
COMPILATION AND MANAGEMENT OF PHASE-OPTIMIZED RECONFIGURABLE
SYSTEMS

Henry Styles and Wayne Luk

Department of Computing, Imperial College,
180 Queen’s Gate, London, England

email:{hes2,wl}@doc.ic.ac.uk

ABSTRACT
A program phase is an interval over which the working set
of the program remains more or less constant. This paper
presents a dynamic optimization scheme which uses pro-
gram phase information to optimize designs for reconfig-
urable computing. We present a mathematical formulation
of the optimization problem and propose a solution which
comprises of : (1) A hardware compilation scheme for gen-
erating configurations that are specialized for different
phases of execution. (2) A runtime system which manages
interchange of these configurations to maintain specializa-
tion between phase transitions. We report experimental re-
sults for Xilinx Virtex FPGAs involving OpenGL SPECview
-perf benchmarks and demonstrate 95.39% speedup over an
optimized uniform rate static design and 11.13% speedup
over an optimized multi-initiation interval static design. We
present a framework for a posteriori performance analysis
and architectural exploration with which we (a) establish
a performance upper bound under perfect phase optimiza-
tion, (b) investigate sensitivity to reconfiguration time, (c)
examine the quality of the proposed algorithm for phase-
detection. The optimization is shown to be surprisingly in-
sensitive to increased reconfiguration time. Faster recon-
figuration yields limited benefits and performance improve-
ments are possible upto 1 second reconfiguration time.

1. INTRODUCTION

Since the 1960s [1] it has been known that a broad set of pro-
grams exhibit phase behavior. Any program which adheres
to the Phase Transition Model [2] has predicable program
memory access patterns. Program phase is one of the basic
principles which underpins cache design and branch predic-
tion. Recently, microprocessors with reconfigurable cache
configurations have been proposed [3] which include an ex-
plicit phase prediction model to specialize the cache config-
uration at runtime in response to phase change. This paper
explores using phase behavior to optimize the mapping of
computer programs to reconfigurable architectures such as
FPGAs.

2. OPTIMIZATION FORMULATION AND
EXISTING APPROACHES

Phase-optimization consists of generation of phase-
optimized configurations and management of reconfigura-
tion.

Configurations can be generated at runtime or offline.
In microprocessors with multi-configuration caches [3] the
different phase-optimized cache configurations are designed
by hand offline. Several software [4] and hardware [5] en-
vironments have been reported which specialize designs at
runtime. Offline generation may allow for greater special-
ization whilst runtime generation requires less state.

Configurations must be interchanged at runtime to main-
tain phase-specialization. This task is modeled using a trellis
graph (Fig. 1):

1. Let tp be the number of computation steps in a pro-
gram execution.

2. Let c be the number of phase-optimized configura-
tions.

3. T ∈ � c×tp stores trellis node weights. Ti,j is the cost
of configuration i for step j.

4. R ∈ � c×c holds edge weights. Ri,j is the reconfigu-
ration time between configurations i and j.

A reconfiguration schedule is represented by S ∈ N tp ,
where Si is the index of the configuration used at compu-
tation step i. The cost of S is its path length le n g th (S) =∑

Ti,Si
+

∑
RSi,Si−1

. The optimal reconfiguration sched-
ule is the shortest-path through the trellis So pt where
le n g th (So pt) is minimal. Given a complete execution trel-
lis, So pt can be computed by simplified Dijkstra’s Shortest
Path [6]. The reconfiguration manager must compute an ap-
proximation of these operations at runtime. This consists of
the following tasks :

1. Monitor the working set. At each tcu r r e n t, a config-
uration independent measure of state called the work-
ing set signature is recorded. A windowed working
set history of length w, Wpa s t ∈ s ig w is stored. In
multi-configuration cache microprocessors [3], the

0-7803-9362-7/05/$20.00 ©2005 IEEE 311

Fig. 1. Trellis representation of execution history. Ti,j is the
cost of configuration i for step j. Ri,j is the reconfiguration
time between configurations i and j.

working set signature consists of a lossily compressed
histogram of program counter values over time.

2. Working set sequence prediction. The future work-
ing set sequence Wf u tu r e ∈ s ig w is predicted from
Wp a s t .

3. Evaluate cost of alternative configurations. The future
trellis window Tf u tu r e ∈ � c×w is determined from
Wf u tu r e .

4. Reconfiguration scheduling. The shortest path over
Tf u tu r e is estimated.

5. Invoke reconfiguration. The reconfiguration sched-
ule is implemented by invoking reconfiguration at the
specified time-steps.

In existing systems (3) is achieved by tuning [3] or mod-
eling. A tuning sequence consists of systematically trying
each of a number of configurations and measuring the per-
formance of each. Tasks (2) and (4) are typically [3] bundled
together in a combined algorithm.

3. PROPOSED SYSTEM

In our system, designs are specialized for different phases by
optimizing resource allocation between different program
branches. The optimal resource allocation for a phase is a
function of program branch probabilities [7]. We define a
program phase as an interval over which the branch prob-
abilities of a program remain more or less constant. The
proposed system consists of :
Generation of phase-optimized configurations We com-
pile a single high level program into a spectrum of phase-
optimized FPGA configurations offl ine. Our compilation
scheme [7] [8] combines coarse grain asynchronous and fine

grain synchronous pipelines and allows different program
branches to operate at different initiation intervals. For a
design of n basic blocks, parameter b ∈ Nn sets the initi-
ation interval of each block. bi is the cycles per result of
block i. The spectrum of configurations covers a subset of
the Cartesian product of possible parameterizations, culled
by applying fl ow heuristics. A parameterization is culled if
it contains a sub-graph with

1. Downstream slack The sustainable output rate is
greater than the sum of the maximum input rates.

2. Upstream blocking The sum of the input rates is
greater than maximum sustainable output rate.

Management of reconfiguration Our reconfiguration man-
ager mixes hardware and software. Monitoring of the work-
ing set is conducted in hardware with all other activities in
software.
Monitor the working set We define the working set signa-
ture to be the set of branch probabilities over a finite exe-
cution window. The working set signature is recorded by
profiling counters in hardware. Each BRANCH node con-
tains two counters which record the number of branches and
the total number of TRUE branches. At the end of a 10 mil-
lion input-sample execution window the signature is fetched
by software.
Evaluate cost of alternative configurations A simple
steady state M /M /1/∞/F C F S queuing network model is
compiled for each parameterization. In [7] we demonstrated
that this model is both accurate and fast. The input parame-
ters for each configuration are :

1. Initiation interval parameterization vector b.
2. The branch probabilities. Routing matrix Q ∈ � n×n,

where element Qij is the steady state probability that
a job completing basic block i branches to block j.

The traffic equations (eq. 1) are solved, subject to utiliza-
tion constraints (eq. 2), to determine overall performance :
the maximum sustainable input rate to block one γ1.

�λ(I − Q) = �γ (1)
λibi ≤ 1 i = 1, 2, .., N (2)

We propose a partial evaluation scheme to minimize cal-
culations at runtime. A symbolic solution is generated of-
fl ine and at runtime Q is substituted in. This requires that
only two sets of N linear equations need be evaluated at run-
time. It has been suggested that if (eq. 1) is ill-conditioned,
the partial evaluation should be abandoned and a full nu-
meric solution should be computed at runtime.
Working set prediction, reconfiguration scheduling and
invoke reconfiguration We propose a very simple combined
algorithm which is based on a 1-step history. The algorithm
reconfigures the device to the highest performance configu-
ration over the previous execution window as determined by

312

BRANCH

2

3

4

MERGE

1

MERGE

BRANCH

5

MATRIX
TRANSFORMATIONS

SCAN-LINE
SETUP

PIXEL OPERATIONS

INCREMENT
INTERPOLATION

POLYGON RETIRE

3 DIV 12 MULT
12 ADD

1 DIV 3 MULT

1 DIV 2 MULT
4 ADD

9 ADD

Fig. 2. Left pane shows the top level datafl ow graph for Mesa3D implementation showing basic block activities and resource
usage. Right pane shows the SPECviewperf benchmarks used in experiments. Images are taken from SPECviewperf web site.
Panes in clockwise order from upper left. Test 1 : SPECapc 3D Studio Max 3.1, Test 4 : Intergraph Designreview, Test 6 :
Discreet Lightscape, Test 5 : IBM Data Explorer.

the queueing network model. No reconfiguration occurs if
the fastest configuration is active.

4. PERFORMANCE ANALYSIS: SPECVIEWPERF

OpenGL is an industry standard API for real-time render-
ing. We implement parts of the OpenGL-like Mesa3D [9]
graphics library. The top-level datafl ow graph is shown in
the left pane of Fig. 2. There are five basic blocks with two
feedback loop carry dependent loops. We use eight of the
SPECviewperf [10] SPEC benchmarks for OpenGL. A com-
bined benchmark is also examined which runs all bench-
marks in sequence. All benchmarks were run at 320x200
resolution, 32-bit colour.

All experiments begin with compilation and synthesis
of the phase-optimized configurations for Xilinx Virtex-E
XCV1000-E. Our arithmetic library comes from Xilinx Core
GENERATOR and supports initiation intervals 1, 2, 4, 8, 16
and 32 cycles per result. The compiler generates 56 different
parameterizations for b, of which 54 fit the XCV1000-E.

4.1. Performance upper bound

For an arbitrary program and dataset, phase-optimization
will deliver a theoretical maximum performance improve-
ment when :

1. Reconfiguration management overhead is zero.
2. Reconfiguration time is zero.

3. Detection efficiency is one, such that the reconfigura-
tion schedule is optimal.

Clearly, no real-world system will share these properties.
However, analyzing performance under these conditions is
useful as it defines a performance upper bound, below which
all real-world phase-optimizing systems exist. Upper bound
performance U1 is determined by a posteriori analysis of
the execution trellis. A trellis is computed for each bench-
mark using cycle-accurate simulation. The optimal recon-
figuration schedule is then computed by shortest path. Two
control experiments are reported. Control C1 is the fastest
single design with uniform rate for all blocks. Control C2 is
the fastest single design with multiple initiation intervals.

Table. 1 shows the results for these experiments. A tim-
ing constraint of 90MHz clock rate is met by all 54 designs
in the spectrum of phase-optimized FPGA configurations.
In total, 66 reconfigurations are made over the course of
the nine benchmarks. Dynamic reconfiguration is present
in four of the nine optimal reconfiguration schedules. Fig. 3
illustrates the optimal reconfiguration schedule for the com-
bined benchmark.

The variance of speedup results for different datasets
is significant and shows that phase optimization is a data-
dependent optimization. Phase-optimization in only bene-
ficial if the underlying assumption of phase-phase-behavior
holds true. The fl at sections of Fig. 3 illustrate that there is
little phase behavior in benchmarks 1,3,4,5 and 7. The op-
timal reconfiguration schedules for these benchmarks there-

313

47 4447 4447 4447 4447
1

4447

0.6

4447 4447 4447

0.2

4447 43 47 4347 43 4447 4447 44 47 444743

0.8

0.4

0

140100

time (10Mpixel intervals)

1208060400 20

43 4447 44

Q[3,3]

Q[4,1]

Fig. 3. Optimal reconfiguration schedule for upper bound performance measure, SPECviewperf benchmark 9. Lines Q[3,3]
and Q[4,1] show the branch probabilities of the inner and outer loop over time. Design 43 corresponds to b parameterization
of [4,2,2,1,1]. Design 44 corresponds to b parameterization of [4,4,1,1,1]. Design 47 is b parameterization of [8,1,1,1,1]. For
SPECviewperf benchmark 8, the optimal reconfiguration schedule U1 contains 36 reconfigurations.

Configs Time (ms) Relative speedup
of U1 (%) over

Test Rf U1 C2 U1 C1 C2

1 0 43 43 2976 64.24 0
2 21 44,47 44 7996 200.15 2.784
3 0 43 43 1335 99.65 0
4 0 43 43 4202 90.47 0
5 0 43 43 4222 100.00 0
6 2 43,47 47 1907 133.00 2.205
7 0 43 43 2666 100.00 0
8 7 44,47 44 3163 209.08 2.753
9 36 43,44,47 44 36154 105.21 16.72

Table 1. Upper bound speedup for SPECviewperf bench-
marks, XCV1000-E at 90 MHz. Rf shows the number of
reconfigurations configuration schedule C1. The Configs
columns show the names of configurations used in each
schedule. Configuration 43 is initialization interval b param-
eterization [4,2,2,1,1], 47 is [8,1,1,1,1], 44 is [4,4,1,1,1] and
46 is [4,4,4,1,1]. Schedule C1 uses configuration 46 in all
tests. The remaining columns show the percentage speedup
of schedule U1 over C1 and C2.

fore contain zero reconfigurations.
Benchmarks 2,6,8,9, exhibit more classical phase tran-

sition behavior. For these benchmarks, branching behav-
ior oscillates between stable phases. The probabilities are
sufficiently different and phases are of sufficient length to
enable optimization by swapping between phase-optimized
configurations. In benchmark 2, the upper bound optimal re-
configuration schedule oscillates between parameterization
b = [4, 4, 1, 1, 1] and b = [8 , 1, 1, 1, 1] through 21 recon-

figurations. The upper bound speedup over the best sin-
gle configuration is 2.784% with 200.15% speedup over the
best single uniform rate configuration. In benchmark 8 the
schedule includes 7 reconfigurations and the upper bound
speedup over a single configuration scheme is 2.205%. A
133% speedup is achieved over the best uniform rate design.
For benchmark 9, the important combined benchmark, the
upper bound optimal reconfiguration schedule oscillates be-
tween parameterization b = [4, 2, 2, 1, 1], b = [4, 4, 1, 1, 1]
and b = [8 , 1, 1, 1, 1]. It consists of 36 reconfigurations and
the upper bound speedup over the best multi-initiation inter-
val design is 16.72%. A 105.21% speedup is achieved over
the best uniform rate design.

Why is there little speedup over the best single multi-
initiation interval design ? Firstly, there is a lack of phase-
transition behavior in the dataset. In general the SPECview-
perf benchmarks do not exhibit the classical behavior of the
phase-transition execution model. If an application could be
found with longer or more varied phases of execution, more
reconfigurations would occur in the optimal reconfiguration
schedule and a greater theoretical upper bound on perfor-
mance improvement would be achieved. Secondly there is
a lack of fine grain control on design specialization. Our
arithmetic library is restricted to initialization intervals of
powers of two. As a result there are large intervals of branch
probability over which the same design parameterization is
optimal. Greater fl exibility, for example arbitrary integer
initialization intervals, would permit finer grain specializa-
tion and encourage more frequent reconfiguration.

314

4.2. Architectural exploration: sensitivity to reconfigu-
ration time

This section explores the sensitivity of the optimal reconfig-
uration schedule to increased reconfiguration time. We be-
gin by constructing the complete execution trellis for each
benchmark. The a posteriori shortest path is then computed
with parameterized reconfiguration overhead edge costs R.
Performance is analyzed over the interval of zero-cost re-
configuration (U1) up to 2 seconds per reconfiguration.

Ri,j (ms) Test 2 Test 6 Test 8 Test 9
0 2.78 / 31 2.20 / 2 2.75 / 7 16.72 / 36
1 2.51 / 21 2.10 / 2 2.55 / 5 16.60 / 34
2 2.24 / 21 1.99 / 2 2.38 / 5 16.50 / 34
3 1.71 / 21 1.77 / 2 2.06 / 5 16.27 / 34
4 0.722 / 17 1.35 /2 1.51 / 4 15.86 / 29
16.4688 0 / 0 0.467 / 2 0.66 / 3 15.37 / 11
32 0 / 0 0 / 0 0 / 0 14.97 / 6
64 0 / 0 0 / 0 0 / 0 14.36 / 6
128 0 / 0 0 / 0 0 / 0 13.16 / 6
256 0 / 0 0 / 0 0 / 0 11.55 / 4
512 0 / 0 0 / 0 0 / 0 9.06 / 3
1024 0 / 0 0 / 0 0 / 0 4.88 / 3
2048 0 / 0 0 / 0 0 / 0 0 / 0

Table 2. Sensitivity of runtime phase optimization to in-
creased reconfiguration overhead for SPECviewperf bench-
marks 2,6,8 and 9. Ri,j is the reconfiguration time in mil-
liseconds. Remaining columns show the % speedup of U1

over C2 and the number of reconfigurations in U1.

Table 2 shows optimal reconfiguration schedule perfor-
mance degradation with increased reconfiguration overhead.
Tolerance to high reconfiguration overhead is only possible
in benchmarks which exhibit sufficient phase-transition be-
havior. SPECviewperf benchmarks 2, 6, and 8 exhibit lim-
ited phase behavior and are sensitive to increased reconfig-
uration time. Combined benchmark 9 exhibits greater phase
behavior. The results for the combined benchmark show :

1. Where applicable, phase-optimization is well suited
to existing architectures and complete device recon-
figuration in the range of 10-50ms. The XCV1000-E
(16.466 ms) suffers only 1.35% loss of only speedup
compared to the zero-reconfiguration time optimal
schedule.

2. Where applicable, phase-optimization is surprisingly
insensitive to increased reconfiguration time. Perfor-
mance improvements are still possible at 1 second re-
configuration time.

3. There is surprisingly little benefit in faster reconfigu-
ration. Techniques such as partial reconfiguration or
coarse grain reconfiguration would be ineffective.

4.3. Prototyping board experiments

This section describes experiments using the RC1000–PP
board. All designs run at the maximum memory clock rate
25MHz. Four control experiments were conducted using
techniques described in Section 4.1.
C1 The fastest uniform rate single design.
C2 The fastest multiple initiation interval single design.
C3 The optimal reconfiguration schedule using designs with
multiple initiation intervals. Zero reconfiguration time.
C4 The optimal reconfiguration schedule using designs in-
volving multiple initiation intervals. Reconfiguration time
16.4688ms for the XCV1000-E on the RC1000-PP.
I is the full phase-optimization system. Tables 3 and 4 show
performance results.

Rf Configurations
Test C3 C4 I C2 C3 C4 I meand
1 0 0 1 43 43 43 46,43 0
2 21 21 22 47 44,47 44,47 46,44,47 0.476
3 0 0 1 43 43 43 46,43 0
4 0 0 1 43 43 43 46,43 0
5 0 0 1 43 43 43 46,43 0
6 2 2 3 47 43,47 43,47 46,43,47 0
7 0 0 1 43 43 43 46,43 0.4
8 7 5 7 47 44,47 44,47 46,44,47 0.4
9 36 34 36 43 43,44,47 43,44,47 46,43,44,47 0.588

Table 3. SPECviewperf OpenGL benchmarks for RC1000–
PP. Rf is the number of reconfigurations in the schedule. See
Table 1 for explanation of Configurations column. Experi-
ment C1 uses configuration 46 in all tests. The meand col-
umn shows the mean time between reconfigurations in C4

and I.

Time (ms) Relative speedup of I (%) over
Test I C1 C2 C3 C4

1 11381 54.86 -5.71 -5.71 -5.70
2 32639 167.68 -8.33 -10.81 -10.69
3 5618 71.36 -14.17 -14.17 -14.12
4 15701 83.71 -3.55 -3.55 -3.54
5 16016 90.00 -5.00 -5.00 -4.99
6 7978 101.79 -11.48 -13.39 -13.31
7 10416 84.62 -7.69 -7.69 -7.68
8 12886 175.61 -8.37 -10.82 -10.82
9 137292 95.39 11.13 -4.79 -4.77

Table 4. SPECviewperf OpenGL benchmarks running on
RC1000–PP. Table shows the percentage speedup of the im-
plemented system I over the control experiments.

Table 4 shows overall experimental speedup. Column
three shows the speedup in percentage of the experimen-
tal runtime phase optimizing system I versus the best sin-

315

gle configuration with uniform initiation interval. Speedup
ranges from a 54.86% speedup for benchmark one, to a
175.61% speedup for benchmark eight. For the combined
benchmark a speedup of 95.39% is encountered. Column
four shows that for the combined benchmark, an 11.13%
speed improvement is made over the best possible single
configuration. Column five and six show that I is 4.77%
slower than the optimal possible reconfiguration strategy for
the XCV1000-E.

4.4. Quality of phase-detection scheme

Table 3 lists the configurations used and the number of re-
configurations during execution. The results indicate that
the experimental reconfiguration management system per-
forms well. The number of reconfigurations used in I cor-
relates well with the optimal reconfiguration schedule for
XCV1000-E, control study C4. I also uses the same config-
urations as C4 with configuration 6 used on startup.

The final column of Table 3 shows the mean phase change
miss distance of experimental schedule I compared to C4.
Our phase detection algorithm exhibits high detection ef-
ficiency: it schedules each reconfiguration on average less
than half a profiling sample away from the optimum recon-
figuration schedule.

5. CONCLUSIONS

The key contribution of this work is a system of phase- op-
timization which comprises (1) A hardware compilation
scheme for generating configurations that are specialized
for different phases of execution. (2) A runtime system
which manages interchange of these configurations to main-
tain specialization across phase transitions. We provide an
experimental implementation for Xilinx Virtex FPGAs and
demonstrate 95.39% speedup over an optimized uniform rate
static design and 11.13% speedup over an optimized multi-
initiation interval static design.

We characterize the zero-reconfiguration time upper
bound on performance and explore the sensitivity of the pro-
posed system to increased reconfiguration time. The upper
bound for XCV1000-E at 90MHz is 16.72% over the best
possible single configuration. Performance degrades grace-
fully as reconfiguration time is increased. The optimiza-
tion is shown to be beneficial in the 10-50ms reconfiguration
time region exhibited by modern FPGAs and is surprisingly
insensitive to increased reconfiguration time. Performance
improvements are possible upto 1 second reconfiguration
time and there is little benefit in faster reconfiguration.

We analyze the quality of the proposed reconfiguration
management system. The runtime system is shown to be
extremely lightweight : only two sets of linear equations
need be evaluated at each timestep. The overall performance
of the system is only 4.77% slower than the optimal possible

reconfiguration strategy for the XCV1000-E and the phase
detection algorithm is shown to exhibit a very high detection
efficiency.

There are several possible directions for future work.
The most pressing requirement is to build a fl exible arith-
metic library which targets Virtex IV to address issues raised
in Section 4.1. Our compilation scheme generates a globally
asynchronous locally synchronous design. Greater special-
ization will be sought in multiple-clock domain configura-
tions, in effect enabling more fl exible selection of initializa-
tion intervals. There is also significant scope for improv-
ing management of reconfiguration. Our queuing network
model would be improved by attempting to model bursty-
ness. More sophisticated phase change detection algorithm
algorithms such as the Signature-Based Reconfiguration Al-
gorithm or Rochester Algorithm [3] will also be investigated.
Finally, modern FPGAs are capable of self-reconfiguration
[11], inviting the possibility of phase-optimizing system-on-
chip.

6. REFERENCES

[1] P. Denning, “The working set model for program behavior,”
in Proceedings of the ACM symposium on Operating System
Principles, 1967, pp. 15.1–15.12.

[2] A. Batson and A. Madison, “Measurements of major locality
phases in symbolic reference strings,” in Proceedings of the
International Symposium on Computer Performance, Model-
ing, Measurement and Evaluation, 1976, pp. 75–84.

[3] A. S. Dhodapkar and J. Smith, “Managing multi-
configuration hardware via dynamic working set analysis,” in
Proceedings of the 29th IEEE/ACM International Symposium
on Computer Architecture, 2002, pp. 233–244.

[4] G.-Y. L. M. Cierniak and J. Stichnoth, “Practicing judo : Java
under dynamic optimization,” in SIGPLAN. ACM Press,
2000.

[5] S. McMillan and S. Guccione, “Partial run-time reconfigura-
tion using jrtr,” in Field Programmable Logic and Applica-
tions. Springer, 2000.

[6] E. Dijkstra, “A note on two problems in connection with
graphs,” Numeriche Mathe, vol. 1, pp. 269–271, 1959.

[7] H. Styles and W. Luk, “Branch optimisation techniques for
hardware compilation,” in Field Programmable Logic and
Applications. Springer, 2003, pp. 324–333.

[8] H. Styles, D. Thomas, and W. Luk, “Pipelining designs with
loop-carried dependencies,” in International Conference on
Field Programmable Technology. IEEE Computer Society
Press, 2004.

[9] B. Paul, “The mesa 3d graphics library,”
http://www.mesa3d.org/.

[10] “Specviewperf 7.1,” http://www.specbench.org.
[11] B. Blodget, P. Roxby, E. Keller, S. McMillan, and P. Sun-

dararajan, “A self-reconfiguring platform,” in Field Pro-
grammable Logic and Applications. Springer, 2003, pp.
565–574.

316

