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ABSTRACT 

Placement of functional units on an FPGA fabric is a 
challenging problem for runtime reconfigurable computing 
systems. We introduce the concept of physical contexts to 
greatly reduce the complexity of the placement and routing 
problems. We have implemented static and dynamic linear 
placement methods for expression trees placed in physical 
contexts. Our placement algorithms are implemented in the JBits 
environment, creating a layer of a hardware operating system for 
future reconfigurable computing systems. 

1. INTRODUCTION 
A truly dynamic reconfigurable computing system would be able 
to decide - on the fly - what computations to perform on the 
FPGA and what operations to run on the CPU device. 
Programming such systems would be a daunting task unless 
high levels of abstraction are provided to application developers. 
Hardware operating systems (HWOS) should be developed to 
handle automatic placement of required cores on the FPGA, 
reuse idle cores already on the chip, perform cache manager for 
the instantiated cores, and so on. Hauck et. al. have discussed 
some of these features in their works (e.g., [3]).  

The input to the hardware operating system would be 
expressions (compound “ instructions”) to be evaluated on arrays 
of data. The HWOS will provide on the fly estimations on how 
fast, if at all, the expressions can be evaluated on the FPGA. The 
application will decide whether to perform the computations on 
hardware or software, and in case of hardware, the HWOS 
would automatically instantiate cores (e.g., adders and 
multipliers) and schedule data transfer to the datapaths.  

Each layer of such a hardware operating system should be 
transparent to the higher levels. For example, the core cache 
manager does not have to know anything about the physical 
placement of the cores on the FPGA. It would ask for 
estimations on resource availability and issue insertion / deletion 
requests to the placement engine. The placement engine would 
decide on the location of the new cores. The details of routing 
the busses between cores are left to the routing engine. The 
focus of this work is developing fast algorithms for the 
placement engine in such a framework.  

Callahan, et. al. [2] introduced a fast mapping and placement 
algorithm for datapaths, but they assumed that the FPGA chip 
has enough free space to allow for contiguous placement of the 
whole datapath. Bazargan, et. al., [1] introduced two-
dimensional placement methods for datapaths, but their method 
has two drawbacks: 1) they do not plan for data transfer between 
external/internal memories  and the datapaths on the FPGA, and 
2) their placement runtimes become long as more cores are 
instantiated on the FPGA (in the order of 100µs). 

In this work, we have implemented a linear placement method 
(similar to [2]) in JBits, where we try to minimize the delay of 
the datapath by minimizing critical wire lengths. Furthermore, 
we reuse already instantiated cores to reduce reconfiguration 
time, and also enable placement of a datapath even if no 
contiguous free space large enough to accommodate it is 
available. 

2. PHYSICAL CONTEXTS 
To ensure fast runtime placement of the expressions, we have to 
limit the search space and develop pre-defined rules on how the 
cores should be placed. We divide the FPGA chip into a number 
of horizontal strips, each with a fixed height, and input / output 
memory blocks that will be used as buffers for the data to be 
processed. The height of the context can vary, depending on the 
width of data to be processed by the contexts (e.g., a 16-bit 
context must be able to accommodate a 16-bit multiplier). The 
HWOS can determine how many of each type of contexts are 
needed by the applications. Figure 1-a shows an example of an 
FPGA fabric divided into two contexts. IM and OM are input 
and output memories. The data from input memories are 
transferred to individual “ input registers”  instantiated in the 
contexts. Data flows from left to right through the datapath 
pipeline and stored in the output memory. IM and OM blocks 
are similar to the block RAMs of Xilinx’s Virtex chip [4].  

Figure 1 (a) FPGA divided into physical contexts (b) 
expression tree of xy+(c-d) to be mapped to a context 

In addition to making the placement problem much simpler, the 
contexts provide opportunities for mapping independent threads 
of execution at the application or operating system level to the 
FPGA device. We assume that the assignment of the expressions 
to the contexts and scheduling of data transfer to and from the 
IM and OM memories are done at a higher level of the HWOS. 
We only focus on the placement of datapaths within contexts. 

3. STATIC PLACEMENT 
When an expression is given to the placement engine (our 
implementation takes the expression as a post-order expression), 
the placement engine calculates the total width of the datapath 
and if the context has a large enough contiguous free space, the 
datapath is placed in that empty region. We call this scheme 
static, as the placement of the expression can be arranged at 
compile time. 
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The static placement algorithm first calculates the delay at each 
node in the tree (maximum delay of its children, plus its node 
delay).  The subtree with greater delay is placed closer to the 
root node. For example, in Figure 1-b, the left subtree has 
smaller delay, and hence having longer wires connecting its 
output to the root node is less likely to increase the overall delay 
of the whole datapath. So, the function cores placed from left to 
right in the context are going to be *, - and + respectively. The 
same technique can be applied to pipelined designs, but in this 
case we have to consider individual pipeline stage delays. Input 
and output registers are treated as cores that should be  
connected to the input/output memories. 

4. DYNAMIC PLACEMENT 
There are two problems with the static placement scheme: 1) 
there might not be enough contiguous free space in the context 
to place the datapath as one big chunk, and 2) there might be 
some idle cores left on the context from previous expressions. 
We can use these idle cores to reduce reconfiguration time. Our 
dynamic placement method addresses these issues by first 
generating the static placement, and then finding a set of idle 
modules that can be reused for the new expression. The busses 
connected to the idle cores are unrouted and rerouted to make 
connections to the new datapath. 

The set of idle cores to be reused is selected in a way to 
minimize deviation from the static placement. Delay is allowed 
on busses connecting faster children to the root nodes of a 
subexpression. For example, in Figure 1-b, an idle subtractor 
that is far from the expression is more likely to be reused 
compared to an idle multiplier that cannot be connected to an 
adder close to it (either reused or instantiated).  

5. EXPERIMENTAL RESULTS 
We created a number of expressions for our placement tool and 
placed them in a context. Both static and dynamic placement 
methods were tested using the expressions shown in Table 1. 
Our methods were implemented in JBits and the datapaths were 
simulated using BoardScope. The column labeled “ Inactive 
Cores”  shows how many idle cores were in the context before 
the expression was placed. “Time” shows total reconfiguration 
time reported by JBits. Our placement algorithm runtimes were 
negligible (always reported as 0ms). With the exception of 
expression 4ii, reusing inactive cores reduces configuration 
time. Perhaps in 4ii unrouting and routing the signals took 
significant time resulting in the partial reconfiguration time 
being longer than the original configuration of the whole 
datapath. Figure 2 shows a snapshot of the cores of expression 
5i placed statically, and Figure 3 shows the activity bits of the 
datapath simulation in BoardScope. 

6. CONCLUSION AND FUTURE WORK 
We presented a placement engine for dynamically 
reconfigurable systems. We plan to improve the dynamic 
placement method and our delay estimation process. We also 
plan to implement cache algorithms and integrate them with the 
placement engine into a mini HWOS.  
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Table 1 Reconfiguration times for  test expressions. A – 
Adder, M – Multiplier , I  – Input register , O – Output reg. 

exp.No Expression Inactive Cores Time (ms) 

1 i a + b None 1336.0 

2 i None 2339.6 

2 ii 
(a  * b) + (e * f) 

1M, 1I 2129.0 

3 i None 2271.4 

3 ii 2A, 3I, 1O 2205.0 

3 iii 

(a * b) + (c + d + e) 

1A,1M,1I,1O 1895.0 

4 i None 5389.8 

4 ii 1A, 1M, 2I 5786.0 

4 iii 

( ( a * b ) + (c * d) ) 

* 

( n + m) 1A, 2M,  4I 3507.2 

5 i None 5293.6 

5 ii 2A, 1M, 3I 4666.8 

5 iii 

( ((a + b) * (c + d)) + 

((e * f) + (k + g)) ) * 

(x + y) 4A, 3M,6I,1O 3769.4 
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Figure 2 Snapshot of Jbit’s BoardScope showing the static 
placement of expression 5i (refer  to Table 1). 

 

 

Figure 3 Activity bits of the placement of Figure 2 as shown 
in Jbit’s BoardScope. LUTs are recolored from blue to white 

to enhance visibility. 


