
A CONFIGURATION MEMORY ARCHITECTURE FOR FAST RUN-TIME
RECONFIGURATION OF FPGAS

Usama Malik† and Oliver Diessel†‡

†School of Computer Science and Engineering
University of New South Wales

Sydney, Australia
‡Embedded, Real-time, and Operating Systems (ERTOS) Program,

National ICT Australia
{umalik, odiessel}@cse.unsw.edu.au

ABSTRACT

This paper presents a configuration memory architec-
ture that offers fast FPGA reconfiguration. The underlying
principle behind the design is the use of fine-grained partial
reconfiguration that allows significant configuration re-use
while switching from one circuit to another. The proposed
configuration memory works by reading on-chip configura-
tion data into a buffer, modifying them based on the exter-
nally supplied data and writing them back to their original
registers. A prototype implementation of the proposed de-
sign in a 90nm cell library indicates that the new memory
adds less than 1% area to a commercially available FPGA
implemented using the same library. The proposed design
reduces the reconfiguration time for a wide set of bench-
mark circuits by 63%. However, power consumption dur-
ing reconfiguration increases by a factor of 2.5 because the
read-modify-write strategy results in more switching in the
memory array.

1. INTRODUCTION

This work focuses on reducing reconfiguration time of an
FPGA by reducing the amount of configuration data that
needs to be loaded onto the device to configure a given cir-
cuit. It has been shown by several researchers that when an
on-chip circuit is swapped with another one, a large amount
of configuration data for the new circuit need not be loaded
because they are already contained in the on-chip configu-
ration (e.g. [1, 2, 3]). Our previous work showed that such
inter-configuration redundancy can be exploited at its best if
the user is allowed to modify on-chip configuration data at
a fine-grained level [3]. While current devices support par-
tial (re)configuration and are well supported by CAD tools
(e.g. [4, 5, 6]), they do not allow fine-grained access to their
configuration memories.

A straight forward solution to the above problem can

be to implement the configuration memory as a RAM that
is addressable at a fine-grained level (such as in XCV6000
series [7]). This approach is, however, less suited to high-
density FPGAs as it demands high bandwidth; externally in
the form of address data and internally in the form of con-
trol and data wires that need to span the chip. A method
to modify selected bytes in Virtex [8] devices has been dis-
cussed in [9] where the user supplies a bit-mask to locate
the bytes that are to be updated. While this method reduces
the external bandwidth, it internally implements the mem-
ory like a RAM and therefore demands significant hardware
resources. A similar comment applies to the on-chip imple-
mentation of LZ-based configuration decompressors ([10]).

This paper presents a complete solution that reduces both
external and internal bandwidth requirements for fine grained
access to large configuration memories. Section 2 anlyses
the addressing problem, which is to reduce external band-
width requirements, and concludes that a method somewhat
similar to [9] can indeed be quite suitable for high-density
FPGAs. The following section presents a new configuration
memory architecture that implements the required address-
ing technique but in a manner that significantly reduces in-
ternal bandwidth requirements. In the future, we would like
to incoprorate intra-configuration compression techniques
(e.g. [11, 2, 12, 13]) into our method for further improv-
ments in performance.

2. EVALUATING EXISTING ADDRESSING
TECHNIQUES

This section evaluates three different address encoding tech-
niques for fine-grained configuration updates. These are
RAM method (binary encoding), DMA method (run-length
encoding) and vector addressing (unary encoding). It is shown
that the VA method is superior when the circuit update is
large and vice versa. A hybrid technique that combines the

Sub-Fr. #Sub-Fr. Sub-Fr #Bits RAM DMA Vector
Size in Data in RAM Addr. %Red. Addr. %Red. Addr. %Red.

(Bytes) XCV100 (Bytes) Addr. (Bytes) (Bytes) (Bytes)

8 11,270 380,728 14 83,285 32 35,382 39 12,679 41
4 22,540 322,164 15 151,014 31 76,819 41 25,358 48
2 45,080 248,620 16 248,620 27 144,104 42 50,715 54
1 90,160 164,121 17 348,758 25 365,211 22 101,430 60

Table 1. Total overheads of various configuration addressing schemes for 9 reconfigurations.

two approaches is therefore suggested.
We chose a Virtex [8] device as the target FPGA for our

analysis. A Virtex device consists of c columns × r rows
of logic and routing resources organised into so-called con-
figurable logic blocks (CLBs). There are 48 configuration
shift-register per column known as frames spanning the en-
tire height of the device. The number of bytes in a frame, f ,
depends on the number of CLB rows in the device. Load-
ing configuration data onto a Virtex device involves the user
supplying the address of the first frame to load and the num-
ber of consecutive frames to be configured. Frames, there-
fore, are the smallest unit of configuration, and these are
loaded via an 8-bit wide configuration port at a maximum
frequency of 66MHz.

The following analysis assumes that sub-frames of var-
ious sizes can be loaded independently onto a Virtex de-
vice and considers various schemes of addressing those sub-
frames that need to be loaded given an on-chip configura-
tion. Ten common circuits from the DSP domain were con-
sidered (details can be found in [14]). These circuits were
mapped onto an XCV100 (c=30, r=20, f=56) FPGA using
ISE5.2 [8, 4]. This device was chosen because it was the
smallest Virtex that fits each circuit. The circuits were syn-
thesised for minimum area and the configuration files corre-
sponding to these circuits were generated. Using JBits [15]
the difference configurations corresponding to a random se-
quence of the input circuits were generated (we ignored the
BRAM content configurations in this analysis). Let the first
configuration in the sequence be known as the current con-
figuration (assumed to be on-chip). The second configu-
ration in the sequence was then considered. The frames
were partitioned into sub-frames of the various sizes un-
der consideration and those sub-frames that were different
from their counter-parts in the current configuration were
counted. The current on-chip configuration was then up-
dated with the difference and the next circuit was in turn
analysed with respect to the previous circuit in the list. This
procedure resulted in nine difference configurations. The
amount of RAM, DMA and VA address data corresponding
to these configurations was then calculated. The VA address
for each difference configuration was simply a bit vector of
size n, where n was the total number of sub-frames in an
XCV100 at the chosen sub-frame size. In this vector, the ith

bit was set to 1 if the ith sub-frame was to be included in the
configuration bit-stream otherwise it was left unset.

Table 1 presents the results of the above experiments.
Consider the bottom row, which relates to a byte-sized sub-
frame. We found that the total amount of sub-frame data to
be written for the nine difference configurations was 164,121
bytes (column 3). At a byte-sized sub-frame, the RAM ad-
dress requires 17 bits per sub-frame (column 4) and there-
fore the amount of RAM addressing overhead was calcu-
lated to be 348,758 bytes (column 5). Adding sub-frame
and address data gives 512,879 bytes of configuration data.
We calculated that the current Virtex demands 679,672 bytes
of frame data and 5,272 bytes of address data for the nine
configurations. Given this baseline, the RAM model of-
fered a 25% reduction (column 6). Table 1 shows that the
DMA method yielded at best 42% reduction (column 8)
while the VA method offered 60% reduction (column 10).
It can be seen that at more coarse configuration granulari-
ties, the DMA method compresses the RAM address data by
more than 50% (compare columns 5 and 7) but approaches
the RAM method at byte-sized granularities.

While the VA overhead is fixed irrespective of the num-
ber k of sub-frames to be reconfigured, the RAM overhead
is directly proportional to k. When klog2(n) < n, the RAM
overhead is less than the VA overhead. Our experiments
suggest that for typical core style reconfiguration (by which
we mean swapping an entire circuit with another one), the
inequality n < klog2(n) is true, e.g. for XCV100, when
k >1/16 of the device, VA outperforms RAM. However,
dynamic reconfiguration is also used in situations where a
small update is made to the on-chip circuits. The above
inequality is not likely to be true in these cases. In order
to overcome this limitation, we developed a hybrid strategy
that combines the best features of DMA with VA. We now
describe an alternative Virtex configuration architecture that
implements this method and evaluate its overheads.

3. INTRODUCING VECTOR ADDRESSING TO
VIRTEX

This section presents the architecture of a DMA-VA addressed
memory that supports byte-level reconfiguration. The pro-
posed technique is based on the current Virtex model, which

already offers DMA addressing at the frame level. Under
the new model, the user supplies a DMA address and a se-
quence of frame blocks. The frames in a block need not be
completely filled. For each input frame, its VA, which spec-
ifies the address of the bytes that are present in the input
configuration, is also supplied. Internally, the device reads
frames into an intermediate register, modifies the sub-frame
data based on the supplied VA and writes the frames back.
The main innovation in the new architecture is a method that
implements the data modification operation without having
a RAM style implementation.

In the current Virtex, the frames are loaded into the frame-
registers via a buffer called the frame data register (FDR).
As the internal details of Virtex are not known to us, we
assume that each frame-register is implemented as a sim-
ple shift register. After a frame is loaded into the FDR it is
serially shifted into the selected frame-register while a new
frame is shifted into the device. One could read a frame into
the FDR, modify it based on the input VA and write it back.
This procedure, however, can create a bandwidth mismatch
of 1 : f between the configuration port and the frame reg-
isters in the worst case unless the frames can be read and
written in a single cycle. Ideally, we would like the con-
figuration load process to be synchronous with a constant
throughput at the input-port.

We resolve the bandwidth mismatch problem by provid-
ing sufficient horizontal wires at the top and at the bottom of
the memory in order to match the internal and external con-
figuration clock frequencies. Let the configuration port be
of size p bits. We note that the VA data must be loaded onto
the device in chunks of p bits and therefore only p bytes of
the frame data can be updated at any stage. We partition the
configuration memory into blocks of p consecutive frames.
The topmost p bytes of each frame block are read into the
FDR, in parallel, via the top set of buses. We therefore re-
quire p 8-bit wide buses along with switches to select and
read data from a frame block. The FDR is p bytes in width
and the updated data is written back to the bottom of a frame
block via another set of p 8-bit wide buses.

The architecture of the new configuration memory is sho-
wn in Figure 1. The configuration port width, p, in the new
architecture remains at 8 bits. There are two reasons for
this decision. First, we wanted to compare our results with
the existing Virtex model. Second, we believe that the pin
limitation on contemporary devices will not allow the con-
figuration port size to increase substantially. The proposed
architecture, however, is not limited to an 8-bit wide port
and can easily be scaled.

Under the new model, the configuration data is loaded
in terms of frame blocks (eight frames per block) that are
addressed in a DMA fashion. To start the configuration load
process, the user supplies the address of the first block to
be updated followed by the number of consecutive blocks

Decoder
Address
Vector

Frame
Registers

Block of

Block Address Decoder

Frame
Data

Register

Configuration
Port

Main
Controller

Data
Flow

Fig. 1. The architecture of the new configuration memory.

that are to be loaded. Each frame block is loaded as follows:
The top eight bytes of the selected block are loaded from the
array into the FDR, which consists of eight byte-sized reg-
isters. Simultaneously, the 8-bit VA corresponding to these
bytes is loaded from the configuration port into the vector
address decoder (VAD). For each block of frames, its VA
is packed such that the first bit specifies the first byte of the
first frame in that block, the second bit specifies the first byte
of the second frame and so on.

After a byte of VA is loaded, the VAD selects the first
register in the FDR whose corresponding VA bit is set (start-
ing from the most significant bit in the input VA) while the
user supplies the data with which to update the byte. In suc-
cessive cycles, the VA sequentially selects the byte registers
to be updated while their data is supplied by the user. When
all set bits in the input VA have been processed, the VAD
generates a done signal in order to signal the main controller
to read in the next VA byte.

Upon receiving the done signal from the VAD, the main
controller instructs the FDR to write its data to the bottom
of the selected block and read new data from the top of that
block. Simultaneously, the main controller reads in the VA
byte corresponding to this set of frame bytes and shifts up all
frames in the selected block by one byte for the next mod-
ify cycle. The read-modify-write procedure repeats until all
bytes in the block have been updated. The number of cycles
required is equal to the number of bytes in a frame.

In order to empirically evaluate the addressing overheads
under the new model we again considered our benchmark

circuits. For the nine circuits under test, we found that a to-
tal of 255,097 bytes of configuration data was to be loaded
for the DMA-VA addressed memory. This, when compared
to the baseline gives us about 63% overall reduction in the
amount of configuration data needed. These results suggest
that DMA-VA is a better addressing model than the RAM,
DMA and pure VA for our benchmark circuits. The reason
for it being better than the device-level VA is that we do not
include the VA for frames that are not present in a configu-
ration. On the other hand, in the device level VA we include
addresses for every frame.

In order to accurately estimate the area, time and power
requirements of the new design, the current Virtex memory
model and the new design were implemented in VHDL, and
Synopsys Design Compiler [16] was used to synthesise it
to a 90nm cell library [17]. Preliminary results suggest that
the area increased by less than 1% for our new design com-
pared to the implemented XCV100 model. We estimated
that the memory could be internally clocked at 125MHz
which easily matches with the external configuration clock
(a Virtex can be externally clocked at 66MHz). In the new
design, the power usage during reconfiguration increased by
approximately 2.5× because of the increased switching ac-
tivity incurred due to the read-modify-write strategy. This is
compensated for by a reduction in the duration of the con-
figuration process. Given the modest control circuitry, the
memory can be scaled for large devices by partitioining it
into pages, replicating the control circuits in each page and,
pipelining the data load process at the device level.

4. CONCLUSION AND FUTURE WORK

This paper has presented a configuration memory architec-
ture that allows faster FPGA reconfiguration than the exist-
ing designs. With modest hardware additions to an available
FPGA, the proposed model reduces the reconfiguration time
by 63% for a set of benchmark circuits. The benefit comes
from the use of fine-grained partial reconfiguration that al-
lows significant configuration re-use while swapping a typ-
ical circuit with another one. The main innovation in the
proposed memory design is a new configuration addressing
scheme that presents significantly less addressing overheads
than conventional techniques.

Acknowledgements:
This research was funded in part by the Australian Research
Council. Thanks to Marco Della Torre who implemented
the configuration memories in VHDL and provided useful
feedback on their design.

5. REFERENCES

[1] I. Kennedy, “Exploiting redundancy to speedup reconfigura-
tion of an FPGA,” Field Programmable Logic, pp. 262–271,

2003.

[2] D. Kock and J. Teich, “Platform-independent methodology
for partial reconfiguration,” Conference on Computing Fron-
tiers, pp. 398–403, 2004.

[3] U. Malik and O. Diessel, “On the placement and granularity
of FPGA configurations,” International Conference on Field
Programmable Technology, pp. 161–168, 2004.

[4] “ISE Version 5.2,” Xilinx Inc., 2002.

[5] E. Horta and J. Lockwood, “PARBIT: A tool to transform
bitfiles to implement partial reconfiguration of Field Pro-
grammable Gate Arrays (FPGAs),” Technical Report WUCS-
01-13, Department of Computer Science, Washington Uni-
versity, 2001.

[6] P. Roxby and S. Guccione, “Automated extraction of run-
time parametrisable cores from programmable device config-
urations,” IEEE Workshop on Field Programmable Custom
Computing Machines, pp. 153–161, 2000.

[7] “XC6200 Field Programmable Gate Arrays, version 1.10.”
Xilinx, Inc., 1997.

[8] “Virtex 2.5V Field Programmable Gate Arrays Data Sheet,
Version 1.3,” Xilinx, Inc., 2000.

[9] D. Schultz, S. Young, and L. Hung, “Method and structure for
reading, modifying and writing selected configuration mem-
ory cells of an FPGA,” United States Patent 6,255,848; Xilinx
Inc., 2001.

[10] M. Richmond, “A Lemple-Ziv based configuration manage-
ment architecture for reconfigurable computing,” Master’s
Thesis, University of Washington, Dept. of EE, 2001.

[11] Z. Li and S. Hauck, “Configuration compression for Virtex
FPGAs,” IEEE Symposium on FPGAs for Custom Computing
Machines, pp. 2–36, 2001.

[12] M. Huebner, M. Ullmann, F. Weissel, and J. Becker, “Real-
time configuration code decompression for dynamic FPGA
self-reconfiguration,” In Parallel and Distributed Processing
Symposium, pp. 138–144, 2004.

[13] J. Pan, T. Mitra, and W. Wong, “Configuration bitstream com-
pression for dynamically reconfigurable FPGAs,” Interna-
tional Conference on Computer Aided Design, pp. 766–773,
2004.

[14] U. Malik and O. Diessel, “A configuration memory archi-
tecture for fast FPGA reconfiguration,” UNSW-CSE Techni-
cal Report 0509. Available at: http://cgi.cse.unsw.edu.au/
∼reports/ , 2005.

[15] “JBits SDK,” Xilinx, Inc., 2000.

[16] “Synopsys Design Compiler, v2004.06,” Synopsys Inc.,
2004.

[17] “TSMC 90nm core library,” Taiwan Semiconductor Manu-
facturing Company Ltd., 2003.

