_output;
return o;

return continuation

‘cal_T_cont:
k Targ = rh_output(...);
r = call t(Targ);
T call CPU proc T
rh_start(ret_from_CPU);

goto repeat

Figure 3: Implementation of three stubs on our system: a
stub for calling RH procedures from the CPU, a stub re-
turning control from the CPU to an RH caller, and a stub
calling a procedure on the CPU from the RH.

Figure 4 illustrates our toolflow. The input programs
are un-annotated C programs. Stub generation is straight-
forward given information about the function type.

We have used the simulation infrastructure to validate
the correctness of our stub generator. In the next section

3Consecutive instructions accessing the RH depend on each other, and
will be serialized by the reorder buffer of the processor.

C Program

/

[Function Placement Decision }

V V

Functions Functions
on RH on CPU
" Hardware
. compiler
: Functions
Yo oncpy S
. Hardware
. synthesis
: gce

RH <:> cPU

Figure 4: Toolflow for compilation of applications on
mixed hardware/software systems. The dotted-line com-
ponents are not implemented. The hardware-compiler is in
development.

we present data about the effectiveness of our approach in
partitioning the application between the CPU and RH. The
results in this paper are based mostly on static information;
in the future we plan to use the described simulation infras-
tructure in order to collect performance numbers.

4 Experimental Results

We present two classes of results in this section:

o First we evaluate how restrictions on the RH compu-
tational capabilities reflect on the amount of program
computation which can be mapped to the RH.

e Secondly, we estimate the overhead introduced by the
stubs using micro-benchmarks.

4.1 Program Coverage
Here we examine how the CPU-RH interface we pro-

pose increases the program coverage, i.e., how much of an
application’s code can be put on the RH. We do this by

analyzing programs from the Specint 95 [3] and Media-
bench [4] benchmark suites. We express coverage in per-
cent of the running time. We obtain the coverage percent-
age for a procedure by profiling the program; the coverage
of a set of procedure is the sum of their individual running
times. Based on the capabilities of the hardware this cov-
erage depends on a number of orthogonal dimensions:

e Whether RH can implement floating point operations:
given their complexity, floating point operations take
up a large amount of RH resources, and mapping them
to the RH could be prohibitively expensive.

e Whether the RH can only implement leaf procedures:
previous approaches could map only leaves to the RH.

e Whether the RH can call CPU procedures: can RH
make calls to other RH procedures, but not to code on
the CPU?

e Recursion: if the RH-mapped procedures are recur-
sive, the RH needs to have a stack for local variables;
otherwise the locals can be statically allocated.

e Unrestricted: the RH is able to handle any application
procedure.

e Local variables accessibility: can a procedure on the
RH pass the address of a local variable to other proce-
dures? If not, the RH local variables can be allocated
in registers over their entire lifetime.

e Size of the RH: not enough computational elements
may be available for the whole computation.

To obtain coverage figures by varying parameters along
each of these dimensions, we generated the following in-
formation for each benchmark:

e Per-procedure dynamic execution time, using profil-
ing.

o Information about the presence or absence of floating
point operations in each procedure.

o A statically built, conservatively approximated call-
graph.

e Per-procedure information about whether it passes
pointers to local variables to function calls.

e Estimated size in bit-operations for each procedure,
when implemented on the RH. The bit-operation
count was generated by counting operations of var-
ious types in each procedure (arithmetic operations,
condition evaluations, memory dereferencing etc.)
and multiplying the count with the estimated size for

each of these operations. This is a rough estimate
since it does not account for RH interconnects, but
is useful in getting an estimate of how much of an
application can be mapped to RH given certain size
restrictions. We also do not make use yet of compiler
analyses such as BitValue [11] which can be used to
reduce the size of the computational units.

Finally, we estimated how much of a benchmark’s dy-
namically executing code could be mapped to the RH by
setting the RH’s size to different limits, allowing and dis-
allowing floating point operations on the RH, allowing
and disallowing RH access to CPU memory, and allow-
ing different kinds of procedures to be mapped to the RH:
leaf only, procedures calling other RH procedures, non-
recursive procedures and all procedures.

Figures 5, 6 and 7 show the coverage as function of the
various restrictions. The bottom part of the bars represents
the coverage when RH local variables are allocated to reg-
isters, while the top part is the coverage when locals are
allocated in memory (and thus their address can be passed
between procedures).

4.1.1 Discussion

Figure 5 presents the results of our analysis for the Specint
95 programs with an unlimited RH size. Several interest-
ing observations can be made from these graphs about the
power of our interface, and about the capabilities required
in the RH to achieve significant program coverage.

The rightmost bars do not always reach 100% because
of two reasons:

e We included timing information only for procedures
which took up more than 1% of the program execution
time;

e Many benchmarks had a significant proportion of
their execution time attributable to library routines
(e.g., 20% in mesa), which we do not analyze.

Except for three (very small) Mediabench programs, all
others spend less than 50% of their execution time in leaf
procedures, and for most this proportion is less than 20%.
This confirms that unless RH code is able to call other
procedures, on the RH itself and on the CPU, substantial
speed-ups cannot be obtained. If the RH is allowed to call
other procedures residing on the RH (second bar), the cov-
erage goes up significantly for many benchmarks, but re-
mains low for others.

Limiting the size of the reconfigurable fabric does not
cause a significant change to the coverage figures; there
were only two benchmarks that exceeded 1 million bit-
operations in total size (mesa and go), and even for these,

124.m88ksim 099.go

129.compress

130.1i 132.ijpeg 147.vortex

1009

809

60%

40%

20%

0%
no-back-calls all
non-recursive leaf

no-back-calls all
leaf non-recursive leaf

no-back-calls
non-recursive

no-back-calls all
leaf non-recursive leaf

no-back-calls all
non-recursive leaf

no-back-calls all
non-recursive

Figure 5: Program coverage as a function of constraints for Specint programs. RH implements FP operations.

mesa jpeg_d jpeg_e

mpeg2_d mpeg2_e pegwit_e
pegwif d

100%

80%

60%

40%

20%

0%
no-back-calls all
non-recursive leaf

no-back-calls all
leaf non-recursive leaf

no-back-calls
non-recursive

adpcm_d epic_d epic_e

no-back-calls all
leaf non-recursive leaf

no-back-calls all
non-recursive leaf

no-back-calls all
non-recursive

721 e sm_d sm_e
gu721_d gsm- gsm._

1009

80%

60%

40%

20%

0%
no-back-calls
non-recursive

no-back-calls all
non-recursive leaf

no-back-calls all
leaf non-recursive leaf

no-back-calls all
leaf non-recursive leaf

no-back-calls all
non-recursive leaf

no-back-calls all
non-recursive

Figure 6: Program coverage as a function of constraints for Mediabench programs. RH implements FP operations.

all the compute intensive routines fit within one million
bit-operations.

Disallowing floating point implementation on the RH
significantly reduces the coverage for two benchmarks
(epic_e and mesa), and causes moderate changes to two
others (compare Figures 6 and 7). However, it was not
the size of the RH which imposed limitations: coverage
figures with floating-point implementation do not decrease
significantly if we restrict the size of the RH to 1 million
bit-operations. The decision whether to implement float-
ing point computations on the RH depends thus not on the
size of the RH, but on the performance achievable by these
operations on the RH versus on the CPU.

The top part of each bar is the difference in coverage
obtained when procedure-local variables are moved from
registers to a global memory space, addressable by all pro-
cedures. The first type of implementation is likely to ex-
hibit much better performance. The size of the top bar
varies widely for different benchmarks; we conclude that

such a decision is application-dependent, and has also to
factor the performance difference of the two models.

The difference between the third and fourth bars shows
the advantage achievable by allowing recursive procedures
on the RH, which require the RH to have its own stack.
This difference is significant for only three benchmarks (li,
mesa and epic_e); we conclude that for many cases signifi-
cant coverage is achievable without building a stack for the
RH.

4.2 Stub generation and Overheads

To validate the effectiveness of the stub structure and
to measure the overheads that stubs introduce, we im-
plemented a stub-generator. We then modified the Sim-
pleScalar 3.0 [12] sim-outorder simulator to simulate both
CPU and RH components: implementations of the new in-
structions described in Section 2 were added to the sim-
ulator and the RH procedures are invoked through the

epic_d epic_e

mpeg2_e mesa

100%

80%

60%

40%

20%

0% - -

| |

no-back-calls all no-back-calls
leaf Non-recursive leaf

Non-recursive

no-back-calls all no-back-calls all
leaf Non-recursive leaf Non-recursive

Figure 7: Program coverage as a function of constraints for Mediabench programs. RH cannot implement FP operations.

rh_start instruction. The new machine instructions
were each assigned a latency of 1 cycle.

The performance of the stubs was observed by running
micro-benchmarks using this infrastructure and carefully
evaluating the running time of our stubs. This implementa-
tion does not give us the overhead of the RH-side interface
routines (which is hardware-dependent) but does allow us
to gain a reasonably accurate picture of the CPU-side over-
heads.

We have also analytically derived the expected cost in-
curred by the stubs, which is presented in Table 1. The
analytic formulas match the measured overhead closely.

e Overheadsfor CPU to RH calls: a stub executes the
following instructions: one or more r h_i nput , one
rh_start,onerh_cont togetthe continuation ad-
dress (in this case the address of the code handling
the return), and one r h_out put to get the return
value. This process is more lightweight than building
the stack frame for a regular procedure call.

Our results are summarized in Table 1; they show that
our interface is actually more efficient than a software
procedure call. However, the savings in cycles (com-
pared to a regular procedure call) are smaller than the
savings in dynamic instructions executed because the
RH instructions cannot be issued in parallel, as they
depend on each other.

e Overheads for RH to CPU calls: each transfer of
control in this direction requires execution of the fol-
lowing sequence: an r h_cont to obtain the contin-
uation address from the RH, a jump to the appropri-
ate stub, one or more r h_out put instructions to ob-
tain procedure call parameters, a procedure call, an
r h_i nput to pass the return value to the RH, and an
rh_start to re-start the calling RH procedure.

5 Redated Work

Several research projects have attacked the problem of
partitioning programs between a CPU and a reconfigurable
hardware fabric. From the point of view of the interface
between the two, we can distinguish several classes of de-
vices:

e Systems such as PRISC [6], Chimaera [5, 13] and
T1000 [14] use a custom-instruction style of interface
between the CPU and the RFU. A custom instruction
is a RISC-like instruction whose opcode indicates an
RH configuration that carries the computation. While
very lightweight, custom instructions are severely re-
stricted by their small number of inputs and outputs,
and thus can only implement small computations.

e Systems using larger granularity RH include
GARP [7, 15], OneChip [5], RaPiD [16], Mor-
phosys [17]. In these systems the RH can au-
tonomously access the memory of the system. The
invocation of the RH is coprocessor-style. None
of these papers proposes a consistent high-level
interface, and none assigns an equal status to the RH
and CPU (i.e. the RH cannot invoke the CPU in any
of these systems).

The researchers on the GARP project first observed
in [8] the need of RH computation to be able to invoke
library procedures on the CPU; they dealt with this
problem by creating exceptional exits from the RH
code. In their proposal the computation is mapped on
the RH at the loop granularity; after an exceptional
exit the RH computation is resumed at the loop-entry
point.

e A proposal for a procedural interface to an RH system
is made in Bauer’s Master Thesis [18]. He coins the
name “hardware subroutine” for the code migrated on
the RH, and proposes, like we do, that partitioning
should be done at procedure interfaces. In his pro-
posal the RH is still relegated to a slave role, as it can-

Dynamic instructions executed

| Extra simulator cycles |

CPU to RH calls

—2 — 2*(#params — #r h_i nput)

1 — 1*(#params — #r h_i nput)

RH to CPU calls

4 + #r h_out put

6 + #r h_out put

Table 1: A summary of CPU-side overheads associated with our stubs for handling CPU-RH communication. Note that
an r h_i nput instruction is executed for every four data values sent from CPU to RH, and an r h_out put instruction is
executed for every three data values received by the CPU from RH.

not invoke services on the CPU, and can implement
only leaf functions of the call graph.

e Another class of coarse-grain systems reconfigurable
consists of NAPA1000 [19], RAW [20], Smart Memo-
ries [21]. All these systems are more related to multi-
processors than to a simple CPU+RH model. In these
systems the interface between the multiple computa-
tional units is highly specialized; it is not clear how
much these systems would benefit from the use of a
procedural interface.

The interface we propose is strongly related to the no-
tion of Remote Procedure Call [2]; the idea of compiler-
generated stubs derives directly from this work. However,
unlike remote procedure calls, the systems that we con-
sider can also communicate using shared memory. In our
setting the procedure calls are used more for structuring the
control-flow between multiple computational units than for
data transmission.

Finally, let us note strong similarities between our stubs
and the inlets from the Threaded Abstract Machine [22];
the way the stub dispatches procedure invocations from
the RH is similar to Active Messages [23]. These latter
paradigms were developed for dealing with parallel com-
putations; we believe that parallelism can naturally be ex-
ploited in the CPU+RH context too, and that our proposed
interface naturally extends to handle this case.

6 Conclusions

In this paper we have presented a proposal for a high-
level hardware-software interface between processors and
reconfigurable hardware devices. In this proposal the two
computational devices act as equal peers, and can invoke
services from one another by using a procedural interface,
similar to remote-procedure calls. Such an interface en-
ables the migration of large code fragments to the reconfig-
urable hardware, simplifies program partitioning, ensures
program portability and automates the generation of inter-
face code by using compiler-generated stubs.

We have also evaluated the effectiveness of our inter-
face for automating the hardware-software partitioning of

complex programs from the Mediabench and SpeclInt95
benchmark suites: considering various constraints for the
computational capabilities of the reconfigurable hardware
device, we have estimated how much of the computation
can be offloaded from the processor. We have noticed
that even the computational resources available in current-
generation devices are sufficient to implement large por-
tions of each program or even entire applications.

References

[1] A. DeHon, “The density advantage of configurable
computing,” Computer, vol. 33, pp. 41-49, Apr.
2000.

[2] B. J. Nelson, “Remote Procedure Call,” Tech. Rep.
CSL-81-9, Xerox Palo Alto Research Center, Palo
Alto, California, 1981.

[3] Standard Performance Evaluation Corp., SPEC
CPU95 Benchmark Suite, 1995.

[4] C. Lee, M. Potkonjak, and W. H. Mangione-Smith,
“MediaBench: a tool for evaluating and synthesizing
multimedia and communications systems,” in Micro-
30, 30th annual ACM/IEEE international symposium
on Microarchitecture, pp. 330-335, 1997.

[5] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao,
“The Chimaera Reconfigurable Functional Unit,” in
IEEE Symposium on FPGAs for Custom Computing
Machines, pp. 87-96, 1997.

[6] R. Razdan and M. D. Smith, “A High-Performance
Microarchitecture with Hardware-Programmed
Functional Units,” in Proceedings of 27th An-
nual IEEE/ACM Symposium on Microarchitecture
(MICRO-27), pp. 172-180, Nov. 1994,

[7] J. R. Hauser and J. Wawrzynek, “GARP: A MIPS
processor with a reconfigurable coprocessor,” in Pro-
ceedings of IEEE Workshop on FPGAs for Custom
Computing Machines (J. Arnold and K. L. Pocek,
eds.), (Napa, CA), pp. 12-21, Apr. 1997.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

T. J. Callahan and J. Wawrzynek, “Instruction
Level Parallelism for Reconfigurable Computing,”
in FPL’98, Field-Programmable Logic and Appli-
cations, 8th International Workshop, Tallinn, Esto-
nia (Hartenstein and Keevallik, eds.), vol. 1482 of
Lecture Notes in Computer Science, Springer-Verlag,
September 1998.

J. E. Smith, S. Weiss, and N. Pang, “A Simula-
tion Study of Decoupled Architecture Computers,”
in IEEE Computer, vol. 35 (8), pp. 692-702, August
1986.

S. C. Goldstein, H. Schmit, M. Moe, M. Budiu,
S. Cadambi, R. R. Taylor, and R. Laufer, “PipeRench:
a Coprocessor for Streaming Multimedia Accelera-
tion,” in Published in proceedings of the 26th Inter-
national Symposium on Computer Architecture ISCA
99, 1999.

M. Budiu, M. Sakr, K. Walker, and S. C. Goldstein,
“BitValue Inference: Detecting and Exploiting Nar-
row Bitwidth Computations,” in Proceedings of the
2000 Europar Conference, vol. 1900 of Lecture Notes
in Computer Science, Springer Verlag, 2000.

D. Burger and T. M. Austin, “The SimpleScalar Tool
Set, Version 2.0,” in Computer Architecture News,
vol. 25 (3), pp. 13-25, ACM SIGARCH, June 1997.

A. Z. Ye, A. Moshovos, S. Hauck, and P. Baner-
jee, “CHIMAERA: A High-Performance Architec-
ture with a Tightly-Coupled Reconfigurable Unit,” in
Proceedings of the 27th Annual International Sym-
posium on Computer Architecture (ISCA-00), ACM
Computer Architecture News, ACM PRess, 2000.

X. Zhou and M. Martonosi, “Augmenting Mod-
ern Superscalar Architectures with Configurable Ex-
tended Instructions,” in Proceedings of the Reconfig-
urable Architectures Workshop RAW, 2000.

Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure,
and J. Stockwood, “Hardware-Software Co-Design
of Embedded Reconfigurable Architectures,” in DAC
2000, 2000.

D. Cronquist, P. Franklin, S. Berg, and C. Ebeling,
“Specifying and compiling applications for RaPiD,”
in Proceedings of IEEE Workshop on FPGAs for Cus-
tom Computing Machines (K. Pocek and J. Arnold,
eds.), (Napa, CA), pp. 116-127, IEEE Computer So-
ciety, IEEE Computer Society Press, Apr. 1998.

10

[17]

[18]

[19]

[20]

[21]

[22]

[23]

H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi,
N. Bagherzadeh, and T. Lang, “MorphoSys: An Inte-
grated Re-configurable Architecture,” in Proceedings
of the NATO Symposium on System Concepts and In-
tegration, (Monterey, CA, April), April 1998.

T. J. Bauer, “The Design of an Efficient Hardware
Subroutine Protocol for FPGAs,” Master’s thesis,
MIT, 1994.

C. Rupp, M. Landguth, T. Garverick, E. Gomersall,
H. Holt, J. Arnold, and M. Gokhale, “The NAPA
Adaptive Processing Architecture,” in IEEE Sympo-
sium on FPGAs for Custom Computing Machines
(FCCM ’98), April 1998.

E. Waingold, M. Taylor, V. Sarkar, W. Lee, V. Leeg,
J. Kim, M. Frank, P. Finch, S. Devabhaktuni,
R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal,
“Baring it all to Software: The Raw Machine,” Tech.
Rep. TR-709, MIT/LCS, March 1997.

K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and
M. Horowitz, “Smart Memories: A Modular Recon-
figurable Architecture,” in Proceeding of the Inter-
national Conference on Computer Architecture 2000,
June 2000.

D. E. Culler, S. C. Goldstein, K. E. Schauser, and
T. von Eicken, “TAM — A Compiler Controlled
Threaded Abstract Machine,” Journal of Parallel and
Distributed Computing, July 1993.

T.von Eicken, D. E. Culler, S. C. Goldstein, and K. E.
Schauser, “Active Messages: A Mechanism for In-
tegrated Communication and Computation,” in 19th
International Symposium on Computer Architecture,
(Gold Coast, Australia), pp. 256—-266, 1992.

