
MULTI-BIT CARRY CHAINS FOR HIGH-PERFORMANCE RECONFIGURABLE FABRICS

Michael T. Frederick and Arun K. Somani

Dependable Computing and Network Laboratory
Iowa State University
Ames, IA 50011 USA

email: {freds,arun}@iastate.edu

ABSTRACT
Ripple-carry architectures are the norm in today’s reconfig-
urable fabrics. They are simple, require minimal routing,
and are easily formed across arbitrary cells in a fabric. How-
ever, their computation delay grows linearly with operand
width. Many different fabric carry-chains have been pre-
sented in literature offering non-linear delays, but generally
require a significant investment in routing and processing
area. Carry-skip chains are well-known in arithmetic logic
design, and although they too possess a linear delay, their
performance is 2x or more faster than simple ripple-carry
schemes. They require an expanded carry chain and minimal
extra logic, but offer impressive speed-ups for arithmetic.

This paper presents a reconfigurable cell that supports
carry-skip arithmetic using a multi-bit carry chain achieving
2 ·k ·b+ n

b
performance, where b is the block size and k is an

architecture constant. The cell is specialized for arithmetic
and Boolean operations with reduced configuration mem-
ory. Additional resources are provided to reuse the multi-bit
carry chain for 3-source operand arithmetic to explore how
multi-bit chains can be reused.

1. INTRODUCTION

Simple 1-bit ripple-carry chains logic limit the performance
of reconfigurable fabrics. Using a minimal amount of ex-
tra logic and routing, cells optimized for arithmetic func-
tions can be designed to efficiently implement 3-operand,
carry-skip, and carry-save structures. This paper presents a
reconfigurable cell that features a multi-bit carry chain for
2-operand carry-skip and 3-operand ripple-carry arithmetic.
Fig. 1 shows high-level operating modes of the cell, includ-
ing carry-save arithmetic (CSA) and Boolean logic.

FPGAs made by Xilinx and Altera incorporate ripple-
carry schemes into all of their device families, including
their flagship chips, the Virtex 4 [1] and Stratix II [2]. The
width of each of these carry chains is typically 1-bit between

The research reported in this paper is partially supported by NSF grants
numbers 0311061, 0306007, and the Jerry R. Junkins Endowment at Iowa
State University.

Fig. 1. (a) Carry-skip (b) 3-operand (c) Boolean (d) CSA

basic cells, with the exception of the Stratix II. Ripple-carry
schemes are very straightforward to incorporate, exhibit lin-
ear delay with respect to datawidth, require minimal area,
and are easily broken at any point along the chain.

Automatic cell-based ASIC design techniques are im-
portant in circuit design as they facilitate reuse and substan-
tially reduce design time. Analysis of the trade-offs between
area, performance, and testability for cell-based ASICs re-
veals how carry-chains can be readily employed in FPGAs,
which are cellular in nature. Parallel prefix adders encom-
pass a wide range of the most area/delay efficient archi-
tectures, including ripple-carry, carry-increment, and carry-
lookahead adders [3]. The results indicate that the Brent-
Kung, carry increment, and Sklansky parallel chains provide
the best performance/cost trade-off. However, each requires
the array to be viewed differently at different points within,
requiring chains to be formed at a relatively few definite lo-
cations, reducing the flexibility of the array. As datapath
width increases, the number of locations where chains can
be formed within the array further decreases.

Advanced carry schemes specifically for FPGAs have
been explored in literature, particularly in [4]. These include
carry strategies such as Brent-Kung, carry-select, variable
block, and variations of standard ripple-carry chains. The
results indicate that advanced carry schemes are a very at-
tractive solution for reconfigurable fabrics where arithmetic
performance is paramount. Due to their FPGA-specificity
and simple delay model analysis, the carry chains in [4] will
be used as a point of comparison.

The Stratix II [2] uses a 2-bit carry chain in its Adap-
tive Logic Module (ALM). The first carry chain is driven
by LUT logic, while a dedicated full adder drives the sec-
ond carry chain. Both carry chains are ripple-carry, and al-
low the ALM to implement cascaded arithmetic operations,
where the result of the first operation is input to the sec-
ond. This allows the ALM to execute back-to-back arith-
metic functions without requiring the result of the first op-
eration to enter general routing, an expensive proposition in
terms of latency and monopolization of routing.

The goal of this work is to present a reconfigurable cell
using a carry-skip chain for high-performance arithmetic.
Additionally, reuse of the multi-bit carry chain will be ex-
plored in the context of 3-input operand arithmetic, along
the lines of those realized by the Stratix II.

2. DELAY MODEL

Using a simple CMOS gate-delay model similar to that in
[4], simple gates (NAND, NOR, NOT) of 1 to 3 inputs are
assumed to have a 1-gate delay. Complex 2 and 3 input gates
(AND, OR) are assumed to have a 2-gate delay. Each 2:1
multiplexer uses transmission gates with a 1-gate delay for
both the transmission gate and selection input inverter. Once
the selection input is available, there is a 1 gate delay before
the transmission gate can pass a value, an action that has a
latency of 1 gate. If the selection input reaches the multi-
plexer before the other inputs, the multiplexer has delay of 1
gate after the input is available. XOR gates are implemented
as 2 gate delay “tiny” XORs.

The effects of LUTs, as long as they are not on the criti-
cal path, are ignored because they are the same for all chains.
If their delay must be considered, a delay of lg(2n)+1 gates
is imposed, where n is the number of inputs to the LUT.
For example, a 2-LUT has a delay of 3 gates. The LUTs
presented within are all 2-LUTs unless otherwise specified.
Additionally, when the effects of general routing must be
considered, a 2 gate delay is incurred. As a bare minimum,
a signal must leave a source cell and, through a pass transis-
tor, propagate on a signal line and enter the destination cell
through an additional pass transistor.

3. ARITHMETIC OPERATIONS

Add/subtract, multiply, and word-width Boolean arithmetic
operations are supported by the architecture. Carry-skip ac-
celerate basic ripple-carry chains but rely on them as a basis
for computation. Efficient implementation of the basic func-
tion and carry computation is the first problem that will be
explored. Fig. 2 depicts the standard simple cell.

The subtract, multiply, and adder symmetry strategies in
[5] are used to implement function computation performed
by f(x, y), a 2-LUT. The AND gate providing input x is

used for multiplication, while the XOR providing y enables
dynamic addition/subtraction. The XOR gate at the output
of the 2-LUT performs output inversion as dictated by the
carry into the cell, ci−1 or the signal c. The ability to choose
between ci−1 and c is useful in chain initialization, carry-
save arithmetic, and word-width Boolean operations.

Fig. 2. Simple cell.

Word-width Boolean operations are (N)AND, (N)OR, or
X(N)OR where the result is the gate operation performed on
two inputs, a and b, with ci−1 having no effect on the local
result. The c input can also be used to invert the output of
f(x,y) and provide a mechanism for dynamically realizing a
Boolean gate or its inverse, e.g. AND and NAND. The gen-
erated carry indicates something about all the bits in the op-
eration. One option is to detect if an operation has been per-
formed on operands with identical bit values. This is useful
in determining if the application of a mask results in a value
different from the input. Unary reduction is another possi-
ble application for carry generation in word-width Boolean
functions. A simple Boolean gate is applied to each of the
bits of the operand(s) with a 1 bit output, an example of
which is parity generation.

Carry generation strategies such as the adder inversion
property [5] and carry multiplexers, as used in Xilinx prod-
ucts [1], were explored to ascertain the most effective tech-
nique also allowing the result of the propagate condition to
be output to the block logic. Dedicated propagate and gen-
erate LUTs were determined to be the most flexible and ef-
ficient design choice for the skip architecture. While the
propagate and generate conditions can vary between arith-
metic operations, one equation governing ci, Eqn. 1, is used
for all functions as long as the propagate and generate con-
ditions are mutually exclusive. This is exemplified by the
propagate condition for a standard adder. If p = a + b and
g = a · b, the equation will fail, however if p = a⊕ b the ex-
pression is valid. This can be implemented as a multiplexer,

Fig. 3. A 4-cell carry-skip block.

whose selection signal is the propagate condition and inputs
are generate and ci−1. For most cases 1-gate delay carry
generation is achieved once ci−1 becomes available.

ci = p · g + p · ci−1 (1)

The basic operation of the carry logic adheres to Eqn. 1,
with additional logic to initialize the chain with c, and, in
the case of the complex cell, to select the block carry-in,
ci−b. The first block’s final cell or block logic only accepts
the carry in from the preceding cell because the entire chain
must await the completion of the first block. Further influ-
encing the design is that a priority has been placed on the ar-
chitecture being able to realize 1-gate delay carry-skip logic
and 1 or 2-gate delay ripple carry logic.

Carry-skip arithmetic is characterized by its ability to al-
low a carry bit to skip groups of cells known as blocks. If all
of the cells within a block assert their propagate conditions,
the carry into the block bypasses the block and becomes the
input to the next block. If any cell within a block doesn’t
propagate the carry, the chain is effectively partitioned, and
carry result i depends only on the operand inputs at cell i,
not cells i − 1, ..., 0. This allows each partition in the chain
to compute its results in parallel. Blocks are introduced to
define groups of cells that can take advantage of this phe-
nomena. Fig. 3 depicts a carry-skip block where b = 4.

One of the drawbacks of the carry-skip strategy is the
existence of false logic paths. These occur because the carry
out of a block does not necessarily depend on the carry into
the block. Such paths present a problem primarily in the tim-
ing of the circuit. The authors of [6] present a detailed de-
scription of the redundancy and false path problems within
carry-skip chains and provide a means to optimizing the re-
dundancies that lead to incorrect estimation of chain timing.

Computation delay in a carry-skip architecture is de-
scribed by Eqn. 2. The delay represents the generation of a
carry in the first cell of the chain that traverses the ripple-
carry chain to the end of its block. As all other blocks
perform ripple computation in parallel, the delay through
the carry-skip chain is the carry generation through the first
block, the block carry selection multiplexer in the skip logic
of each of n

b
blocks, and the ripple-carry delay through the

last block. Each of the n
b
skip multiplexers contributes 1

gate delay, as the inversion of the selection bit has already
happend when the carry reaches the multiplexer. Eqn. 2
shows the delay of a carry-skip architecture. In general,

Tfirst = Tlast = Tripple = k · b + c, where k is a recurring
cost, c is a chain initialization cost, and b is the length of a
block. The optimal block size is found by taking the deriva-
tive of Eqn. 2 with respect to b (Eqn. 3), setting it to 0, and
solving for b [7].

Tskip = Tfirst +
n

b
+ Tlast = 2 · k + c +

n

b
(2)

dTdly

db
= 2 · k −

n

b2
= 0 −→ b =

√

n

2 · k
(3)

Carry generation in the skip chain has been implemented
in two different ways, a simple cell structure with block
logic available only among predefined groups of b adjacent
cells, and a complex structure that incorporates block logic
at each cell and allows blocks of up to b cells to be formed
among any set of adjacent cells.

Fig. 4. (a) Simple and (b) complex carry logic.

0

5

10

15

20

25

30

35

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
N

De
la

y
(G

at
es

)

0

500

1000

1500

2000

2500

3000

3500

4000

Ar
ea

 (T
ra

ns
is

to
rs

)

Complex Skip Dly
Complex Ripple Dly
Simple Ripple Dly
Simple Skip Dly
Complex Skip Area
Simple Skip Area

Fig. 5. Simple and Complex Area/Delay Trade-offs.

The complex cell allows carry-skip blocks to be created
out of b adjacent cells located anywhere. It requires each
cell to have a carry selection multiplexer (rip), a block prop-
agation signal (pblk), and a carry-skip selection multiplexer
(skip sel). The skip-MUX chooses between ci−b and ci.

The block propagation signal is the NAND of the b prop-
agation signals, and controls the skip-MUX. The skip sel-
MUX chooses between the block propagation signal and a
programmable selection bit. When set to 0, it allows the in-
termediate cells of the skip chain to operate in ripple-carry
mode. If set to 1, it signifies the end of a block and allows
the block propagate signal to control carry selection. With
the collusion of other cells that may not have a vested inter-
est in a carry skip computation, a chain can be constructed
of variable block widths up to b.

The complex cell offers a more flexible array by allow-
ing chains to be formed among any group of up to b adjacent
cells. However, as depicted in Fig. 5, the complex cell re-
quires a 3x the area, and incurs a delay roughly twice that
of the simple cell. These results indicate that the complex
cell is most likely not a cost efficient design choice relative
to the simple implementation. Therefore, for the remainder
of this paper, only the simple cell will be considered.

4. BOOLEAN AND MULTIPLEXING OPERATIONS

An effective fabric must support Boolean and multiplexing
operations. The defacto standard for Boolean operations in
reconfigurable fabrics is the 4-LUT, requiring 16 bits, while
a 4:1 1-bit multiplexer requires 6 inputs. These two require-
ments drive the design of the Boolean logic. The most effi-
cient way to realize both is to create two 3-LUTs using the
three existing 2-LUTs and reuse as many carry-chain config-
uration bits to form the last 2-LUT. Since only one bit of the
standard carry-chain can be reused, three Boolean-specific
bits have been introduced. Shared bits are shown as dashed
lines in Figs. 2 and 6.

Two 3-LUTs are the most efficient design choice as they
allow 1 shared (selection bit s) and 4 unique inputs of the 4:1
multiplexers to drive each LUT, and another input (selection
bit m) to multiplex the LUT outputs. Additionally a 2-bit
3-LUT and 2-bit 2:1 multiplexer can be formed in this con-
figuration. The remaining shared input also provides output
selection through the NAND gate. When the programming
bit is set to 1, the selection signalm controls the multiplexer
output, and when set to 0 the multiplexer selects the output
of one of the 3LL−LUT for 2-bit Boolean/multiplexing.

5. THREE-OPERAND ARITHMETIC

Three-input operand arithmetic has the goal of reusing the
multi-bit carry-skip chain without interfering or introduc-
ing any delay in the chain to harm carry-skip performance.
Thus, each cell can only drive the carry and propagate sig-
nals that it sources, but can read any propagate signal pass-
ing by. For three-operand arithmetic, this requires that only
the propagate signal from the preceding cell is read.

Fig. 6. The enhanced cell.

Depending on the secondary chain implementation, op-
erations can include any combination of two arithmetic op-
erations described in Section 3 if LUTs are used (not pic-
tured), or an arbitrary primary arithmetic operation and a
secondary addition/subtraction as pictured in Fig. 6. The
performance of 3-operand arithmetic depends on the ripple
carry latency through the longest carry chain. The primary
carry chain produces the longest propagation delay because
the block logic still resides on the carry chain, even when
operating in ripple-carry mode. The latency of 3-operand
arithmetic is the 3 gate delay through the primary LUTs,
the ripple carry delay through the primary chain, and the
lag between when the primary function result is known to
when the secondary function result can be computed, yield-
ing 3 + n + 1 + n

b
+ 5 = n + n

b
+ 9.

The secondary arithmetic logic can be implemented in
the same way as the primary arithmetic logic or as a dedi-
cated full adder like the Stratix II ALM [2]. Here the func-
tion computation is the standard XOR of the inputs and the
carry, however, the carry is produced using a multiplexer
to preserve a 1-gate delay secondary ripple chain. This is
important because pi must fulfill its function in carry-skip
arithmetic, but also perform ripple-carry as quickly as the
primary chain to be a feasible solution.

An alternative means of carry and function implementa-
tion is to use the same LUT structure as the primary carry
chain. The advantage of an LUT implementation is that it
is inherently more flexible and can realize the same scope
of functions as the primary arithmetic logic. The drawback

is that it requires roughly twice the area and configuration
space. To justify such an expenditure, the performance of
3-operand arithmetic must be weighed against back-to-back
carry skip (Skip/Skip) operations and a carry-save operation
terminated by a carry skip (CSA/Skip).

15

17

19

21

23

25

27

29

31

33

35

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
N

G
at

e
De

la
y

0

5000

10000

15000

20000

25000

30000

35000

40000

Ar
ea

 (T
ra

ns
is

to
rs

)

3-op (b=opt)
CSA/Skip (b=4)
CSA/Skip (b=opt)
3-op (b=4)
Standard CSA/Skip Area (b=4)
Enhanced 3-op Area (b=4)

Fig. 7. Three-operand performance comparison.

If the Skip/Skip performed, the second operation con-
sumes the result of the first and the worst case delay de-
pends on the first function bit becoming available and al-
lowing the second skip-chain to begin. This requires the
result of the first operation to pass through general routing
to reach the second, which is assumed to be a 2 gate delay.
The first bit is ready after a delay of 7 gates, undergoes a 2
gate delay in general routing, and a 3 gate delay through the
first 2-LUT before entering the skip-carry chain, and incurs
the carry-skip propagation delay, making the overall delay
7 + 2 + 3 + 2 · b + n

b
+ 1 = 2 · b + n

b
+ 13.

Carry-save arithmetic can also be used to evaluate 3-
operand instructions, provided the same associative operator
is used for both operations. The first stage of the computa-
tion is to reduce three operands to two values. Once the CSA
stage completes, the two values would then become the in-
put to cells configured to perform carry-skip arithmetic. The
end result is a 3-operand computation that requires a delay
of 7 gates for carry-save operation evaluation, 2 gates for
general routing, 3 gates for the skip LUTs to evaluate, and
the standard delay for a carry-skip operation yielding the ex-
pression 7 + 2 + 3 + 2 · b + n

b
+ 1 = 2 · b + n

b
+ 13.

An advantage of the enhanced cell is that it uses the
same configuration space than the standard cell. The bits
necessary to configure the secondary chain can be reused
in Boolean logic, and therefore don’t increase the bits per
cell. Conversely, the CSA/Skip and Skip/Skip implementa-
tions require 2x the cells, and, consequently, double the bits.
Inter-cell communication also requires bits to configure gen-
eral routing and consumes valuable routing resources.

Fig. 7 shows delay for 3-operand ripple-carry, Skip/Skip,
and CSA/Skip operations. Because the delay expressions for
Skip/Skip and CSA/Skip operations are the same, only one

has been plotted. The area is expressed in total transistors
and reflects the CSA/Skip and Skip/Skip operations being
performed using the standard cell and 2 rows of the array.
The area effect of general routing has been neglected, but its
delay has been included as a 2 gate penalty. The 3-operand
operation uses the enhanced cell, but occupies one row of
the array.

The results indicate that the enhanced cell is faster at
performing 3-operand arithmetic for datapath widths of less
than 10 bits. Additionally, as it occupies only n cells, it re-
quires about 60% of the area of the CSA/Skip, Skip/Skip
implmentations which requre 2 · n. For small datawidth ap-
plications, enhanced cells are a better design choice from
the viewpoint of both delay and area impact. For increas-
ing datawidths, the standard cell would be the best choice as
area increases at a much slower rate than the delay penalties
assosciated the ripple-carry nature of 3-operand arithmetic.
If area and configuration space are bigger design considera-
tions than performance, the enhanced cell is a better choice.

6. PERFORMANCE COMPARISON

To get an idea of how the carry-skip chain compares with
other high performance carry chains for FPGAs, the work
in [4] has been used as a point of comparison. Delay char-
acteristics of various carry-chains are shown in Fig. 8 and
indicate that the standard carry-skip chain with simple cells
performs better than, or comparably to, more advanced carry
chains such as Brent-Kung for datawidths of 16 bits and less.

0

5

10

15

20

25

30

35

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
N

G
at

e
De

la
y

Brent-Kung Carry Select
Variable Block Opt. Ripple
Basic Ripple Skip Ripple (b=4)
Skip (b=4) Skip (b=opt)
Xilinx V2P

Fig. 8. Simple cell performance vs. other carry-chains.

As datawidth increases, the advanced chains perform in-
creasingly better than the skip chain. The performance gap
at 64-bit data is less than 2x between the skip chain and the
best advanced chain, the Brent-Kung. The area estimations
are transistor counts of just the carry chains of the respec-
tive strategies. For the case of the simple skip-cell, this in-
cludes the logic necessary to implement the extra p-LUT, but
not the configuration bits, as they are reused from Boolean

Table 1. Bitstream Lengths
Fabric Bytes 32-bit Mem. Latency

DSP-FPGA [5] 34 10
Standard 72 18
Enhanced 72 18
CHESSa [8] 100 26
V2Pb [1] 128 32

Stratix IIc [2] 176 44
Garp [9] 196 48

Chimaera [10] 208 52
PRISC [11] 256 64

aCHESS is a 64-bit datapath, this represents it as 32-bit.
bEstimated value based on 16 slices.
cEstimated value based on 16 ALMs.

logic. When compared to the area requirements of the other
chains, the carry-skip cell mimics the optimized ripple and
outperforms the other advanced carry schemes.

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
N

Tr
an

si
st

or
s

Brent-Kung
Variable Block
Opt. Ripple
Basic Ripple
Skip Cell
Carry Select

Fig. 9. Area of the skip cell carry-chain relative to others.

The basic cell architecture’s configuration needs com-
pare well with existing fabrics. Configuration sharing is
used to reduce memory requirements at the expense of in-
creased processing layer area. This reduces overall array
area, SRAM exposure to SEUs, and improving the tempo-
ral characteristics of the fabric. The enhanced cell requires
the same configuration space as the standard cell, making it
attractive from a dynamically reconfigurable standpoint.

7. CONCLUSION

In this paper a cell architecture for carry-skip arithmetic has
been presented. It strikes a good balance between delay
and area when compared with more advanced carry-chains.
While skip chains are not a new concept for adder design,
the presented cell architecture facilitates such arithmetic in
FPGAs while also being useful for standard Boolean and

multiplexing operations. Because of the skip chain’s ex-
tremely “flat” topology, regularity, and ability to be created
and broken anywhere, it is an attractive solution for high-
performance regularly-structured reconfigurable fabrics.

A novel reuse of the carry-skip multi-bit carry chain has
also been presented. By introducing extra logic, the multi-
bit carry-skip chain can be reused for 3-input operand ripple-
carry arithmetic operations. These operations consume less
area than sequential carry-skip or carry-save/carry-skip op-
erations, and perform comparably or better for datawidths of
less than 16 bits and can make use of synthesis tools already
developed for the Stratix II 2-bit ripple-carry chain.

Future work includes identifying other ways to reuse
multi-bit carry chains for reconfigurable fabrics. Addition-
ally, the carry-skip block logic can be enhanced to realize
wide Boolean and multiplexing, distributed RAM, and fault
tolerant operations. Multi-bit carry chains have the potential
to increase the flexibility and efficiency of general reconfig-
urable fabrics by accelerating arithmetic computation and
providing resources for advanced or wide operations.

8. REFERENCES

[1] Xilinx, Virtex II Pro User Guide. http://www.xilinx.com.
[2] Altera, Altera Stratix II User Guide. http://www.altera.com.
[3] R. Zimmermann, “Non-heuristic optimization and synthesis

of parallel-prefix adders,” in Proceedings of the Int’l Work-
shop on Logic and Architecture Synthesis, December 1996.

[4] S. Hauck, M. M. Hosler, and T. W. Fry, “High performance
carry chains for fpgas,” IEEE Transactions on VLSI Systems,
vol. 8, no. 2, April 2000.

[5] K. Leijten-Nowak and J. L. van Meerbergen, “An fpga archi-
tecture with enhanced datapath functionality,” in Proceedings
of the 11th Int’l Symposium on FPGAs, 2003, pp. 195–204.

[6] K. Keutzer, S. Malik, and A. Saldanha, “Is redundancy nec-
essary to reduce delay?” IEEE Transactions On Computer-
Aided Design, vol. 10, no. 4, pp. 421–435, April 1991.

[7] B. Parhami, Computer Arithmetic: Algorithms and Hardware
Design. Morgan Kauffman, 2000.

[8] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and
B. Hutchings, “A reconfigurable arithmetic array for multi-
media applications,” in Proceedings of the 7th Int’l sympo-
sium on Field programmable gate arrays, 1999, pp. 135–143.

[9] J. R. Hauser and J. Wawrzynek, “Garp: a mips processor
with a reconfigurable coprocessor,” in Proceedings of IEEE
Symposium on Field-Programmable Custom Computing Ma-
chines, April 1997, pp. 12–21.

[10] S. Hauck, T. W. Fry, M. M. Hosler, and J. P. Kao, “The chi-
maera reconfigurable functional unit,” IEEE Transactions On
VLSI Systems, vol. 12, no. 2, pp. 1063–8210, February 2004.

[11] R. Razdan and M. D. Smith, “A high-performance microar-
chitecture with hardware-programmable functional units,” in
Proceedings of the 27th Int’l symposium on Microarchitec-
ture, 1994, pp. 172–180.

