
Linear Placement for Static / Dynamic Reconfiguration in JBits

Vamsi Krishna Marreddy Sharareh Noorbaloochi Kia Bazargan

Department of Electrical and Computer Engineering
University of Minnesota, Minneapolis, MN 55455

kia@ece.umn.edu

ABSTRACT

Placement of functional units on an FPGA fabric is a
challenging problem for runtime reconfigurable computing
systems. We introduce the concept of physical contexts to
greatly reduce the complexity of the placement and routing
problems. We have implemented static and dynamic linear
placement methods for expression trees placed in physical
contexts. Our placement algorithms are implemented in the JBits
environment, creating a layer of a hardware operating system for
future reconfigurable computing systems.

1. INTRODUCTION
A truly dynamic reconfigurable computing system would be able
to decide - on the fly - what computations to perform on the
FPGA and what operations to run on the CPU device.
Programming such systems would be a daunting task unless
high levels of abstraction are provided to application developers.
Hardware operating systems (HWOS) should be developed to
handle automatic placement of required cores on the FPGA,
reuse idle cores already on the chip, perform cache manager for
the instantiated cores, and so on. Hauck et. al. have discussed
some of these features in their works (e.g., [3]).

The input to the hardware operating system would be
expressions (compound “ instructions”) to be evaluated on arrays
of data. The HWOS will provide on the fly estimations on how
fast, if at all, the expressions can be evaluated on the FPGA. The
application will decide whether to perform the computations on
hardware or software, and in case of hardware, the HWOS
would automatically instantiate cores (e.g., adders and
multipliers) and schedule data transfer to the datapaths.

Each layer of such a hardware operating system should be
transparent to the higher levels. For example, the core cache
manager does not have to know anything about the physical
placement of the cores on the FPGA. It would ask for
estimations on resource availability and issue insertion / deletion
requests to the placement engine. The placement engine would
decide on the location of the new cores. The details of routing
the busses between cores are left to the routing engine. The
focus of this work is developing fast algorithms for the
placement engine in such a framework.

Callahan, et. al. [2] introduced a fast mapping and placement
algorithm for datapaths, but they assumed that the FPGA chip
has enough free space to allow for contiguous placement of the
whole datapath. Bazargan, et. al., [1] introduced two-
dimensional placement methods for datapaths, but their method
has two drawbacks: 1) they do not plan for data transfer between
external/internal memories and the datapaths on the FPGA, and
2) their placement runtimes become long as more cores are
instantiated on the FPGA (in the order of 100µs).

In this work, we have implemented a linear placement method
(similar to [2]) in JBits, where we try to minimize the delay of
the datapath by minimizing critical wire lengths. Furthermore,
we reuse already instantiated cores to reduce reconfiguration
time, and also enable placement of a datapath even if no
contiguous free space large enough to accommodate it is
available.

2. PHYSICAL CONTEXTS
To ensure fast runtime placement of the expressions, we have to
limit the search space and develop pre-defined rules on how the
cores should be placed. We divide the FPGA chip into a number
of horizontal strips, each with a fixed height, and input / output
memory blocks that will be used as buffers for the data to be
processed. The height of the context can vary, depending on the
width of data to be processed by the contexts (e.g., a 16-bit
context must be able to accommodate a 16-bit multiplier). The
HWOS can determine how many of each type of contexts are
needed by the applications. Figure 1-a shows an example of an
FPGA fabric divided into two contexts. IM and OM are input
and output memories. The data from input memories are
transferred to individual “ input registers” instantiated in the
contexts. Data flows from left to right through the datapath
pipeline and stored in the output memory. IM and OM blocks
are similar to the block RAMs of Xilinx’s Virtex chip [4].

Figure 1 (a) FPGA divided into physical contexts (b)
expression tree of xy+(c-d) to be mapped to a context

In addition to making the placement problem much simpler, the
contexts provide opportunities for mapping independent threads
of execution at the application or operating system level to the
FPGA device. We assume that the assignment of the expressions
to the contexts and scheduling of data transfer to and from the
IM and OM memories are done at a higher level of the HWOS.
We only focus on the placement of datapaths within contexts.

3. STATIC PLACEMENT
When an expression is given to the placement engine (our
implementation takes the expression as a post-order expression),
the placement engine calculates the total width of the datapath
and if the context has a large enough contiguous free space, the
datapath is placed in that empty region. We call this scheme
static, as the placement of the expression can be arranged at
compile time.

Context 2

I
M
1

I
M
2

O
M
2
O
M
2

Context 1

+

-*

x y c d

(a) (b)

Context 2

I
M
1

I
M
2

O
M
2
O
M
2

Context 1

Context 2

I
M
1

I
M
2

O
M
2
O
M
2

Context 1

+

-*

x y c d

+

-*

x y c d

(a) (b)

The static placement algorithm first calculates the delay at each
node in the tree (maximum delay of its children, plus its node
delay). The subtree with greater delay is placed closer to the
root node. For example, in Figure 1-b, the left subtree has
smaller delay, and hence having longer wires connecting its
output to the root node is less likely to increase the overall delay
of the whole datapath. So, the function cores placed from left to
right in the context are going to be *, - and + respectively. The
same technique can be applied to pipelined designs, but in this
case we have to consider individual pipeline stage delays. Input
and output registers are treated as cores that should be
connected to the input/output memories.

4. DYNAMIC PLACEMENT
There are two problems with the static placement scheme: 1)
there might not be enough contiguous free space in the context
to place the datapath as one big chunk, and 2) there might be
some idle cores left on the context from previous expressions.
We can use these idle cores to reduce reconfiguration time. Our
dynamic placement method addresses these issues by first
generating the static placement, and then finding a set of idle
modules that can be reused for the new expression. The busses
connected to the idle cores are unrouted and rerouted to make
connections to the new datapath.

The set of idle cores to be reused is selected in a way to
minimize deviation from the static placement. Delay is allowed
on busses connecting faster children to the root nodes of a
subexpression. For example, in Figure 1-b, an idle subtractor
that is far from the expression is more likely to be reused
compared to an idle multiplier that cannot be connected to an
adder close to it (either reused or instantiated).

5. EXPERIMENTAL RESULTS
We created a number of expressions for our placement tool and
placed them in a context. Both static and dynamic placement
methods were tested using the expressions shown in Table 1.
Our methods were implemented in JBits and the datapaths were
simulated using BoardScope. The column labeled “ Inactive
Cores” shows how many idle cores were in the context before
the expression was placed. “Time” shows total reconfiguration
time reported by JBits. Our placement algorithm runtimes were
negligible (always reported as 0ms). With the exception of
expression 4ii, reusing inactive cores reduces configuration
time. Perhaps in 4ii unrouting and routing the signals took
significant time resulting in the partial reconfiguration time
being longer than the original configuration of the whole
datapath. Figure 2 shows a snapshot of the cores of expression
5i placed statically, and Figure 3 shows the activity bits of the
datapath simulation in BoardScope.

6. CONCLUSION AND FUTURE WORK
We presented a placement engine for dynamically
reconfigurable systems. We plan to improve the dynamic
placement method and our delay estimation process. We also
plan to implement cache algorithms and integrate them with the
placement engine into a mini HWOS.

7. REFERENCES
[1] Bazargan, K., and Sarrafzadeh, M., "Fast Online Placement

for Reconfigurable Computing Systems", In IEEE Symp.

Field Programmable Custom Computing Machines, pp.
300-302, 1999.

[2] Callahan, T. J., Chong, P., DeHon, A. and Wawrzynek, J.,
“Fast Module Mapping and Placement for datapaths in
FPGAs”, in ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, 1998.

[3] Z. Li, K. Compton, S. Hauck, "Configuration Cache
Management Techniques for FPGAs", FCCM’00, pp. 22-
36.

[4] http://www.xilinx.com

Table 1 Reconfiguration times for test expressions. A –
Adder, M – Multiplier , I – Input register , O – Output reg.

exp.No Expression Inactive Cores Time (ms)

1 i a + b None 1336.0

2 i None 2339.6

2 ii
(a * b) + (e * f)

1M, 1I 2129.0

3 i None 2271.4

3 ii 2A, 3I, 1O 2205.0

3 iii

(a * b) + (c + d + e)

1A,1M,1I,1O 1895.0

4 i None 5389.8

4 ii 1A, 1M, 2I 5786.0

4 iii

((a * b) + (c * d))

*

(n + m) 1A, 2M, 4I 3507.2

5 i None 5293.6

5 ii 2A, 1M, 3I 4666.8

5 iii

(((a + b) * (c + d)) +

((e * f) + (k + g))) *

(x + y) 4A, 3M,6I,1O 3769.4

Input Register Adder Mult

Output
Reg

Input Register Adder Mult

Output
Reg

Figure 2 Snapshot of Jbit’s BoardScope showing the static
placement of expression 5i (refer to Table 1).

Figure 3 Activity bits of the placement of Figure 2 as shown
in Jbit’s BoardScope. LUTs are recolored from blue to white

to enhance visibility.

