
A VERILOG RTL SYNTHESIS TOOL FOR HETEROGENEOUS FPGAS

Peter Jamieson, Jonathan Rose

Edward S. Rogers Sr. Department of Electrical and Computer Engineering
University of Toronto

Toronto, Ontario, Canada M5S 3G4
jamieson@eecg.toronto.edu, jayar@eecg.toronto.edu

ABSTRACT

Modern heterogeneous FPGAs contain “hard” specific-
purpose structures such as blocks of memory and multipliers
in addition to the completely flexible “soft” programmable
logic and routing. These hard structures provide major bene-
fits, yet raise interesting questions in FPGA CAD and archi-
tecture. To develop high-quality CAD mapping algorithms
for these structures, and indeed to measure the quality of
proposed new structures in the architectural domain, it is es-
sential to have a flexible tool at the RTL synthesis level that
permits heterogeneous FPGA CAD and architecture experi-
mentation. In this paper we present a synthesis tool, called
Odin, and an algorithm that permits flexible targeting of hard
structures in FPGAs. Odin maps Verilog designs to two
different FPGA CAD flows: Altera’s Quartus, and the aca-
demic VPR CAD flow. We have expended significant effort
to make the quality of this tool comparable to an industrial
front-end synthesis tool, and we present mapping results for
our benchmarks that show the quality of our results.

1. INTRODUCTION

The advent of Field-Programmable Gate Arrays (FPGAs)
with specific-purpose heterogeneous structures [1, 2, 3]
raises the need for quality Computer Aided Design (CAD)
algorithms to target these structures and the need for flexible
architecture exploration aiding in the selection of appropri-
ate structures to place on modern FPGAs. While traditional
“soft” logic mapping into Lookup Tables (LUTs) [4, 5] is
done after technology-independent logic optimization [6, 7,
8] the mapping into coarse-grain structures such as multi-
pliers and memories is much more appropriately done at the
Register Transfer Level (RTL) synthesis level where these
structures are more directly recognizable.

The purpose of this paper is to present a public-domain
open source Verilog RTL Synthesis tool, called Odin, the
algorithms that allow it to flexibly target different heteroge-
neous structures, and the approximate parity with the quality
of industrial-strength RTL synthesis tools. Odin can be used
as part of a CAD flow that connects to a commercial flow
and one commonly-used academic flow.

The remainder of this paper introduces Odin and shows
how Odin compares against Quartus’ synthesis tool. Sec-
tion 2 defines relevant terminology for heterogeneous FP-
GAs and describes previous work on high-level synthesis
including existing front-end synthesis tools. Section 3 de-

scribes the basic structure of Odin, including its’ ability to
receive a simple description of a specific-purpose hard struc-
ture, and a basic mapping algorithm for those structures.
Section 4 describes mapping techniques within Odin that
raise the quality of its results. We present comparison re-
sults for Odin versus Altera’s Quartus RTL synthesis tool in
Section 6, and we also show how the combination of map-
ping techniques in Odin result in smaller and faster designs.
Finally, Section 8 concludes our paper.

2. BACKGROUND

2.1. Definitions for Modern FPGAs

A basic FPGA consists of a routing fabric and base logic
units. Base logic units are most typically implemented as
LUTs [9], but NAND gates [10], transistors [11], and mul-
tiplexers [12] have also been used. A homogeneous FPGA
is an FPGA that consists of only base logic units and pro-
grammable routing. The base logic unit or a group of base
logic units (sometimes referred to as a cluster) is collected
together with programmable routing to form a tile. Tiles are
abutted together to form the soft fabric of an FPGA, which
can implement any logic function.

A heterogeneous FPGA contains hard specific-purpose
circuits in addition to base logic units and a routing fabric.
A hard circuit is a specific circuit included on an FPGA to
perform specific logic functions, which could also be imple-
mented using the base logic units and the routing fabric [13].

Given these definitions, there are two common ways hard
circuits are added to FPGAs. The first is to add specific cir-
cuits into all the tiles in an FPGA. In this case, all the tiles
are the same, and the FPGA remains a homogeneous array
of tiles. We call this soft fabric heterogeneity. The hard
circuits within each tile allow certain functions to be im-
plemented with better area-efficiency and faster speed. For
example, flip flops are commonly paired with LUTs to save
both speed and area in, arguably, all cases [14] compared
to implementing the flip flop in the base soft logic fabric.
We call a unit of soft fabric heterogeneity that consists of
the base logic unit and additional hard circuits a Soft Fab-
ric Logic Unit (SFLU). The SFLU is called a Logic Ele-
ment (LE) by Altera and a slice by Xilinx.

The second way to employ hard circuits in an FPGA is
to include a specific circuit as a differentiated tile, which
separately abuts the SFLU tiles. We call this tile-based het-
erogeneity. Examples of heterogeneous tiles are multipli-

Optimize
RTL

OUT - Flat
Netlist

Map to Output
Format

IN - HDL
Design

Parse Elaborate

Partial Mapping

Infer

Bind

Fig. 1. This is a general flow to convert Verilog designs to
logic netlists.

ers [1, 2, 3], which are large circuits added to an FPGA as
unique tiles.

2.2. Hardware Description Language (HDL) Synthesis

Typically, the CAD flow is broken into a series of smaller
tasks, and in this paper we focus on the front-end conver-
sion of an HDL design into a netlist of basic gates and more
complex logic functions. In this section we discuss the gen-
eral approach taken in these front-ends.

Figure 1 illustrates several steps that may take place in
a front-end synthesis tool. The initial input to the tool flow
is an RTL design written in an HDL, and the output is a
netlist of basic gates, flip-flops, and higher-level structures
that serve to target specific hard circuits.

After basic language parsing, an elaborator transforms
the HDL design into a netlist, which consists of input and
output ports, primitive logic gates, specific functions such
as arithmetic operations, memory units including registers
and memory blocks, and HDL control structures. In most
schemes, elaboration preserves information from the orig-
inal HDL design, meaning that instead of converting con-
structs like an arithmetic operation into logic gates, the arith-
metic operation is preserved.

After elaboration, a partial mapper converts the netlist to
a lower-level netlist that more closely conforms to both the
FPGAs’ hard circuits and soft logic fabric. Given a library
of predefined components available on a target FPGA, the
partial mapper decides whether parts of the high-level netlist
should map to tile-based heterogeneous structures, soft fab-
ric heterogeneity, or logic gates. Partial mapping performs
this mapping through two tasks. Firstly, an inferencing stage
tries to determine the function of each part of the circuit, and
secondly, partial mapping binds functions in the design to an
implementation on the FPGA. After partial mapping, all ele-
ments of the netlist bind to either hard circuits on the FPGA,
to logic gates that must be mapped to the FPGAs’ soft logic
fabric, or a mixture of both.

The partial mapping stage, in essence, performs some of
the FPGA technology-mapping [15, 5, 4]. We call front-end
technology mapping, partial mapping, since only some of
the netlist is bound to target technology, while the rest of the
netlist remains unbound. Partial mapping performed during
front-end synthesis can be advantageous since the additional
information that is present at this stage makes inferencing
easier than it would be at later stages of the CAD flow.

There are a number of commercial front-end synthesis
tools that target FPGAs. Both Altera and Xilinx incorporate
front-end synthesis into their FPGA CAD flow tools called

Quartus [16] and ISE [17] respectively. Other popular front-
end synthesis tools for FPGAs include Synplify [18], Blast
FPGA [19], LeonardoSpectrum [20], and Design Compiler
FPGA [21].

To our knowledge there are no available open source
front-end synthesis tools, but some HDL parsers do exist.
For example, Icarus [22] is a front-end Verilog parser, which
does have a simple back-end implementation that targets
Xilinx’s defunct “xnf” netlist.

3. OVERVIEW OF ODIN

In this work we present, Odin, an HDL synthesis tool that
takes a Verilog design as input and converts the Verilog de-
sign into a flattened structural netlist. This conversion pro-
cess includes elaboration and partial-mapping stages, where
the final netlist consists of primitive gates and complex logic
functions targeting heterogeneous structures on an FPGA.
This netlist can be passed into various CAD flows includ-
ing Quartus, ModelSim, and a VPR CAD flow, although the
latter cannot include complex logic functions.

Figure 1 shows the major stages of the Odin tool. First,
a front-end parser, Icarus [22], parses the Verilog design and
generates a hierarchical representation of the design.

Second, Odin has an elaboration stage that traverses the
intermediate representation of a design to create a flat netlist
that consists of structures including logic blocks, memory
blocks, if and case blocks, arithmetic operations, and regis-
ters. Each of these structures within the netlist we refer to as
a node in the netlist.

Third, some simple synthesis and mapping is performed
on this netlist. This includes examining adders and multi-
pliers for constants, collapsing multiplexers, and detecting
and re-encoding finite state machines to one-hot encoding.
These mappings are discussed in more detail in the next Sec-
tion.

Fourth, an inferencing stage searches for structures in
the design that could be mapped to hard circuits on the target
FPGA. These structures are connected sub-graphs of nodes
that exist in the design netlist. One of the inputs to the Odin
tool that allows it to flexibly target this and like structures,
is a text file that describes the node subgraph to search for
this kind of hard circuit mapping. We search for these struc-
tures in the netlist using a matching algorithm discussed in
Section 4.1.

Fifth, a binding stage guides how each node in the netlist
will be implemented. This is done by mapping nodes in the
netlist to either hard circuits, soft programmable logic, or a
mixture of both. One way to do this is to map structures to
Library Parametrized Modules (LPMs), which later stages
of the industrial CAD flow will bind to an implementation
on the FPGA whether that be a hard or soft implementation.

The output from Odin is a flat netlist consisting of con-
nected complex logic structures and primitive gates.

4. MAPPING TECHNIQUES IN ODIN

One of the key goals in this work is to create a tool that
achieves quality of results comparable to an industrial front-
end synthesis tool. To achieve this we present several of the
key optimizations. First and foremost, we discuss the partial

a

b

c
out[0]

d REG out[1]

FPGA HARD STRUCTURES
LIBRARY

REG

Fig. 2. Shows a library describing hard circuits on an FPGA
and a matching of these structures in a netlist.

mapper steps that explicitly target the tile-based heteroge-
neous structures. In subsequent sections we discuss arith-
metic optimizations, finite state machine re-encoding, and
multiplexer collapsing optimizations.

4.1. Mapping to Tile-based Heterogeneity on FPGAs

Proper use of hard circuits is important since they can con-
siderably decrease area and improve speed. The most com-
mon tile-based hard circuits are multipliers and block mem-
ories.

Memories and multipliers are easily identified in designs,
and these structures are mapped to LPMs (or similar macro
structures depending on the device family target) that later
CAD stages configure for the target FPGA. Multipliers are
instantiated in Verilog with the “*” symbol, which is treated
as single node within the netlist. Similarly, memories are
single nodes and are easy to identify within Verilog designs.
Since both of these structures consist of one node, no addi-
tional processing is needed, and each node is mapped to an
LPM representing the FPGAs hard circuit.

If a hard circuit has additional (typically programmable)
functionality, it is a more difficult problem to detect the pos-
sible structures that can make use of it. For example, the
Altera DSP block can be configured to implement multi-
plication, multiply accumulation, and multiply summation.
Multiply summation is the addition of two or more multipli-
cations.

The inferencing stage in Odin detects structures that map
to hard circuits, such as these multiply accumulates and mul-
tiply summations. Once the text file that describes the func-
tionality of a hard circuit is read in (for example the Altera
Stratix DSP block), a matching algorithm searches for in-
stances of the DSP block in the netlist of the design. During
the binding stage, each matched node in the design netlist
is bound to a specific function available in the DSP block.
Currently, if a node can be bound to multiple DSP block
functionalities, then the match which covers the most nodes
in the design is chosen.

Figure 2 shows a sample netlist and a technology library,
the latter of which is described by the input text file. In

the Figure, the dotted lines represent matchings of the hard
circuits within the library.

This matching problem is a form of sub-graph isomor-
phism, which has been used in instruction generation for re-
configurable and processor systems [23, 24] and sub circuit
extraction for technology mapping [25].

We have found matching to be simple and successful as
the size of the sub-graphs representing hard circuits is very
small and consist of at most five nodes - which makes the
matching very fast. Secondly, while matching DSP blocks
we use multiply nodes as a seed node to start each search,
and multiplies appear infrequently in designs.

4.2. Mapping to Soft Fabric Heterogeneity on FPGAs

To achieve industrial-quality results on modern FPGAs it is
essential to correctly target the special-purpose adder struc-
tures that exist on all modern FPGAs and the features of
the flip-flops that are provided within the soft fabric of the
FPGA. We assume, for this discussion, that the target SFLUs
have one register and can implement either a logic function
or one or more bits of addition or subtraction. This is similar
to the SFLUs on modern FPGAs available from both Altera
and Xilinx.

The important part when mapping flip-flops is detect-
ing logic that can be used for the enable and reset signals
present on the flip-flop. To make use of the special adder
logic in modern FPGAs [1, 2] all possible uses of addition
and subtraction must be detected and mapped to that special
logic.

4.3. Mapping other Structures to an FPGA

4.3.1. Arithmetic Optimizations

For multiplies and additions, it is possible to shrink the size
of the arithmetic operation through constant propagation.
These operations should be done at RTL synthesis instead
of logic synthesis since the results of this optimization af-
fects partial mapping decisions.

Other optimizations include replacing “0” low order con-
stant inputs to an adder with a wire, and similarly, removing
most significant “0” constant multiplier inputs. We also im-
plement A + B + 1 in one adder using the carry in signal
that commonly exists in the adder capabilities of an SFLU.

4.3.2. One-hot Re-Encoding of Finite State Machines

Another beneficial transformation is the re-encoding of fi-
nite state machines to one-hot encoded. In Odin, state ma-
chines are first detected, and then states are re-encoded to
a one hot-encoding. This results in one flip-flop per state,
which reduces the number of bits needed to be written dur-
ing each calculation of the next state. Since less bits are
written per cycle, the amount of multiplexing and routing
is also reduced, which in many cases makes the finite state
machine implementation both faster and smaller [26]. The
additional flip-flops needed for each state are available on
FPGAs in each SFLU

We identify state machines by checking if 3 characteris-
tics of a potential state machine are satisfied. These charac-
teristics are:

module control (clock, a, b, reg1, reg2);
input [1:0]a, [3:0]b, clock;
output [1:0]reg1, reg2;
reg [1:0]reg1, reg2;
always @(posedge clock)

case(a)
2'b00: reg1<={b[0], 1,b1}
2'b01: reg1<={b[1], b[2]}
2'b10: reg1<={b[2], b[3]}
2'b11: reg1<={b[3], 1'b0}
endcase

always @(posedge clock)
if (a == {b[0], b[1]})

reg2 <= reg1[0];
else if (b == {3'b0, b[1])

reg2 <= reg1[1];
endmodule

Verilog HDL

Fig. 3. Example of control statements in Verilog, which be-
come multiplexers.

Synthesized Logic Circuits

b[2]
AND

AND

OR

AND

!((a==b[1]) ||
(b=={3'b000, b[1]}))

ff
reg2

(a==b[1]) && (a == 0)

((a==b[1]) && (a == 1)) ||
(!(a==b[1]) && (b=={3'b000, b[1]}))

1

(a)

(b)

b[2]

b[2]
AND

AND

OR

AND

a==b[1]

b=={3'b000, b[1]}

NOR

AND

ff
reg2

AND

(a==b[1]) && (a == 0)

(a==b[1]) && (a == 1)
1

Fig. 4. Shows how the example in Figure 3 collapses into
one implementation.

1. There is a case statement in a Verilog combinational
always block.

2. The signal being compared in the combinational case
statement comes from a register. This register is the
state register.

3. There is a feedback loop to the state register through
a multiplexer, and the only inputs to this multiplexer
come from either a feedback loop from the state reg-
ister or constant inputs that represent state encoded
values.

These rules are sufficient, but not necessary, and therefore,
not all finite state machines will be detected using these
characteristics.

4.3.3. Multiplexer Collapsing

Multiplexers are frequently used in circuit designs. Figure 3
shows Verilog code which has both a case and an if structure.
Both case and if structures are implemented as multiplexers.

Beyond these simple implementations of control struc-
tures, we can collapse case and if structures together and
group common signals together. Figure 4(a) shows how the
multiplexers in Figure 3 can be collapsed, and Figure 4(b)
shows how the common inputs of the multiplexers can be
joined. Both transformations increase the depth of logic for
the control signals, with the benefit of amortizing logic and

decreasing the number of logic levels on the data path. Cur-
rently, Odin collapses multiplexers assuming that the addi-
tional logic complexity added to the control signals will not
affect the overall speed of the design. This is not always
the case, and to improve multiplexer collapsing, we need to
estimate path delays of the circuit and determine if the addi-
tional delay on the control paths will effect the overall speed
of the design.

5. CAD FLOW AND VERIFICATION

Odin is a front-end HDL synthesis tool that is designed to
target both industrial and academic CAD flows. Specifically,
Odin can interface with Altera’s Quartus CAD flow [16],
and a VPR [27] CAD flow. To attach to each of these CAD
flows, first, Odin converts Verilog designs into structural
Verilog netlists consisting of gate primitives and LPMs (or
the equivalent of LPMs) targeted for a particular flow. In
the case of the VPR CAD flow, the output netlist is in BLIF
format [28] consisting of only primitive logic gates and flip-
flops. These outputs are passed to the industrial or aca-
demic flow that follows with downstream synthesis, place-
ment, and routing to generate area and timing results. One
of the major benefits of targeting industrial CAD flows such
as Quartus is that it allows us to obtain real speed and area
results for modern FPGAs.

To verify that Odin generates working designs, we have
built test benches for three of our benchmarks. These test
benches include both the original Verilog design and a Ver-
ilog gate/LPM-level netlist mapped by Odin. The test bench
generates inputs to both designs from one common source,
and the outputs are joined through XOR gates so that during
simulation if any of the outputs generate a “1” it means that
the two designs are not generating the same values, and there
is an error in the design mapped by Odin. Odin has been ver-
ified by simulating benchmarks cf cordici 18 18, md, and
fir 24 16 16 in ModelSim with some random vectors.

6. RESULTS

One of our key goals is to build a front-end synthesis tool
that generates results comparable to industrial front-end syn-
thesis tools that target FPGAs. In this section we describe
our benchmarking methodology and benchmark circuits.
Then we present and discuss the head-to-head comparison.
Finally we show the specific value of each of the different
mapping optimizations described in Section 7.1.

6.1. Benchmarking Methodology

For this comparison we use Quartus’ CAD flow and map
a set of benchmarks to Stratix FPGAs [1]. We use version
4.1 of Quartus and run our benchmarks through two CAD
flows consisting of Quartus alone and Odin interfaced with
Quartus.

Our benchmarks are Verilog HDL designs and have been
gathered from various sources including: Opencores organi-
zation [29], SCU-RTL [30], Texas-97 [31], and the Bench-
marks for Placement 2001 [32]. We have also converted
applications developed at the University of Toronto from
VHDL to Verilog. These designs include, Raytrace [33],
Stereo Vision [34], and Molecular Dynamic system [35].

Table 1. Area results for a comparison between designs
mapped by Odin joined to the Quartus CAD flow versus just
the Quartus CAD flow mapping to Stratix FPGAs

Number of Logic Elements Number of 9x9 DSP blocks
Designs A -

Quartus
B - Odin with

Quartus
Ratio
(B/A)

C -
Quartus

D - Odin with
Quartus

Ratio
(D/C)

fft_258_6 2374 3190 1.34 28 32 1.14
iir1 289 501 1.73 7 7 1.00
iir 297 338 1.14 12 10 0.83
fir_3_8_8 84 84 1.00 4 4 1.00
fir_24_16_16 1598 1591 1.00 48 48 1.00
fir_scu_rtl 998 548 0.55 0 17 0.00
diffeq_f_systemC 221 271 1.23 24 40 1.67
diffeq_paj_convert 512 369 0.72 24 40 1.67
sv_chip1 17765 17145 0.97 80 96 1.20
sv_chip2 35554 36194 1.02 176 144 0.82
sv_chip2_no_mem 34379 33803 0.98 176 144 0.82
rt_raygentop 2622 2679 1.02 27 27 1.00
rt_raygentop_no_mem 2118 2815 1.33 27 27 1.00
rt_top 25056 28653 1.14 112 112 1.00
rt_top_no_mem 21557 29507 1.37 112 112 1.00
oc45_cpu 2191 3101 1.42 2 2 1.00
reed_sol_decoder1 1151 1183 1.03 13 13 1.00
reed_sol_decoder2 1799 1957 1.09 9 9 1.00
md 10542.6 14867 1.41 112 112 1.00
cordic_8_8 591 838 1.42 0 0
cordic_18_18 2830 4104 1.45 0 0
MAC1 2864 2812 0.98 0 0
MAC2 9828 9720 0.99 0 0
CRC33_D264 102 102 1.00 0 0
des_area 1481 1305 0.88 0 0
des_perf 4592 3838 0.84 0 0
sv_chip0 12433 12729 1.02 0 0
sv_chip0_no_mem 7281 7122 0.98 0 0
sv_chip3_no_mem 170 134 0.79 0 0
rt_frambuf_top 546 784 1.44 0 0
rt_frambuf_top_no_mem 766 909 1.19 0 0
rt_boundtop 1519 3895 2.56 0 0

Average 1.11

7. COMPARISON BETWEEN ODIN AND
QUARTUS’ FRONT-END SYNTHESIS TOOL

Table 1 and Table 2 show the comparison of speed and area
of both CAD flows for each benchmark. To reduce the ex-
perimental “noise” associated with placement and routing,
the results are averaged over 5 random seeds for the place-
ment. In Table 1, columns 2 and 3 show a comparison be-
tween the number of LEs used on a Stratix FPGA mapped
by Quartus and mapped by Odin interfaced with Quartus.
Column 4 is a ratio that indicates how Odin performs com-
pared to Quartus. For any comparison ratio, when it is less
than one means that Odin is performing better than Quartus.
Similarly, in Table 1 column 5, 6, and 7 show the number of
9-bit by 9-bit Digital Signal Processing (DSP) blocks and a
comparison ratio. Table 2 shows a speed comparison where
column 2 and 3 show the maximum frequency of each cir-
cuit mapped by a pure Quartus and the Odin+Quartus flow.
Column 4 shows our comparison ratio.

Overall, these results show that Odin generates compara-
ble results to Quartus’ front-end as it is only slightly worse
in all cases. For the Stratix FPGA the geometrically aver-
aged area comparison ratio is 1.11 and the geometrically av-
eraged speed ratio is 1.05. These ratios indicate that Odin is
generating only slightly poorer mapped designs compared
to Quartus, but for many of the benchmarks we have quite
comparable results. One of the main reasons our tool gen-
erates results that are close to Quartus’ front-end tool is be-
cause we have built Odin to deal with mapping functionality
to both soft fabric and tile-based heterogeneity, and we have
added the transformations described previously.

7.1. Value of Specific Mapping Techniques in Odin

To see the affect the transformations have on the quality of
results generated by Odin we run an experiment in which we
turn on and off different mapping techniques. The mapping
techniques for this experiment are: (1) Partial Mapping to
the DSP block on the Stratix, (2) Arithmetic Optimizations,
(3) State Machine Identification and one-hot recoding, and

Table 2. Speed results for a comparison between designs
mapped by Odin joined to the Quartus CAD flow versus just
the Quartus CAD flow mapping to Stratix FPGAs

Speed in MHz
Designs E -

Quartus
F - Odin with

Quartus
Ratio
(E/F)

fft_258_6 101.762 146.16 0.70
iir1 84.994 82.53 1.03
iir 115.504 109.158 1.06
fir_3_8_8 251.484 251.928 1.00
fir_24_16_16 83.624 75.042 1.11
fir_scu_rtl 149.75 109.54 1.37
diffeq_f_systemC 45.076 41.11 1.10
diffeq_paj_convert 37.672 29.858 1.26
sv_chip1 116.416 122.31 0.95
sv_chip2 48.17 49.74 0.97
sv_chip2_no_mem 52.99 56.564 0.94
rt_raygentop 134.86 127.24 1.06
rt_raygentop_no_mem 134.33 136.916 0.98
rt_top 45.15 52.05 0.87
rt_top_no_mem 47.778 53.596 0.89
oc45_cpu 86.43 61.63 1.40
reed_sol_decoder1 86.07 82.69 1.04
reed_sol_decoder2 68.26 53.58 1.27
md 41.984 34.942 1.20
cordic_8_8 212.12 256.436 0.83
cordic_18_18 166.946 222.72 0.75
MAC1 107.044 98.532 1.09
MAC2 82.92 74.876 1.11
CRC33_D264 0 0 0.00
des_area 235.312 194.372 1.21
des_perf 199.564 199.44 1.00
sv_chip0 Won't fit 120.16 NA
sv_chip0_no_mem 162.808 146.202 1.11
sv_chip3_no_mem 321 328.94 0.98
rt_frambuf_top 120.15 127.75 0.94
rt_frambuf_top_no_mem 124.804 139.3 0.90
rt_boundtop 187.2 83.35 2.25

Average 1.05

(4) Multiplexer collapsing.
We ran Odin on all the benchmarks for five different con-

figurations and pass the mapped designs into the Quartus
CAD flow to get speed and area results. Each configuration
consists of different mapping techniques turned on or off.
We use five configurations for this experiment where each
new configuration includes the mapping techniques of the
previous configuration. The first configuration has all map-
ping techniques turned off. The second configuration only
has mapping technique 1 turned on. The third technique has
both mapping technique 1 and 2 turned on, and so on for the
remaining three configurations where the fifth configuration
has all techniques turned on.

In Figure 5(a), the bar graph shows how each mapping
technique contributes to decreasing the number of LEs used
to map the benchmarks to a Stratix FPGA. All the mappings
together provide a 4% decrease in the number of LEs used
compared against the first configuration. We can see that
Multiplexer collapsing contributes the majority of LE sav-
ings at 81% of the 4% improvement.

Figure 5(b) shows the improvement of the number of
mapped DSP blocks used. This metric is only affected by
Arithmetic optimizations, where shrinking the size of mul-
tiplication decreases the number of DSP blocks by a total
of 27.8%. This emphasizes how important it is to propa-
gate constants at front-end synthesis to ensure multipliers
are mapped to the smallest implementation possible.

Figure 5(c) shows how the mapping techniques in Odin
affect the speed of the benchmarks. The total speed im-
provement due to these techniques is 5.6%. Multiplexer col-
lapsing results in the greatest improvement in speed at 2.5%.

8. CONCLUSIONS

In this paper we have presented a front-end Verilog RTL
synthesis tool called Odin with available source code. Odin
employs mapping techniques to generate designs that are
comparable in area and speed to Quartus’ front-end tool. We
have also shown how certain mapping techniques improve

Fig. 5. Shows the results for turning each of 5 configurations
on and how each technique affects the final results.

the results generated by Odin. These techniques, though
simple, are important in mapping designs automatically and
efficiently to modern FPGAs. Finally, we provide this soft-
ware to the academic community hoping that the availability
of this tool will allow researchers to pursue other avenues in
front-end synthesis for FPGAs
(www.eecg.toronto.edu/∼jayar/odin/).

This research is funded by National Science and Engi-
neering Research Council of Canada under a post-graduate
scholarship and a Discovery Grant.

9. REFERENCES

[1] Stratix Device Handbook, Altera, Jul 2003.

[2] Virtex-II Pro Platform FPGAs, Xilinx, Oct 2003.

[3] Eclipse Family Data Sheet, QuickLogic, 2003.

[4] R. J. Francis, J. Rose, and Z. Vranesic, “Chortle-crf: Fast
technology mapping for lookup table-based fpgas,” in Proc.
28th ACM/IEEE DAC, 1991, pp. 613–619.

[5] K. Chen, J. Cong, Y. Ding, A. Kahng, and P. Trajmar, “Dag-
map: Graph-based fpga technology mapping for delay opti-
mization,” pp. 7–20, Sept. 1992.

[6] J. Cong, J. Peck, and Y. Ding, “RASP: A general logic syn-
thesis system for SRAM-based FPGAs,” in FPGA, 1996, pp.
137–143.

[7] J. Bhasker and H.-C. Lee, “An optimizaer for hardware syn-
thesis,” IEEE Design & Test, vol. 7, no. 5, pp. 20–36, Oct.
1990.

[8] R. E. Bryant, “Graph-based algorithms for boolean function
manipulation,” IEEE Transactions on Computers, vol. C-35,
no. 8, pp. 677–691, Aug. 1986.

[9] The Programmable Gate Array Data Book, Xilinx, 1989.

[10] Plessey Semiconductor ERA60100 Advance Information,
Data Sheet, Plessey, 1990.

[11] D. Marple and L. Cooke, “An MPGA compatible FPGA ar-
chitecture,” in ACM/SIGDA Workshop on FPGAs, 1992.

[12] ACT 1 Series FPGAs, Actel, 1996.

[13] J. Rose, “Hard vs. soft: The central question of pre-fabricated
silicon,” in 34th International Symposium on Multiple-Valued
Logic (ISMVL’04), Toronto, ON, May 2004, pp. 2–5.

[14] J. S. Rose, R. J. Francis, P. Chow, and D. Lewis, “The Effect
of Logic Block Complexity on Area of Programmable Gate
Arrays,” in IEEE CIC, May. 1989, pp. 5.3.1 – 5.3.5.

[15] D. Gregory, K. Bartlett, A. de Geus, and G. Hatchel,
“Socrates: a system for automatically synthesizing and opti-
mizaing combinational logic,” in Proceedings 23rd DAC, pp.
79–85.

[16] Altera, Quartus II Handbook, Volumes 1, 2, and 3, 2004.

[17] Xilinx ISE 6 Software Manuals and Help, Xilinx, 2004.

[18] Synplicity, “Synplify pro,” 2003.

[19] Magma Design Automation Inc., “Blast fpga,” 2005.

[20] Mentor Graphics, “Leanardospectrum,” 2001.

[21] Synopsys, “Design compiler fpga,” 2004.

[22] “ICARUS Verilog at www.icarus.com/eda/verilog/.”

[23] R. Kastner, S. Ogrenci-Memik, E. Bozorgzadeh, and M. Sar-
rafzadeh, “Instruction generation for hybrid reconfigurable
systems,” in ICCAD, San Jose, CA, 2001, pp. 127–131.

[24] J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-specific
instruction generation for configurable processor architec-
tures,” in FPGA ’04, 2004, pp. 183–189.

[25] M. Ohlrich, C. Ebeling, E. Ginting, and L. Sather, “Sub-
gemini: Identifying subcircuits using a fast subgraph isomor-
phism algorithm,” in DAC, 1993, pp. 31–37.

[26] S. Golson, “One-hot state machine design for FPGAs,” in 3rd
PLD Design Conference, Santa Clara, CA, 1993, pp. 1–6.

[27] V. Betz and J. Rose, “Directional Bias and Non-Uniformity
in FPGA Global Routing Architectures,” in 14th IEEE/ACM
Int’l Conference on CAD, 1996, pp. 652–659.

[28] U. of California Berkeley, “Berkeley logic interchange format
(BLIF),” 1992.

[29] “www.opencores.org.”

[30] “www.engr.scu.edu/mourad/benchmark/RTL-Bench.html.”

[31] “www-cad.eecs.berkeley.edu/Respep/Research/vis/texas-
97/.”

[32] “www.cs.nthu.edu.tw/∼ylin/.”

[33] J. Fender and J. Rose, “A high-speed ray tracing engine built
on a field-programmable system,” in IEEE Internation Conf.
On Field-Programmable Technology, 2003, pp. 188–195.

[34] A. Dharabiha, J. Rose, and W. MacLean, “Video-rate stereo
depth measurement on programmable hardware,” in IEEE
Computer Society Conference on Computer Vision & Pattern
Recognition, 2003, pp. 203–210.

[35] N. Azizi, I. Kuon, A. Egier, A. Darabiha, and P. Chow, “Re-
configurable molecular dynamics simulator,” in *Proceed-
ings of the IEEE Symposium on Field-Programmable Custom
Computing Machines*, April 2004.

