
THE ENTROPY OF FPGA RECONFIGURATION

Usama Malik and Oliver Diessel

School of Computer Science and Engineering,
University of New South Wales, Sydney, Australia &

Embedded, Real-time, and Operating Systems (ERTOS) Program,
National ICT Australia†

{umalik,odiessel}@cse.unsw.edu.au

ABSTRACT
In line with Shannon’s ideas, we define the entropy of

FPGA reconfiguration to be the amount of information need-
ed to configure a given circuit onto a given device. We pro-
pose using entropy as a gauge of the maximum configuration
compression that can be achieved and determine the entropy
of a set of 24 benchmark circuits for the Virtex device fam-
ily. We demonstrate that simple off-the-shelf compression
techniques such as Golomb encoding and hierarchical vec-
tor compression achieve compression results that are within
1-10% of the theoretical bound. We present an enhanced
configuration memory system based on the hierarchical vec-
tor compression technique that accelerates reconfiguration
in proportion to the amount of compression achieved. The
proposed system demands little additional chip area and can
be clocked at the same rate as the Virtex configuration clock.

1. INTRODUCTION

Several researchers have shown that FPGA configuration
data corresponding to typical circuits can be compressed by
20-95% (e.g. [1, 2]). However, it is not clear how the per-
formance of various compression techniques can be com-
pared against each other. Indeed, what are the limits of
configuration compression? Moreover, what parameters of
circuits and devices impact upon the performance of these
techniques? To address these issues, this paper proposes an
objective measure of how much a given configuration bit-
stream can be compressed and suggests simple methods to
achieve reasonable compression for a set of benchmark cir-
cuits on Xilinx Virtex devices. Section 3 defines entropy
of reconfiguration to be the entropy of the configuration bit-
stream that is required to configure a given input circuit. The
entropies of the benchmark circuits are calculated, thereby
providing an estimate of the possible reduction in their con-
figuration data sizes. In the light of this analysis, Section

†National ICT Australia is funded through the Australian Govern-
ment’s Backing Australia’s Ability initiative, in part through the Australian
Research Council.

4 studies two simple compression techniques: Golomb en-
coding and hierarchical vector compression. It is shown that
these methods perform within 1-10% of the compression
bound. Vector compression is chosen for hardware imple-
mentation due to its simplicity. A scalable hardware decom-
pressor is presented and analysed in Section 5.

2. BACKGROUND

This paper employs basic results of information theory to
define an objective measure of configuration compression
performance. We are not aware of any previous work along
these lines. In addition to this, the analysis of this paper
shows that simple off-the-shelf techniques provide reason-
able compression in practice. These algorithms run in linear
time and do not use complex procedures to re-order input
data as is the case for the methods presented in [1, 2]. In this
paper, we argue that the compression performance achieved
by the suggested simpler methods is also superior. Finally,
our decompressor is readily implemented in hardware and
scales well with configuration memory and port sizes.

The work presented in this paper extends the analysis
reported in [3, 4] and focuses on the amount of non-null
data in a given circuit configuration. We first note that the
null configuration for Virtex devices does not just consist of
zeros. Let there be a null configuration, φ, represented as a
bit vector of size n bits. Let there be a circuit configuration
C also of size n bits. Let k be the number of bits in C that
differ from the corresponding bit in φ. A new bit vector, φ′,
of size n is constructed by clearing all bits in φ that remain
unchanged in C while setting the rest. In other words, φ′

represents the positions in φ where the bits need to be flipped
to produce C.

In order to understand the characteristics of a typical φ′,
we considered a set of benchmark circuits on Virtex devices.
These circuits were collected from the Xilinx core genera-
tor, from opencores.org and from [5]. In all experiments,
we only considered the frames that configure the columns
of CLBs because these constitute a majority in the overall

bitstream. The total amount of CLB configuration data for
the device under consideration will be referred to as n in the
subsequent discussion. Table 1 lists the relevant parameters
of the circuits (the number of 4-input LUTs and the number
of nets in the un-routed netlist). A ‘-’ in the XCV200 column
means that the corresponding circuit could not be mapped
onto that device. A ‘*’ in the Circuit column means that
the circuit could not be mapped to smaller devices because
there were not enough IO blocks. For all circuits, the Xilinx
ISE5.2 tools were required to optimise area use. Configura-
tion data was generated for each instance of circuit mapping
and compared with the corresponding null configuration at
the bit level using Xilinx JBits2.8. The φ′ vector corre-
sponding to each configuration was generated. This allowed
us to determine the number of non-null bits, k, for each con-
figuration. The results for three devices, XCV200, XCV400
and XCV1000 can be found in Table 1, which shows that the
value of k changes little from one device to another. We also
observe that k << n in each instance and increases with the
circuit size.

3. ENTROPY OF RECONFIGURATION

Our interest lies in finding the minimum amount of config-
uration data needed to configure a given circuit on a given
device. Considering a circuit configuration as a bit string,
we are interested in finding the length of the shortest string
representing that configuration, i.e. its Kolmogorov com-
plexity. However, finding the Kolmogorov complexity of an
arbitrary string is NP hard. We therefore take the approach
commonly used in the field of text compression. If we can
model the data source, i.e. can determine the probabilities
of various symbols it outputs, then we can easily determine
its entropy, which gives us a bound on compressibility. This
is what we show in the subsequent sections.
Definition: Let us recall the definition of entropy (also called
Shannon’s entropy). Let X be a discrete random variable on
a finite set. Let the probability distribution function of X be
p(x) = Pr(X = x). The entropy, H(X), can be defined
as: H(X) = −∑

x∈X
p(x)log2(p(x))[6]. The entropy of

a memoryless information source determines the minimum
channel capacity that is needed for a reliable transmission of
the source. In other words, entropy provides an estimate of
the average minimum number of bits that are needed to en-
code a string of symbols produced by the source. Encoding
a message with less than H(X) bits per symbol will result
in a loss of information (or the communication will be unre-
liable).

Consider an FPGA that is in an unknown configuration
state and a new circuit that is to be configured onto the de-
vice. We define entropy of reconfiguration, Hr, to be the
entropy of the data source that generates the configuration
bitstream required to configure the input circuit onto the tar-

get FPGA. The interpretation of Hr is that it defines the
minimum number of bits/symbol needed to configure the
required circuit and therefore provides an estimate of the
maximum compression possible for the configuration. Ap-
plication of this method presupposes that FPGA configura-
tions can be modelled as strings of randomly generated sym-
bols without significant error. We are therefore charged with
finding suitable symbol sets and evaluating a representative
set of configurations to determine the validity of random-
ness assumption. Assuming we can do so, we are then able
to assess the performance of given compression heuristics
and obtain lower bounds on the delay involved in configur-
ing the circuit.

Modelling Configuration Data Sources: We aim to define
a suitable symbol set over φ′ and to assign probability distri-
butions to these. The most striking feature of the φ′ vectors
is their sparsity, i.e. long runs of zeros. Given this observa-
tion, we consider the runlengths of zeros as our symbol set.
Let X be a random variable that specifies this run-length
where X ∈ {0, 1, 2,, n − 1}. In other words, X = i
means that the output symbol contains i zeros followed by
a one. In the following discussion, a run of length i bits
means i zeros followed by a one. The problem of finding a
probability distribution function for our model data source
can thus be formulated as finding a probability distribution
of X .

To find a probability distribution function for our bench-
mark φ′ configurations, we considered the frequency with
which runs of various lengths occur in the test data. Let f(i)
be the number of times a run of length i bits occurs in a given
φ′. Without loss of generality let us assume that the first and
the last bits in φ′ are zeros. With this assumption, the total
number of runlengths in φ′ is k + 1. Thus, the probability
that a run of length i bits occurs in φ′ is given by f(i)

k+1 . We
examined our benchmark φ′ for various devices. We illus-
trate the results by considering the φ′ for fpu on an XCV400.
We found that P (X = 0) was approximately 0.25. The re-
maining run-lengths were distributed as illustrated in Figure
1. The other φ′ configurations in the benchmark exhibited a
similar trend.

Measuring Entropy of Reconfiguration: The entropy of
reconfiguration for each benchmark circuit, represented as
a φ′ vector, was calculated with runlengths of zeros as the
symbol set. Results corresponding to circuits mapped onto
various devices are recorded in Table 1 under the columns
headed Hr. The minimum bitstream size for a circuit is es-
timated by k × Hr. Thus, the estimated minimum num-
ber of bits needed to encode the fpu φ′ for an XCV400 is
155, 387 × 4.66 = 724, 103. This is 31.4% of the size of
the complete CLB configuration for an XCV400. In other
words, the best compression possible for this circuit config-
uration is 68.6% (Table 1 column Shann. % red.). We round
the result due to uncertainty in the results as indicated.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0 10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

of
 X

=
i

Run size in bits (X=i)

"fpu_xcv400"

Fig. 1. The relationship between P (X = i), i > 0 in
fpuxcv400.

We have found it difficult to convincingly demonstrate
the randomness of runlength symbols in any configuration
using straightforward approaches. Sophisticated techniques
such as Fourier analysis may validate the assertion, but we
have not yet attempted this. In this paper we report upon
a simple method we have applied to the data to gain some
confidence that the data is sufficiently random for first order
estimates of compressibility.

The motivation behind the method is the fact that the en-
tropy of a random process is independent of the number of
symbols already produced. By verifying that the calculated
entropy of successively shorter tails of our benchmark con-
figurations does not change significantly, we gain some con-
fidence that runlengths (set bits) are randomly distributed
throughout the data.

We recalculated the entropies Ht
r of all configurations

having skipped the leading t symbols in the φ′ bitstreams.
The results for 4 circuits that were mapped to an XCV400
and are representative of the range in complexity and size
present in the benchmark set appear plotted in Figure 2. For
these plots we calculated Ht

r at increments of t = 1000.
Since the number of symbols k + 1 per configuration varies
substantially for these circuits, we scaled the plot for 2com-
pl-1 by a factor of 20, for bin decod we scaled the plot by a
factor of 15 and for des by a factor of 3.

The results for all plots with t < k/2 are relatively con-
stant, which is encouraging. As t is increased further, the
number of symbols left in the tail becomes too small to accu-
rately measure the probabilities of individual symbol occur-
rences. It seems reasonable that circuit flattening resulting
from synthesis and place and route tools should result in a
relatively random use of resources and that this ought to pro-
duce a corresponding randomness in the setting of switches
as given by φ′.

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 0 20 40 60 80 100 120 140 160

H
_r

(t
)

t(x1000)

"fpu_xcv400_1"
"des_xcv400_3"

"bin_decod_xcv400_15"
"2compl-1_xcv400_20"

Fig. 2. Ht
r as a function of the number of symbols dropped.

4. TECHNIQUES FOR COMPRESSING
CONFIGURATION DATA

This section discusses configuration compression in the light
of the model outlined in the previous section. We assume
that the decompressor has a knowledge of the null bitstream
and it can reproduce a configuration given its φ′. The task
of the compression algorithm is to compress φ′. We eval-
uate the performance of two simple compression schemes:
Golomb encoding and hierarchical vector compression and
show that they perform reasonable compression of the bench-
mark configuration data.
Golomb encoding: Golomb encoding is a variable-to-varia-
ble encoding that can be considered to be a variant of run-
length encoding. Let us suppose that we would like to en-
code the runlengths of zeros in an input φ′. The runlengths
can be of size 0, 1, 2, ...n. Golomb encoding divides the run-
lengths into groups of size m. The parameter m is the opti-
misation parameter. The jth group of runlengths is assigned
a unique group prefix by concatenating j ones followed by a
zero. Within each group, the m runlengths are identified us-
ing a binary code (also called the tail). Thus, each runlength
can be uniquely identified by concatenating its group pre-fix
with its tail.

Our φ′ configurations were compressed using Golomb
encoding for various m ranging from 2 to 512. Results for
an XCV400 are recorded in Table 1 under the column head-
ing Glb. % rd. This table presents the percentage reduction
in the amount of configuration data for various values of m
compared to n. The m we found best is listed in the next
column. Comparing these figures with the Shannon values
shows that Golomb encoding performs reasonably well as-
suming the optimisation parameter is adaptive. Similar re-
sults were found for all device sizes.
Hierarchical vector compression: Another technique for
compressing sparse bit vectors is hierarchical vector com-
pression (discussed in [7]). Let us refer to the uncompressed

Circuits #4-inpt #Un-rtd XCV200 XCV400 XCV1000 Compression results (XCV400)
LUTs nets (n=1,161,216) (n=2,304,000) (n=5,750,784)

k Hr k Hr k Hr Shan. Glb. m VA. b Virt. Arch.
(bits) (bits) (bits) %rd. %rd. %rd. %rd. %rd.

encoder 127 456 4,302 5.48 4,394 5.36 4,320 5.28 99 98 256 98 8 76 97
uart 93 467 5,321 5.39 5,129 5.10 5,536 5.15 99 98 256 98 8 64 97
asyn-fifo 22 584 5,441 6.00 5,885 5.69 5,913 5.69 99 97 256 97 8 45 96
*add-sub 49 344 - - 5,997 6.59 6,155 5.84 98 97 256 97 8 46 96
*2compl1 N/A N/A - - 7,806 6.50 9,212 6.18 98 97 256 96 8 40 95
spi 150 796 7,983 5.60 7,956 5.63 8,041 4.93 98 97 256 97 8 60 96
fir-srg 216 726 8,534 4.93 8,503 4.92 8,169 4.72 98 96 256 97 8 78 96
dfir 179 782 7,981 5.30 8,535 5.09 8,710 4.91 98 96 256 97 8 60 96
cic3r32 152 736 9,061 5.00 9,092 4.88 8,478 4.79 98 96 128 97 8 67 96
ccmul 262 905 9,956 5.67 9,956 5.66 10,215 5.55 98 96 128 96 8 63 95
*bin.decod 288 1,249 - - 10,670 7.33 10,648 6.66 97 96 128 95 4 21 94
*2compl2 129 388 - - 11,154 6.75 12,738 6.61 97 95 128 94 4 24 94
ammod 271 990 11,546 5.21 11,653 5.24 12,032 5.27 97 95 128 95 8 43 95
bfproc 418 1,347 14,753 5.04 14,859 5.16 15,497 5.34 97 94 128 94 4 25 94
costLUT 547 2,574 16,424 5.54 16,752 5.76 16,093 5.13 96 94 128 94 4 47 93
gpio 507 3,022 30,762 5.35 30,924 5.56 32,226 5.92 93 89 128 90 4 26 90
iir 894 2,907 34,830 4.81 33,648 4.68 33,506 4.67 93 88 32 90 4 48 90
des 132 5,060 - - 48,118 5.23 49,827 5.88 89 85 32 86 4 10 86
cordic 1,112 4,745 48,759 4.71 49,364 4.62 50,202 4.70 90 85 32 87 4 38 87
rsa 1,114 5,039 49,179 4.78 50,121 4.88 51,283 5.10 89 84 32 86 4 26 86
dct 1,064 5,327 52,916 4.84 52,999 5.46 53,959 5.08 89 84 32 86 4 20 86
blue-th 2,711 11,152 - - 100,996 4.90 101,776 5.39 78 73 16 74 4 0 74
vfft1024 3,101 11,405 - - 113,695 4.53 114,648 4.75 78 70 16 73 4 3 73
fpu 3,914 13,522 - - 155,387 4.66 155,354 5.01 69 63 16 62 4 0 62

Table 1. Predicted and observed reductions in each φ′ configuration.

vector as Level-0 (l0). We also refer to the l0 vector as the
vector address (VA) of the set bits in φ′. The l0 vector can
be compressed as follows. Partition the l0 vector into equal
size blocks each of size b0 bits. Next, drop the blocks that
only contain zeros. To reconstruct the original vector we
need to know where to insert the zeros. Therefore, create a
new vector (l1) whose length, |l1|, is equal to the number of
blocks at l0. The leftmost bit of this new vector corresponds
to the leftmost block of the l0 vector, and so on. A bit in the
l1 vector is set if there is a bit set in the corresponding block.
Compress the resulting l1 vector by applying the above pro-
cedure recursively using a block size of b1. This procedure
can be repeated until a reasonable compression is achieved.
The j number of levels compressed to and the associated
block sizes, b0, b1..bj−1, are the optimisation parameters in
this procedure.

Hierarchical vector compression was applied to each φ′

of the benchmark configurations for various sized devices.
The block size, b, was varied from 2 to 128 and was applied
at all levels. Between two and five levels of compression in
total were considered. Using this approach, the best results
were obtained for all circuits when three levels of compres-
sion were used with b = 4 or b = 8. Table 1 contains the
results for XCV400 configurations (the results for the other
devices were similar). The column under the heading VA. %
rd. lists the percentage reduction compared to n while the
optimal values of b are listed in the next column. We observe

that vector compression also performs reasonably well. The
column under the heading Virt. %rd. lists the the amount
of non-null frame data as a percentage of n for an XV400.
This would be the reduction in configuration data achieved
if one used Virtex’ frame oriented partial reconfiguration to
only load non-null frame assuming the device is in its de-
fault configuration state. A second observation is that its op-
timisation parameters, j and b, vary less as compared to the
optimisation parameter, m, of Golomb encoding. We there-
fore choose vector compression as our preferred method for
hardware implementation.

Comparison with other approaches: Given the probabil-
ity distributions of our benchmark circuits, it is clear that
Huffman encoding will be sub-optimal since the symbol fre-
quencies do not decrease in decreasing powers of two. Dic-
tionary based methods will also perform sub-optimally since
many bits are wasted when fixed length indices are used to
access infrequent patterns in the dictionary. Another caveat
with these methods is the hardware complexity of the corre-
sponding decompressors.

The results published in [1] and in [2] are the most rele-
vant to our work. The work in [1] reported best compression
when LZSS was used in conjunction with frame re-ordering
(30-95% reduction in configuration data for a variety of cir-
cuits on a variety of Virtex devices). The method published
in [2] exploited intra-configuration regularities by first con-
structing bit vectors needed to transform a given frame into

another. The runs of zeros in these vectors were compressed
using Huffman encoding. For a set of benchmark circuits
on variously sized Virtex devices, the authors use both their
method and the LZSS based methods and show that their
technique acheives better compression. However, the over-
all reduction in bitsreams ranges from 25% to 80%. Both
papers are not clear on how the circuit utilisation was mea-
sured. A direct comparison on compression performance is
therefore difficult. We also comment that any method that
relies upon removing inter-frame regularities mostly com-
presses null data (as per our analysis). This is likely to in-
crease the overall entropy because the non-null bits are al-
most randomly located and writing one frame on top of an-
other will add null bits into the next frame to clear the set
bits of the previous frames.

5. DECOMPRESSING CONFIGURATIONS IN
HARDWARE

We enhance the current Virtex configuration architecture [8]
to incorporate a vector decompressor. The new memory in-
ternally generates null frames while the input φ′ configu-
ration is being decompressed. The generated null frames
are then modified based on the uncompressed φ′ data be-
fore writing to the target frame registers. The new design
supports partial reconfiguration in the same manner as the
current Virtex. Vector compression, with b = 4, j = 3, is
therefore performed individually on a frame by frame basis
(as opposed to considering the entire configuration as a sin-
gle vector). The user supplies a block of non-null, or user,
frames, and a list of addresses where null frames need to be
added to clear the remains of any previous circuit.
Memory design: In the enhanced Virtex, a decompression
system is added to receive φ′ vectors (Figure 3). This system
outputs uncompressed data into a mask register. An f -bit
null frame register is added whose inputs come from a null
frame generator, where f is the number of bits in the frame.
The null frame generator takes in a frame address and out-
puts the 18 bits that are written to each CLB at that address.
This data is broadcast to and stored in the null frame regis-
ter. Once the mask register is full, i.e. it contains a frame
worth of φ′, the contents of the null frame are written into
the intermediate register based on the contents of the mask
register. A bit in the null frame register is written to the in-
termediate register as is if the corresponding bit in the null
frame is cleared, otherwise it is complemented.

The memory operates in a pipelined fashion. As decom-
pressing a frame can take several cycles, we use the null
frame generator in the background to generate null frames
for the null blocks. The null blocks address is stored in the
null block address (NBA) register. When a φ′ vector for a
frame is ready, the null frame generator is switched to gen-
erate a null frame for the user block address (UBA) register

4

In
te

rm
ed

ia
te

 R
eg

is
te

r

N
ul

l F
ra

m
e

R
eg

is
te

r

M
as

k
R

eg
is

te
r

Null Frame
Generator

Decompressor

Memory Array

Register
NBA

Register

Address Decoder

Configuration State Machine

From Interface Circuit

Data

Legend

Signal

Configuration

UBA

16

18

Control

f

64

Fig. 3. The proposed memory architecture.

instead of the null block address. The required user frame
is then written to in the intermediate register as explained
above. The process iterates until all user frames have been
loaded. When there are many more null than user frames to
be written, configuration may need to continue after decom-
pression has finished to complete circuit loading. Typical
configurations need many more cycles on average to load
user frame data, and therefore provide ample time for all
null frames to be loaded in the background.
Decompressor design: The configuration port size in the
new memory is set to 4 bits so that it matches the block
size. As three levels of compression are used, four bits of the
Level-3 vector span 256 bits at Level-0. The decompressor
therefore operates in units of 256 bits (Figure 4). These units
are sequentially selected using a control shift register which
is initialised by asserting the topmost bit. Note that there can
be a final partial block in the mask register because Virtex
frames are not always a multiple of 256 (e.g. XCV400 has
an 800-bit frame).

An input frame is decoded by traversing the various com-
pressed levels in parallel. The Level-i vector is latched into
the ith vector-address-decoder, V ADi, one 4-bit compressed
VA word at a time. Each decoder produces a sequence of 4-
bit output vectors that respectively indicate which bits in the
VA word, from most to least significant, are set. The l0 4-bit
word is directed to the VAD register which is of size 4 × 16
bits. In turn, the V AD1 output vectors to indicate which
4-bit block of the VAD register the next 4 bits from the in-
terface circuit are written to. V AD2 output vectors control
which block of 16 bits the V AD1 vectors refer to, and the
V AD3 vectors determine which 64-bit block of the mask
register the VAD register contents are written. The output of
V AD3 is lateched into the mask control (MC) register and
togther with the contents of the control shift register forms
the final control signal for the mask register. Once 256-bits
of a unit are updated, the control shift register is signalled
and the next unit is selected. The cycle repeats until all units

MC Register

M
as

k
R

eg
is

te
r

64

64

64

64

64

64

64

64

C
on

tr
ol

 S
hi

ft
 R

eg
is

te
r

Configuration state machine

V
A

D
 R

eg
is

te
r

4

1

Control

Signal
Legend

Data

4

64

1

Partial block

VAD

VAD
2

3

V
A

D
1

Fig. 4. The design of the decompressor.

in a frame are updated. The internal details of a VAD can be
found in [9].
Design analysis: As discussed in the previous section, our
solution strategy is to perform decompression on a frame-
by-frame basis. This method is likely to increase the size of
the compressed bitstream as the frame sizes cannot always
be an integral multiple of bj+1. Due to this factor, additional
data needs to be inserted at higher levels to make for even
sized blocks. We compensated for this in the results shown
for an XCV400 device under the Arch.%red column of Ta-
ble 1 These results show that the enhanced configuration
architecture achieves comparable results to the previously
analysed methods.

In terms of area, the main component that is added to the
existing Virtex is the decompressor. This system contains
three vector address decoders and a 64-bit configuration bus.
Each VAD contains four flip-flops and eight two input gates
and thus requires a small area. This circuit can easily be
clocked at 66MHz which is the configuration speed of the
current Virtex (please see [9] for more details). The existing
Virtex already contains a 32-bit configuration bus. Thus, our
design adds a 32-bit bus that spans the height of the chip and
a small number of gates for the decoding system.

The design we presented assumes a 4-bit configuration
port. This system can be readily scaled to wider port sizes.
Assume that the port size is increased from 4 to 4p where
p is a strictly positive integer. We scale the system by im-
plementing p decompressors each with its own mask reg-
ister. Each p is assigned a 4-bit portion of the port and
operates independently of the other decompressors. The p
decompressors share a single 64-bit bus to reach their as-
signed mask register, A priority decoder can be used to re-
solve any conflicts between various decompressors that are
attempting to access the bus simultaneously. This can re-
sult in a loss of throughput as some decompressors must be

stalled. A simulation of the scaled memory system showed
that the proposed architecture reduced reconfiguration time
to within 15% of a linearly scaled improvement for p upto
16.

6. CONCLUSIONS & FUTURE WORK

This paper has developed the idea of the entropy of recon-
figuration allowing us to determine the quality of configu-
ration compression. Practical methods and device enhance-
ments for achieving compression bounds on Virtex were de-
scribed. In an effort to generalise the results for non-Virtex
devices, the VPR placement and routing tools are currently
being used to examine a wide range of hypothetical fine-
grained island-style FPGAs.

The results of this paper show that circuits, when mapped
onto a device using CAD tools, introduce randomness at the
configuration data level. Circuits that do not exhibit this
property can certainly be constructed. This is likely to be
the case when circuits are hand-mapped to achieve regular-
ity, or configuration data corresponding to a sub-circuit is
simply copied to various locations on the device. Config-
uration compression for this broader class of circuits is the
subject of future research.

7. REFERENCES

[1] Z. Li and S. Hauck, “Configuration compression for Virtex FP-
GAs,” in IEEE Symposium on FCCM, 2001, pp. 111–119.

[2] J. Pan, T. Mitra, and W. Wong, “Configuration bitstream com-
pression for dynamically reconfigurable FPGAs,” in Interna-
tional Conference on CAD, 2004, pp. 766–773.

[3] U. Malik and O. Diessel, “On the placement and granularity
of FPGA configurations,” in International Conference on FPT,
2004, pp. 161–168.

[4] U. Malik and O. Diessel, “A configuration memory architec-
ture for fast run-time-reconfiguration of FPGAs,” in Interna-
tional Conference on FPL, 2005, pp. 636–639.

[5] U. Meyer-Baese, Digital Signal Processing with Field Pro-
grammable Gate Arrays. Springer, 2001.

[6] C. Shannon, “A mathematical theory of communication,” Bell
Systems Technical Journal, pp. 379–423, 1948.

[7] Y. Choueka, F. Fraenkel, S. Klein, and E.Segal, “Improved hi-
erarchical bit-vector compression in document retrieval sys-
tems,” in Annual ACM Conference on Research and Develop-
ment in Information Retrieval, 1986, pp. 88–96.

[8] D. Schultz, S. Young, and L. Hung, “Method and structure for
reading, modifying and writing selected configuration memory
cells of an FPGA,” U.S. Patent 6 255 848, 2001.

[9] U. Malik and O. Diessel, “A configuration memory architec-
ture for fast FPGA reconfiguration,” Technical Report UNSW-
CSE-TR0509, 2005.

