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Abstract

Reconfigurable computing is a design methodology that provides

a developer with the ability to reprogram a hardware device. Cur-

rent Field Programmable Gate Array (FPGA) systems, in particular,

allow for the rapid and cost effective implementation of hardware de-

vices when compared to standard ASIC design, and for the increase

in performance when compared to software-based solutions. The ad-

vent of development tools such as Celoxica’s DK package and Xilinx’s

Forge package, which support high level languages traditionally asso-

ciated with software development, allows for software programmers

to easily acquire the skills needed to develop reconfigurable solutions

that were previously reserved for hardware designers. The desirable

goal of cost effective high performance systems and increasing the

adoption of FPGA technologies may thus be achieved. Such tools aim

to closely mirror current software development tools in terms of lan-

guage, syntax and methodology, and at the same time take advan-

tage of the increased performance that reconfigurable architectures

can provide through parallelism and arbitrary-depth pipelining in a

transparent and automated way.
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A common feature of many programming languages that is not

supported by many higher-level hardware design tools is recursion.

Recursion is a powerful method used to elegantly describe many al-

gorithms that is typically implemented by using a stack to store ar-

guments, context and a return address for function calls. However

a stack-based implementation limits the hardware to running only

a single function at any moment. Such implementation eliminates

the possibility of taking advantage of parallelism, provided by the re-

sources in FPGA systems, which can be used to simultaneously pro-

cess successive iterations of a recursive function. The full potential in

performance may not be achieved. We present a method to address

the lack of support for recursion in design tools that exploits the par-

allelism available between recursive calls. Our main approach is to

unroll the recursion into a pipeline, in a similar manner to the pipeline

obtained from loop unrolling, and then to stream the data through the

resulting pipeline. The differences between loops and recursive func-

tions such as multiple recursive calls in a function, and hence multi-

ple unrolling, and post-recursive statements add further complexity

to the issue of unrolling as the pipeline may take a non-linear shape

and contain heterogeneous stages.

Unrolling the recursive function into an FPGA system increases

the parallelism available. However the depth of the pipeline, and thus
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the amount of parallelism available, is limited by the finite resources

on the FPGA device. We make efficient use of the FPGA resources

by unrolling the function in a way to best suit the input and ensure

that the function is not unrolled past its maximum recursive depth.

A straightforward solution such as unrolling on-demand introduces

a latency into the system when a further instance of the function is

required that reduces overall performance. We reduce this penalty

by using methods to predict the behaviour of the recursive function

based on the input data and unroll the function to a suitable length

prior to it being required. Accurate prediction is possible in cases

where the condition for recursion is a simple function on the argu-

ments. However accurate prediction is not possible in cases where

the condition for recursion is based on complex functions. In such

situations we use a heuristic to provide an approximation to the cor-

rect depth of recursion at any given time. This prediction allows the

system to reduce the performance penalty from real time unrolling

without over utilization of the FPGA resources.

Our results demonstrate the increase in performance for various

recursive functions when compared to a stack-based implementation

on the same device. Experiments with polynomail logarithmic algo-

rithms such as quick sort, merge sort and quad tree partitioning have

resulted in implementations running in linear time. Further case stud-
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ies into a polynomial problem of matrix multiplication has also re-

sulted in an increase in performance. The results, that are presented

in this thesis, of binary tree insertion and search being mapped to re-

configurable hardware demonstrates that the pipeline generated by

the function unrolling provides further performance benefits by al-

lowing the pipeline to be executing multiple instances of the function

in parallel. In the case of binary tree search, constant throughput is

obtained regardless of the size of the tree being searched.

In certain instances due to constraints on hardware availability,

such as a lack of hardware that properly supports runtime reconfigu-

ration, and hardware with a low number of logic gates, results were

gained from device simulation using a simulator developed for this

purpose. Details of this simulator are presented in this thesis.
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Chapter 1

Introduction

Recursion is an effective design tool that is used to describe many

important algorithms and data structures. As the adoption of higher-

level language to FPGA design tools increases, the lack of support

for recursive functions and the difficulty in supporting such functions

without a stack is becoming glaringly obvious.

In this chapter I present an abridged description of the background

that motivates the inclusion of recursive functions in higher-level de-

sign tools, describe the methodology I adopt to automate the mapping

of such functions into hardware suitable for FPGA implementation,

and then outline limitations of my methodology. Finally I outline the

remainder of the thesis and highlight my original contributions.
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1.1 Introduction

Reconfigurable computing is a method of computing where general

purpose hardware is configured for a specific task, but may be recon-

figured for a different task at a later date.

An example of a reconfigurable computing device is FPGA, which

consists of a set of logic cells that can be programmed to form any logic

function provided that sufficient placement and routing resources are

available on the device.

A comparison of an FPGA-based solutions to an ASIC designs

shows that the FPGA based solution has a better cost of development

and a lower time to develop, but however does not perform as well

as an ASIC design. A comparison of an FPGA-based solution to soft-

ware based solution shows that the FPGA solution may take longer

to develop but does provide better performance results. From these

observations it can be seen that when considering the metrics of per-

formance and development cost and time an FPGA based solution

resides between ASIC designs and software solutions.

Traditionally, designing for FPGA-based systems has involved the

implementation of hardware designs in hardware design languages

such as VHDL, or Verilog. While such languages are appropriate for

hardware designers and their designs, attempts to expand the use of

FPGA technology among software developers, who may lack hard-
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ware design background, favoured a move towards familiar software

design languages [1, 3, 35, 48, 20], such as C and Java.

These tools are typically designed to mirror the interface of com-

mon software IDE packages. The tools mirror the interfaces in terms

of “look-and-feel” and provide syntax that is very similar to the soft-

ware tools. By providing this syntax the tools hide the majority of the

hardware details from the developer with the objective of providing

a shorter development time for complex designs without the need of

extensive hardware design skills. However such approach has the po-

tential to produce designs with lower performance and larger use of

FPGA resources. In addition, some of the high-level language tools

fall short of their objectives as they force the developer to think of

cycle-by-cycle operations during the development of their application

and, of particular relevance to this thesis, only support a subset of the

language.

1.2 Problem Definition

This thesis addresses the particular problem of support for recursive

functions in high-level design tools. Maruyama et al [48] have devel-

oped the only design tool to date that supports recursive functions.

It supports recursive functions by builiding a memory stack to store
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intermediary data.

The use of a stack greatly reduces the amount of parallelism that

can be extracted from the recursive call as it reduces the ability of the

system to run multiple instances of the function in parallel. Recur-

sion is typically implemented on microprocessor systems with a stack,

but with an FPGA-based system that provides the ability for massive

amounts of parallelism, a stack-based solution clearly falls short of re-

alising its performance potential. This thesis puts forward a method

to automatically generate circuits for recursive functions that will ex-

ploit the parallelism available in the entire recursive call.

1.3 Research justification

Recursion is commonly used in many high performance algorithms,

with all algorithms belonging to the “divide-and-conquer” class being

defined recursively. Such functions can be transformed into loops [46,

7, 6]. However functions that must store variables defined prior to

the execution of a recursive call require the use of a memory stack.

Such functions cannot be mapped into hardware using regular loop

unrolling techniques due to the stack maintenance acting as a loop

carried dependency.

Performance issues aside, the lack of support for recursion, even
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stack based recursion, forces the developer to either abandon the use

of recursion or to implement a stack design of their own in cases

where it is necessary. Such situation is not compatible with the prime

purpose of these tools, which is to allow the developer to work in a fa-

miliar environment. Thus automated support for recursive functions

should be an integral part of any high-level design tool.

1.4 Methodology overview

For the context of the research presented in this thesis the execution

of a recursive function is modelled as a tree. This tree matches the

call graph of the recursive function as it executes. A call graph is a

graph representation of the function calls made during the execution

of a program. In the case of a call graph for a recursive function, each

vertex of the graph corresponds to an instance of the function, and

an edge exists from each function to every instance that it instantiates

via a recursive call. The call graph obtained for a recursive function is

named the recursive tree throughout this dissertation.

Two types of inter-procedural parallelism are present between re-

cursive calls. The first stems from parallel execution of recursive calls

made by a function, which exploits the parallelism available between

nodes of the recursive tree on the same level. The second type intro-
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duces parallelism by having nodes operate on partial data, thus hav-

ing nodes in different levels operating in parallel. This parallelism is

present in functions that operate on streams of data and output data

before processing the entire stream.

The research presented in this thesis describes a method that ex-

ploits this parallelism by creating a pipeline whose stages contain in-

stances of the recursive function that implement function in-lining on

recursive calls. The pipeline matches the shape of the call graph cre-

ated by the recursive function. Similar techniques have been previ-

ously used to map loops to reconfigurable hardware [17, 30, 37] where

each stage of the pipeline corresponds to an unrolled instance of the

original statements. The differences between the two methods are that

the pipeline created for a recursive function is not necessarily linear,

as the call graph can be a tree, and the heterogeneity of the stages in

the pipeline. We show that our method provides an increase in perfor-

mance when compared to a stack-based solution, due to the parallel

execution of operations in the stages of the pipeline.

Another issue critical to good mapping is the limited hardware re-

sources in an FPGA device. Such constraint derives the need to mini-

mize the amount of area used on the device while unrolling the func-

tion. Keeping the amount of area configured to a minimum amount

allows for greater utilization of area on the device in cases where the
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recursive tree may be unbalanced. Naive allocation of stages in the

pipeline may cause hardware to be wasted and therefore the maxi-

mum potential amount to be unrolled may remain un-realised. Thus

stages in the pipeline are allocated on-demand.

On-demand allocation of new pipeline stages may result in stalling

of execution due to large runtime reconfiguration delays. Since run-

time reconfiguration is a costly process, when compared to computa-

tion time, we attempt to reduce the overhead introduced when recon-

figuring further depths of recursion by employing prediction strate-

gies to identify the need for further stages of the pipeline in advance.

1.5 Assumptions and Limitations

Our method for mapping recursive functions into a hardware pipeline

is limited by the logic and memory resources on the target FPGA de-

vice. Such limitations are identified and some solution techniques are

addressed in this thesis.

The parallelism that can be extracted from certain types of recur-

sive functions is also limited. In particular, functions with multiple

recursive calls with data dependencies between them and recursive

functions that do not operate on input data in a sequential order suffer

from reduced performance as buffering the input becomes a necessity.
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Finally there is limited support for the mapping of recursive data

structures to reconfigurable hardware. A specific case study presented

in this thesis for quad-tree partitioning for force approximation does

feature recursive data structures, however the function being mapped

only considers a single function building the tree and doing opera-

tions on it. A data structure such as binary search, which features

multiple opertions is not completely supported by the techniques pre-

sented in this thesis, as it involves multiple functions operating on

the same data structure. While this algorithm is not completely sup-

ported, the feasbility of extending the techniques in this thesis to this

algorithm are documented in a case study. The case study examines

the insert and search operations on a binary search tree by incorporat-

ing both functions in the same processing units.

1.6 Thesis Organisation

This thesis is organised into four sections. The first section surveys

the FPGA technology and current design tools before reviewing pre-

vious literature on mapping recursive functions and loops to recon-

figurable hardware. The second section details the methods used to

implement recursion on runtime reconfigurable hardware. The third

section presents several case studies where the methods introduced
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in this thesis are applied to several well-known recursive algorithms.

Experimental results that illustrate the performance benefits of using

our method when compared to stack-based implementations are pre-

sented. The final section summarises the thesis and identifies future

work. An appendix to the thesis describes the simulation framework

used to obtain some results.

1.6.1 Literature Review

Chapter 2: explains basics of the FPGA technology and current de-

sign tools. The chapter details FPGAs, and how they operate

before presenting the growth in FPGA devices in recent years.

We then survey current design tools detailing the differences be-

tween the available tools and what they provide to the devel-

oper.

Chapter 3: surveys previous literature on loop unrolling and the re-

cursive function unrolling on FPGA devices and other parallel

architectures.

1.6.2 Implementation

Chapter 4: details the function analysis that need to be performed

for a given a recursive function before hardware can be created.
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The analysis described in this chapter describes how a recur-

sive function is partitioned into smaller functions and the op-

timizations that are made to the function to reduce the amount

of buffering required.

Chapter 5: details the method used to create the pipeline on the

FPGA. We present methods to reduce the latency introducted

while unrolling the pipeline by predicting the need for further

stages in the pipeline before they are required as well as tech-

niques for reducing the number of stages in the pipeline while

constant throughput is maintained without the need for buffer-

ing data or stalling computation in the pipeline.

Chapter 6: describes the hardware model used to implement re-

cursive functions on FPGA devices. This chapter describes the

method used to place the pipeline on the FPGA as well as the

method used to route between stages of the pipeline before de-

scribing the method used to address limitations placed on the

unrolling process by the resources of the FPGA device. The

memory model that is used is then described. The bottleneck

of memory bandwidth is discussed, before techniques to reduce

the impact of this bottleneck are presented.
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1.6.3 Case Studies

Chapter 7: describes the case studies that were implemented using

the techniques described in this thesis. The algorithm is detailed

before stepping through each critical part of the mapping tech-

niques. Results are then presented comparing the implementa-

tion with a traditional stack-based implementation.

1.6.4 Conclusion

Chapter 8: presents my concluding remarks. I address how the aims

I outlined in this introduction are met before presenting a discus-

sion on research questions that this thesis raises for the future as

well as future directions of research that stem from this thesis.

1.6.5 Appendix

Appendix chapter A: describes a simulator that was built to measure

the performance of the techniques described in this thesis. The

simulator was required in situations where available hardware

was insufficient for testing due to a lack of support for runtime

reconfiguration. The simulator also has applications for mod-

elling of various general FPGA properties.
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1.7 Contributions

This thesis makes the following contributions:

Parallelisation of recursive functions on reconfigurable hardware:

The main contribution of this thesis is a method to parallelise re-

cursive functions and map them into reconfigurable hardware.

Previous research into mapping recursive functions on recon-

figurable hardware has not considered exploiting the high level

of parallelism available between instances of the recursive func-

tion.

Partitioning of recursive computations: A key contribution of this

thesis is a method to partition a recursive function and then de-

scribe it as a combination of these smaller partitions.

Previous work into the parallelisation of recursive functions has

maintained each instance of the recursive function as an atomic

unit, and creating separate processes for each of the function

calls made.

“Flattening” of the recursive call graph: Another key contribution

of this thesis is the analysis of the runtime of the recursive func-

tion, and the ratio of time spent between a recursive function

and its recursive calls to itself. This analysis is done to reduce
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the size of the call graph by introducing some basic load bal-

ancing, which allows a larger call graph and therefore a deeper

recursive call to be mapped to the hardware.

Prediction of behaviour: Another key contribution of this thesis is

the prediction of the behaviour of the recursive function to re-

duce the latency introduced while unrolling the function before

further stages are required. Previous research into unrolling of

pipelines on FPGA hardware has relied on hardware re-use to

disguise the latency of the unrolling procedure.

Unrolling of unbound recursion on finite FPGA resources: An-

other key contribution of this thesis is the unrolling of non-linear

pipelines that require more resources than available on FPGAs.

Previous research into unrolling of pipelines on FPGA hardware

has only considered linear pipelines.

Simulation of runtime reconfiguration: This thesis presents a sim-

ulation framework which allows for parameterisable reconfigu-

ration models. Previous simulation frameworks have been tied

to specific architectures that limits the ability of researchers to

experiment with various reconfiguration architectures and de-

signs.
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Chapter 1

Introduction

Recursion is an effective design tool that is used to describe many

important algorithms and data structures. As the adoption of higher-

level language to FPGA design tools increases, the lack of support

for recursive functions and the difficulty in supporting such functions

without a stack is becoming glaringly obvious.

In this chapter I present an abridged description of the background

that motivates the inclusion of recursive functions in higher-level de-

sign tools, describe the methodology I adopt to automate the mapping

of such functions into hardware suitable for FPGA implementation,

and then outline limitations of my methodology. Finally I outline the

remainder of the thesis and highlight my original contributions.
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1.1 Introduction

Reconfigurable computing is a method of computing where general

purpose hardware is configured for a specific task, but may be recon-

figured for a different task at a later date.

An example of a reconfigurable computing device is FPGA, which

consists of a set of logic cells that can be programmed to form any logic

function provided that sufficient placement and routing resources are

available on the device.

A comparison of an FPGA-based solutions to an ASIC designs

shows that the FPGA based solution has a better cost of development

and a lower time to develop, but however does not perform as well

as an ASIC design. A comparison of an FPGA-based solution to soft-

ware based solution shows that the FPGA solution may take longer

to develop but does provide better performance results. From these

observations it can be seen that when considering the metrics of per-

formance and development cost and time an FPGA based solution

resides between ASIC designs and software solutions.

Traditionally, designing for FPGA-based systems has involved the

implementation of hardware designs in hardware design languages

such as VHDL, or Verilog. While such languages are appropriate for

hardware designers and their designs, attempts to expand the use of

FPGA technology among software developers, who may lack hard-
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ware design background, favoured a move towards familiar software

design languages [1, 3, 35, 48, 20], such as C and Java.

These tools are typically designed to mirror the interface of com-

mon software IDE packages. The tools mirror the interfaces in terms

of “look-and-feel” and provide syntax that is very similar to the soft-

ware tools. By providing this syntax the tools hide the majority of the

hardware details from the developer with the objective of providing

a shorter development time for complex designs without the need of

extensive hardware design skills. However such approach has the po-

tential to produce designs with lower performance and larger use of

FPGA resources. In addition, some of the high-level language tools

fall short of their objectives as they force the developer to think of

cycle-by-cycle operations during the development of their application

and, of particular relevance to this thesis, only support a subset of the

language.

1.2 Problem Definition

This thesis addresses the particular problem of support for recursive

functions in high-level design tools. Maruyama et al [48] have devel-

oped the only design tool to date that supports recursive functions.

It supports recursive functions by builiding a memory stack to store
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intermediary data.

The use of a stack greatly reduces the amount of parallelism that

can be extracted from the recursive call as it reduces the ability of the

system to run multiple instances of the function in parallel. Recur-

sion is typically implemented on microprocessor systems with a stack,

but with an FPGA-based system that provides the ability for massive

amounts of parallelism, a stack-based solution clearly falls short of re-

alising its performance potential. This thesis puts forward a method

to automatically generate circuits for recursive functions that will ex-

ploit the parallelism available in the entire recursive call.

1.3 Research justification

Recursion is commonly used in many high performance algorithms,

with all algorithms belonging to the “divide-and-conquer” class being

defined recursively. Such functions can be transformed into loops [46,

7, 6]. However functions that must store variables defined prior to

the execution of a recursive call require the use of a memory stack.

Such functions cannot be mapped into hardware using regular loop

unrolling techniques due to the stack maintenance acting as a loop

carried dependency.

Performance issues aside, the lack of support for recursion, even
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stack based recursion, forces the developer to either abandon the use

of recursion or to implement a stack design of their own in cases

where it is necessary. Such situation is not compatible with the prime

purpose of these tools, which is to allow the developer to work in a fa-

miliar environment. Thus automated support for recursive functions

should be an integral part of any high-level design tool.

1.4 Methodology overview

For the context of the research presented in this thesis the execution

of a recursive function is modelled as a tree. This tree matches the

call graph of the recursive function as it executes. A call graph is a

graph representation of the function calls made during the execution

of a program. In the case of a call graph for a recursive function, each

vertex of the graph corresponds to an instance of the function, and

an edge exists from each function to every instance that it instantiates

via a recursive call. The call graph obtained for a recursive function is

named the recursive tree throughout this dissertation.

Two types of inter-procedural parallelism are present between re-

cursive calls. The first stems from parallel execution of recursive calls

made by a function, which exploits the parallelism available between

nodes of the recursive tree on the same level. The second type intro-
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duces parallelism by having nodes operate on partial data, thus hav-

ing nodes in different levels operating in parallel. This parallelism is

present in functions that operate on streams of data and output data

before processing the entire stream.

The research presented in this thesis describes a method that ex-

ploits this parallelism by creating a pipeline whose stages contain in-

stances of the recursive function that implement function in-lining on

recursive calls. The pipeline matches the shape of the call graph cre-

ated by the recursive function. Similar techniques have been previ-

ously used to map loops to reconfigurable hardware [17, 30, 37] where

each stage of the pipeline corresponds to an unrolled instance of the

original statements. The differences between the two methods are that

the pipeline created for a recursive function is not necessarily linear,

as the call graph can be a tree, and the heterogeneity of the stages in

the pipeline. We show that our method provides an increase in perfor-

mance when compared to a stack-based solution, due to the parallel

execution of operations in the stages of the pipeline.

Another issue critical to good mapping is the limited hardware re-

sources in an FPGA device. Such constraint derives the need to mini-

mize the amount of area used on the device while unrolling the func-

tion. Keeping the amount of area configured to a minimum amount

allows for greater utilization of area on the device in cases where the
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recursive tree may be unbalanced. Naive allocation of stages in the

pipeline may cause hardware to be wasted and therefore the maxi-

mum potential amount to be unrolled may remain un-realised. Thus

stages in the pipeline are allocated on-demand.

On-demand allocation of new pipeline stages may result in stalling

of execution due to large runtime reconfiguration delays. Since run-

time reconfiguration is a costly process, when compared to computa-

tion time, we attempt to reduce the overhead introduced when recon-

figuring further depths of recursion by employing prediction strate-

gies to identify the need for further stages of the pipeline in advance.

1.5 Assumptions and Limitations

Our method for mapping recursive functions into a hardware pipeline

is limited by the logic and memory resources on the target FPGA de-

vice. Such limitations are identified and some solution techniques are

addressed in this thesis.

The parallelism that can be extracted from certain types of recur-

sive functions is also limited. In particular, functions with multiple

recursive calls with data dependencies between them and recursive

functions that do not operate on input data in a sequential order suffer

from reduced performance as buffering the input becomes a necessity.
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Finally there is limited support for the mapping of recursive data

structures to reconfigurable hardware. A specific case study presented

in this thesis for quad-tree partitioning for force approximation does

feature recursive data structures, however the function being mapped

only considers a single function building the tree and doing opera-

tions on it. A data structure such as binary search, which features

multiple opertions is not completely supported by the techniques pre-

sented in this thesis, as it involves multiple functions operating on

the same data structure. While this algorithm is not completely sup-

ported, the feasbility of extending the techniques in this thesis to this

algorithm are documented in a case study. The case study examines

the insert and search operations on a binary search tree by incorporat-

ing both functions in the same processing units.

1.6 Thesis Organisation

This thesis is organised into four sections. The first section surveys

the FPGA technology and current design tools before reviewing pre-

vious literature on mapping recursive functions and loops to recon-

figurable hardware. The second section details the methods used to

implement recursion on runtime reconfigurable hardware. The third

section presents several case studies where the methods introduced
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in this thesis are applied to several well-known recursive algorithms.

Experimental results that illustrate the performance benefits of using

our method when compared to stack-based implementations are pre-

sented. The final section summarises the thesis and identifies future

work. An appendix to the thesis describes the simulation framework

used to obtain some results.

1.6.1 Literature Review

Chapter 2: explains basics of the FPGA technology and current de-

sign tools. The chapter details FPGAs, and how they operate

before presenting the growth in FPGA devices in recent years.

We then survey current design tools detailing the differences be-

tween the available tools and what they provide to the devel-

oper.

Chapter 3: surveys previous literature on loop unrolling and the re-

cursive function unrolling on FPGA devices and other parallel

architectures.

1.6.2 Implementation

Chapter 4: details the function analysis that need to be performed

for a given a recursive function before hardware can be created.
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The analysis described in this chapter describes how a recur-

sive function is partitioned into smaller functions and the op-

timizations that are made to the function to reduce the amount

of buffering required.

Chapter 5: details the method used to create the pipeline on the

FPGA. We present methods to reduce the latency introducted

while unrolling the pipeline by predicting the need for further

stages in the pipeline before they are required as well as tech-

niques for reducing the number of stages in the pipeline while

constant throughput is maintained without the need for buffer-

ing data or stalling computation in the pipeline.

Chapter 6: describes the hardware model used to implement re-

cursive functions on FPGA devices. This chapter describes the

method used to place the pipeline on the FPGA as well as the

method used to route between stages of the pipeline before de-

scribing the method used to address limitations placed on the

unrolling process by the resources of the FPGA device. The

memory model that is used is then described. The bottleneck

of memory bandwidth is discussed, before techniques to reduce

the impact of this bottleneck are presented.
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1.6.3 Case Studies

Chapter 7: describes the case studies that were implemented using

the techniques described in this thesis. The algorithm is detailed

before stepping through each critical part of the mapping tech-

niques. Results are then presented comparing the implementa-

tion with a traditional stack-based implementation.

1.6.4 Conclusion

Chapter 8: presents my concluding remarks. I address how the aims

I outlined in this introduction are met before presenting a discus-

sion on research questions that this thesis raises for the future as

well as future directions of research that stem from this thesis.

1.6.5 Appendix

Appendix chapter A: describes a simulator that was built to measure

the performance of the techniques described in this thesis. The

simulator was required in situations where available hardware

was insufficient for testing due to a lack of support for runtime

reconfiguration. The simulator also has applications for mod-

elling of various general FPGA properties.
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1.7 Contributions

This thesis makes the following contributions:

Parallelisation of recursive functions on reconfigurable hardware:

The main contribution of this thesis is a method to parallelise re-

cursive functions and map them into reconfigurable hardware.

Previous research into mapping recursive functions on recon-

figurable hardware has not considered exploiting the high level

of parallelism available between instances of the recursive func-

tion.

Partitioning of recursive computations: A key contribution of this

thesis is a method to partition a recursive function and then de-

scribe it as a combination of these smaller partitions.

Previous work into the parallelisation of recursive functions has

maintained each instance of the recursive function as an atomic

unit, and creating separate processes for each of the function

calls made.

“Flattening” of the recursive call graph: Another key contribution

of this thesis is the analysis of the runtime of the recursive func-

tion, and the ratio of time spent between a recursive function

and its recursive calls to itself. This analysis is done to reduce
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the size of the call graph by introducing some basic load bal-

ancing, which allows a larger call graph and therefore a deeper

recursive call to be mapped to the hardware.

Prediction of behaviour: Another key contribution of this thesis is

the prediction of the behaviour of the recursive function to re-

duce the latency introduced while unrolling the function before

further stages are required. Previous research into unrolling of

pipelines on FPGA hardware has relied on hardware re-use to

disguise the latency of the unrolling procedure.

Unrolling of unbound recursion on finite FPGA resources: An-

other key contribution of this thesis is the unrolling of non-linear

pipelines that require more resources than available on FPGAs.

Previous research into unrolling of pipelines on FPGA hardware

has only considered linear pipelines.

Simulation of runtime reconfiguration: This thesis presents a sim-

ulation framework which allows for parameterisable reconfigu-

ration models. Previous simulation frameworks have been tied

to specific architectures that limits the ability of researchers to

experiment with various reconfiguration architectures and de-

signs.
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Chapter 2

Background

This chapter surveys reconfigurable hardware, focusing on Field Pro-

grammable Gate Arrays(FPGAs). FPGA technology is detailed in

section 2.2, before presenting information on the recent evolution of

FPGA technology in section 2.4.

Design methods are then surveyed in section 2.5, with a focus on

Higher Level Language (HLL) design flows and Runtime Reconfig-

uration (RTR) design methodologies.

2.1 Reconfigurable Computing

There are two paradigms that dominate the design and execution of

algorithms. The first utilises fixed hardware designs in the form of

Application Specific Integrated Circuits(ASICs). ASICs are designed

Mapping Recursive Functions To Reconfigurable Hardware
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to maximize the performance of a single algorithm, thus producing

high performance solutions for only a single problem. ASIC devices

however suffer from being immutable once fabricated, thus a change

in the application requires ASIC manufacturers to repeat the expen-

sive design and fabrication processes to produce a new ASIC device.

The immutability of ASIC design also inhibits the updating of de-

ployed devices, and necessitates expensive product recalls if faults are

found in the device.

The second paradigm utilizes a general-purpose microprocessor.

A general-purpose microprocessor can execute a set of basic instruc-

tions that implement boolean, arithmetic and I/O functionalities. A

software program, which is a sequence of these instructions, is loaded

onto the microprocessor. By executing this dynamic sequence of in-

structions a large functional domain can be obtained without changes

being made to the hardware. A microprocessor requires many con-

trol signals and overheads, such as instruction fetching and decoding

which reduces the performance of an algorithm implemented on a mi-

croprocessor when compared to an ASIC implementation, to support

this high degree of functionality.

Reconfigurable computing attempts to reduce the flexibility vs.

performance trade-off by providing the programmability of a micro-

processor, while approaching the performance of an ASIC solution.
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PhD. Thesis - George Ferizis 2005



2. Background FPGAs • 16

A reconfigurable device, which consists of a sea of configurable logic

resources connected by a configurable network, allows the developer

to partition an algorithm into blocks to be mapped into the logic re-

sources and to use the configurable network to connect the blocks thus

mapping the algorithm into a hardware circuit. This approach com-

bines the flexibility of programmability a software solution provides

without the overhead of instruction fetching and decoding thus main-

taining a higher degree of performance.

The granularity of reconfiguration varies between various recon-

figurable devices. Fine-grained reconfigurable architectures contain

Lookup Tables (LUTs) and multiplexers as the unit of configuration.

Coarse-grained reconfigurable architectures typically contain a series

of Digital Signal Processors (DSPs) or processing elements. These

differing granularities of configuration allow reconfigurable comput-

ing to be applied to various domains, which span regular logic syn-

thesis for fine-grained architectures to signal processing applications

for coarse-grained architectures.

2.2 FPGAs

Field Programmable Gate Arrays(FPGAs) are a particular type of

fine-grained reconfigurable device. An FPGA device contains con-
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figurable logic blocks, connected by a reconfigurable network. Given

enough logic blocks, an FPGA can implement any function. Config-

urable logic on an FPGA is typically implemented with a four input

LUTs as shown in figure 2.1. A four input LUT stores sixteen values,

with a single bit value stored for each permutation of the input lines.

Thus any four input function can be implemented with a LUT.

4

Input

16 Output
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o
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em

o
ry

Figure 2.1: Typical lookup table

Logic resources on an FPGA are arranged in collections named

tiles. A tile is a fixed set of logic resources that is replicated across

the FPGA. There exist various types of tiles, which contain logic for

various operations such as programmable logic, I/O and memory ac-

cess. The majority of the tiles on an FPGA contain programmable

logic, which typically consists of a number of LUTs, some flip-flops or

latches, several multiplexers and some fixed logic gates. An example

of such a tile on Xilinx’s Virtex architecture is shown in figure 2.2.

Each tile contains a configurable set of switches. These switches,
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Control

Control

Figure 2.2: Logic resources in a Virtex tile

named Programmable Interconnection Points(PIPs), act as junctions

between wires connected to the logic resources in the tile and to wires

that connect the tiles in the FPGA. By configuring the state of these

switches routing can be configured.

Wires that connect resources between tiles are thought of as static

routing. There are wires of various lengths on most FPGA devices

that span a different number of tiles, providing rapid communication

between neighbouring tiles, or tiles that reside on opposite sides of

the FPGA. For example Virtex-II routing contains multiple wires that

span the entire length and height of the column, wires that span 6

columns, wires than span 2 columns and wires that connect adjacent

tiles together.
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Device LUTs Configuration Bits
XC2V40 512 338,976
XC2V80 1024 598,816

XC2V250 3072 1,593,632
XC2V500 6144 2,560,544

XC2V1000 10240 4,082,592
XC2V1500 15360 5,170,208
XC2V2000 21504 6,812,960
XC2V3000 28672 10,494,368

Table 2.1: LUTs vs Configuration Bits

2.3 FPGA Configuration

A stream of bits that is loaded into the FPGA via I/O pins sets the state

of configurable resources on an FPGA device. This stream is typically

created on the host computer used to develop the FPGA design and

is stored in a file named a bitstream file. Configuration does not nec-

essarily have to be done using I/O pins as some FPGAs have internal

configuration ports that allow circuits on the FPGA to configure the

device.

The data in a bitstream file describes the configuration state of all

configurable logic resources on an FPGA, as well as the state of all

routing resources. As a result large FPGAs require larger bitstream

files and require a longer time to configure. Table 2.1, shows the num-

ber of LUTs in several Xilinx Virtex-II FPGAs and the number of con-

figuration bits required to configure the devices.

The configuration ports that are used to distribute configuration
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data to the FPGAs resources run at low speeds. The ports also typi-

cally have a small word size that allows only a small amount of data

to be loaded in a single clock cycle. The low speed of the port and

low amount of parallelism available due to the low width port causes

configuration time to be high. For example, a Xilinx XC2V1000 con-

tains a 33MHz configuration port that is 8 bits wide. This sets the

theoretical minimum time taken to configure a XC2V1000 to 15msec.

Experimental results show that the time taken is longer than this.

For the remainder of the discussion on configuration Xilinx Virtex

devices will be used as a reference for two reasons: the author is more

familiar with Xilinx configuration architectures than the configuration

architectures of devices from any other vendor; and Xilinx devices

are the only FPGA devices that support RTR which is critical to the

methodology presented in this thesis.

A configuration bitstream contains a series of configuration atomic

units named frames. A frame is a fixed amount of configuration data.

In Virtex architectures a frame can be thought of as the configuration

data for a column with a width of one bit as shown figure 2.3. This

leads to situations where a frame in a column containing LUTs will

hold one bit of configuration data for every LUT in that column. As

a result the configuration data for a LUT is stored in multiple con-

figuration frames, and therefore the configuration of a LUT may re-
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Frame

Figure 2.3: Relationship between frames and hardware

quire multiple frames to be loaded. Later Xilinx architectures such as

the Virtex-II use frames that span columns of width greater than 1,

which allows a LUT to be configured by a single frame. The frame

size for Xilinx Virtex devices is dependent on the number of rows in

the FPGA, which results in larger devices having a larger unit of con-

figuration.

2.3.1 Partial Reconfiguration

Partial reconfiguration is a reconfiguration mechanism where selected

segments of the FPGA can be configured leaving the remainder un-

changed. This is desirable in situations where only small changes to

a design are required, such as changing keys in encryption applica-

tions [54], implementing high speed crossbar switches [63], or in ap-
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plications that require certain areas of the device to remain unchanged

such as runtime task management [52, 45, 47, 41].

When an FPGA is partially configured the bitstream only contains

a fraction of the data required for a complete reconfiguration, which

reduces the size of the bitstream and therefore the time taken to con-

figure the FPGA. However it is important to note that configuring spe-

cific segments of an FPGA using partial configuration may require a

larger bitstream than is needed. For example when changing the state

of a single LUT or pip on the device, the frames that the changed bits

belong too must be reloaded in their entirety. Therefore to configure

only a single bit on a Virtex device, many bits of data must be loaded.

2.3.2 Runtime Reconfiguration

Run-time Reconfiguration (RTR) is a mechanism that allows partial

configuration of an FPGA while other circuits on the FPGA are run-

ning. RTR allows applications to be developed where circuits on the

FPGA configure the FPGA through configuration mechanisms such

as Internal Configuration Access Port(ICAP). The bitstreams that are

loaded must be generated on an external host and stored in memory.

This is due to the format of the bitstream on commercial FPGAs being

closed which makes it impossible for circuits to create, or even edit

configuration data for the device. As such the bitstream for any pos-
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sible configurations must already have been generated and stored in

memory which may require large amounts of storage.

In cases where a frame loaded during RTR contains a circuit that

is to be reconfigured and one whose state is to remain unchanged a

feature termed “glitchless configuration” is used. Glitchless configu-

ration guarantees logic or routing in a frame is not changed when it is

loaded the actual logic or routing is not configured. Combined with

RTR this allows the frame configuration atom to be broken, as static

circuits that occupy parts of a frame being reconfigured are not inter-

rupted during the reconfiguration process. It should be noted that the

atom is not broken completely as the data must still be loaded.

LUT

LUT

Register

Register

Figure 2.4: Internal Slice Logic

2.4 FPGA Evolution

While FPGA adoption in commercial industry has been on the rise,

a major factor limiting its growth has been the amount of logic on

the device. However, the size of FPGA devices has grown rapidly
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over recent years. As shown in the graph in figure 2.5, the number of

LUTs present on top of the range Xilinx devices has grown by approx-

imately 900% over the last three years. These trends signal that any

limitations imposed on designs by the limited amount of logic on the

device will descrease as the amount of logic that can be synthesized

on the device grows over time.
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Figure 2.5: Number of LUTs on Xilinx FPGA devices

The number of LUTs available on a device has not been the only

item whose growth is of interest. The amount of distributed memory

on FPGA devices has also grown rapidly over the last few years since

they were introduced increasing a massive 7800% in the last three

years. As with the increase in LUTs on the device, these trends sig-

nal that any designs limited by the amount of memory on the device

will have these limitations decreased as the amount of memory on the

device grows over time.

In recent years a shift in commercial FPGAs has seen them trans-
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Figure 2.6: Amount of distributed memory on Xilinx FPGA devices

formed from completely fine-grained architectures to partially coarse-

grained architectures, with the embedding of multipliers in Xilinx’s

Virtex-II [24] range of devices, and then the introduction of PowerPC

cores on their Virtex-II Pro devices [25]. Later devices by Xilinx [23]

now contain dedicated DSP processors.

2.5 Design Tools

2.5.1 HLL Design Tools

Higher level language(HLL) design tools for FPGA synthesis are a

well studied area for languages such as C and Java. Available pack-

ages aim to reduce the time taken to develop applications when com-

pared to Hardware Design Language(HDL) design tools such as Xil-

inx’s foundation series [21], or Altera’s Quartus package [18]. They

also attempt to minimise the reduction in performance in terms of
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clock speed and the amount of resources used when compared to the

HDL tool kits.

Regular commercial products, such as Handel-C [1], System- C [3]

and Forge [20], produce netlists from C or Java code, which are then

used by regular hardware synthesis tools to produce bitstreams to be

loaded into the FPGA.

Various research utilities that provide functionality not provided

by commercial tools also exist. Utilities such as the Streams-C com-

piler [35] disguise the low level details of the hardware design from

the programmer, and also add interesting constructs to enable stream-

ing which is not supported natively by the standard ANSI C lan-

guage [5]. The Streams-C compiler does not extract any parallelism

from the program leaving it to the programmer to parallelise their

code.

The compiler developed by Maruyama et al [48] automatically ex-

tracts parallelism from loops and recursive calls. Loops are paral-

lelised by creating a staged pipeline, with each stage corresponding

to an iteration of the loop. The process of parallelising recursive calls

proceeds in two stages. First recursive calls are transformed into loops

that are then parallelized. While this process parallelises the recursive

call by having multiple instances in a pipeline at the same time, it is

unclear how this method works when the recursive function calls it-
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self more than once. If instances are placed in a queue it is possible

that this queue grows to a large length, hence causing a large memory

bottleneck in the system.

2.5.2 Partial Reconfiguration and RTR Design Flows

There has been a large amount of effort into the development of par-

tial reconfiguration and RTR design flows by the academic commu-

nity. These design flows generate bitstreams for partial reconfigura-

tion. Most packages are based on Xilinx’s JBits package [36], as the

format of the bitstream is closed necessitating vendor tools to be used.

As the contents and format of the configuration bitstreams for all

commercial FPGAs are closed Xilinx provide a Java API named JBits

that directly manipulates the bitstream file. Through a Java program

typically running on a host machine, JBits allows a developer to access

the reconfiguration data of any configurable element on the FPGA de-

vice. This includes configurable logic such as LUTs and multiplexers

as well as configurable routing on the FPGA. JBits edits the bitstream

directly and as such requires an input bitstream for the changes to be

made too. JBits is difficult to use as a design tool. It requires detailed

knowledge of the FPGA, requires the developer to think in terms of

bits and possibly the biggest difficulty with using JBits is that it re-

quires the developer to place and route their own designs. JBits is not
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a complete development tool as it does not provide interfaces for the

testing or debugging of a design.

JHDL [12] was developed to tackle some of the JBits deficiencies.

It is a HDL language that mirrors the Java language and is capable

of modeling partial and runtime reconfiguration. It produces netlists

that can be used by traditional FPGA placement and routing tools to

create bitstreams. However JHDL does not offer as much function-

ality as JBits. While it models partial and runtime reconfiguration it

does not allow the developer to create or edit bitstreams to use for

these types of configuration. An extension to JHDL, JHDLBits [56],

attempts to mix the JHDL and JBits functionalities by creating their

own placer and router and then creating a bitstream through the use

of JBits. This approach retains the ability to create and model high-

level designs using JHDL, but also the low-level bitstream manipula-

tion provided by JBits. It is unfortunate that I could not obtain a copy

of JHDLBits as it is not available for download as advertised in their

published articles.

Other RTR design flows have looked at the issue of runtime task

management on self-reconfiguring platforms [13]. The tool created

by Blodget et al, named XPART, uses JBits to create partial bitstreams

which are then loaded onto the device using RTR. XPART makes it

possible to locate a rectangular module in a bitstream and shift it hor-
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izontally and vertically creating a new bitstream with a new place-

ment. As with most software related to Xilinx’s bitstream it is not

possible to get a copy of the software for experimentation.
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Chapter 3

Literature Review

This chapter reviews recursion in section 3.1, examining the history of

recursion in early programming languages, before reviewing research

into recursion to iterative transforms in section 3.1.1 and examining

techniques for compiling recursion on parallel architectures in sec-

tion 3.1.2. What little research that has been done in mapping recur-

sive functions to reconfigurable hardware is discussed in section 3.1.3.

The well studied topic of loop unrolling on reconfigurable com-

puting is then discussed in section 3.2. Loop unrolling is discussed

as loop unrolling techniques are similar to the technique described in

this thesis for mapping recursion to reconfigurable hardware.
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3.1 Recursion

Recursive functions are functions that contain function calls to them-

selves. Recursion is used to describe algorithms such as “divide-and-

conquer” algorithms which recursively split large data sets until the

data set is of small enough size so that results can be easily obtained.

Dynamic programming [11] also uses recursion and as such recursion

is a cornerstone of algorithm development.

Early programming languages such as FORTRAN [8] did not sup-

port recursion. This is due to recursion requiring dynamic memory

allocation to accomodate for an unknown number of functions be-

ing called. As static memory allocation offers increased performance

when compared too dynamic memory allocation early computer sys-

tems only featured static memory allocation. Without dynamic frame

allocation of a function or a procedure in memory only a fixed number

of instances of each function can be run as each instance of the func-

tion requires a predetermined memory address to be allocated to it at

compile time. Maintenance of a stack is also not possible as the stack

will be limited in size due to the memory for the stack being statically

allocated at compile time. By definition when a recursive function

calls itself it will require an unknown number of instances of itself

to be allocated, thus without dynamic memory allocation to allocate

frames for new functions or procedures and area to store variables
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from the calling procedure recursion was not implemented. However

eventually due to a desire for increased functionality coupled with

the rapid increase in technology, stack based implementations and

dynamic frame allocation became common. Thus recursion was im-

plemented on stack based processors by the ALGOL 58 [55] language

and was adopted by most other languages, with functional languages

such as Haskell providing recursion as the only method of iteration.

3.1.1 Recursive to Iterative Transforms

Transformations from recursive functions to iterative loops have been

well studied. Auslander et al [7] propose a method that transforms a

recursive call into a loop using a stack to store data as it is required.

While they demonstrate improved performance on single processor

architectures, whether the method provides any improvements on

parallel architectures is unclear. It is doubtful that this method will

utilise a parallel architecture without further transformations.

Liu et al [46], propose a method that can possibly eliminate the

need for a stack to store arguments by proposing an inverse function.

When a recursive function f calls itself, it contains a state that is re-

quired after the recursive call A. When the next function executes it is

possible that it changes the state to a new state A′ using a function g.

Their proposal is that if an inverse function g′ of g can be derived it is
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possible to compute the previous state A from A′. This is not always

possible as it is possible that the function g is not bijective. In cases

where such a function can be found this technique lends itself to reg-

ular loop unrolling techniques as the elimination of the stack ensures

that the iterative loops do not contain any loop carried dependencies.

3.1.2 Parallel Recursion

Stack based recursion on uni-processor systems does not attempt to

extract inter-procedural parallelism between distinct instances of the

function. This has been realised on multiprocessor systems where

there has been research into parallel recursion at the compilation level.

Powerlist [49], attempts to build control structures that schedule dif-

ferent portions of a recursive function on multiple computing nodes.

The system schedules the portions on different computing nodes after

considering the load balance on the system at the time.

3.1.3 Recursion on Reconfigurbale Hardware

To this author’s knowledge there only exists one higher level lan-

guage FPGA design tool that supports recursive functions in packages

that map from procedural languages to FPGA hardware designed by

Maruyama et al [48]. It does this by implementing a memory stack,

thus reducing the parallelism available between the recursive calls..
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3.2 Loop Unrolling

While the mapping of recursive functions in parallel on reconfigurable

hardware is not a well studied problem, similar investigations have

been undetaken in previous research. Loop unrolling on FPGAs with

the aim that individual iterations of the loop operate in parallel is

a well studied problem. Loop unrolling is a similar problem to un-

rolling recursion functions, in that as discussed previously all recur-

sive functions can be expressed as iterative functions with the aid of a

stack. The remainder of this section will present previous research

into the mapping of loops onto FPGA hardware and analyse how

these techniques may apply to parallel recursion on FPGAs as well as

identifying reasons why the approaches used for loop unrolling will

not work for recursive functions.

Bondalapti et al [15, 16], as well as Weinhardt et al [62], propose

methods to unroll loops that create a linear pipelined array with each

stage of the pipeline corresponding to an iteration of the loop, with

an example of this being illustrated in figure 3.1. This is similar to the

approach to recursive mapping presented in this thesis in that the aim

of the approach is to create a pipeline. The approach differs for two

reasons: the pipeline array is a linear array whereas the pipeline for a

recursive function can be a tree when the recursive function contains

multiple recursive call sites; and recursive functions that are not tail
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recursive (ie. execute computation on the results of the recursive calls

made), require feedback in the pipeline which is not present in loop

unrolling.

Similar problems addressed by Bondalapati et al, need to be ad-

dressed to unroll recursive functions. Bondalapti et al realise that the

finite resources present on a hardware platform constrain the amount

of unrolling possible. This is addressed in two ways: forcing stages

in the pipeline to operate on multiple iterations of the loop; and the

introduction of data context switching [14], which is used for nested

loops. Data context switching has a single pipeline compute multiple

loops, switching between loops identified by a unique context.

Whereas these methods are appropriate for addressing space is-

sues while unrolling loops, they require extensions to be applicable to

recursive mapping. Reuse of stages in the pipeline for a loop can be

done as each stage operates on constant sized data. This is not true

for recursive functions where data between functions can increase or

decrease causing stages to require different times to operate. Further

problems exist in grouping nodes in a pipeline that is the shape of

a tree, when compared to the problem of grouping nodes in a linear

pipeline as the nodes in the pipeline are adjacent, therefore causing no

change in shape to the pipeline.

Bondalapati et al, also realise the need to use RTR to place further
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stages onto the reconfigurable device as they are required. Methods to

pipeline the RTR with computation, and therefore reduce the latency

introduced by RTR, are presented that reuse stages in the same way

stages are reused to conserve space. The impact of the latency intro-

duced by RTR is significant in the case of unrolling recursion, with re-

cursive functions typically requiring more configuration than a single

stage of a loop. The techniques presented by Bondalapti et al, reduce

the amount of parallelism available, thus techniques that involve ini-

tiating RTR before it is required are investigated and presented in this

thesis.

SUM-ARRAY(A, n)

1 i ← 0
2 sum ← 0
3 while i < n

do
4 sum ← sum +A[i ]
5 return sum

+ + + +
0

A[0] A[1] A[2] A[N]

Figure 3.1: An unrolled loop.

Styles et al [59], realise the reduction in parallelism that results

from Loop Carried Dependencies(LCDs). A LCD is a data depen-

Mapping Recursive Functions To Reconfigurable Hardware
PhD. Thesis - George Ferizis 2005



3. Literature Review Loop Unrolling • 37

sum = 0;

while(i<n)

{

sum+=a[i];

i++;

}

Figure 3.2: An example of a LCD

dency that occurs between different iterations of a loop. Such a depen-

dency is shown in figure 3.2. The dependency occurs with the value

sum. No iteration of the loop can execute in parallel as any stage j is de-

pendent on the value of sum from every stage k where 0 < k < j. Styles

et al propose a method to parallelise multiple instances of loops with

LCDs, using a tagged token system similar to that of the dataflow ma-

chine [61]. The problem of LCDs is applicable to recursion unrolling

as each stage of the pipeline in recursion is dependent on the previous

stages.
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Chapter 4

Function Analysis

This chapter begins by discussing function inlining (as defined in def-

inition 4 and why traditional function inlining is not appropriate for

the case of recursive functions in section 4.3. A method to partition

recursive functions into smaller functions is then presented in sec-

tion 4.4. This partitioning creates functions that can be inlined using

techniques described in this chapter.

Section 4.5, presents two optimisations that are done to the recur-

sive function: ordering the input arguments to reduce the amount of

buffering required and fixing the recursive cases to a constant no mat-

ter the inputs into the function.

The chapter will now begin with the definition of some terms that

will be used throughout this chapter and the rest of this thesis. These

terms are generic compiler terms [50] and terms that have been used
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to describe properties this thesis examines.

4.1 Chapter Aims

• Introduce relevent compilation terms.

• Introduce inlining and why it is not appropriate for mapping

recursion to FPGAs.

• Introduce and justify the method described in this thesis.

• Describe the analysis done on the recursive function that is to be

mapped.

4.2 Definition of Terms.

Definition 1. Basic Block: A maximal sequence of instructions or state-

ments that can only be entered from the first statement and exited from the

final statement.

Definition 2. Final Block: A basic block that contains statements that termi-

nate a function. An example of this is a block containing a return statement.

Definition 3. Flowgraph: A rooted directed graph representation of a func-

tion, with a vertex for each basic block in the function and two additional

entry and exit blocks, and a set of edges that connect the basic blocks with a
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flow corresponding to that of the function. The entry block contains a single

edge to the entry point of the function, and the exit block has an edge to it

from every final basic block in the function.

Definition 4. Inlining: The substitution of code at a function call with the

statements or instructions contained in the function being called.

Definition 5. Reachability: A vertex u ∈ G is reachable from v ∈ G if there

exists a path in G from v to u.

Definition 6. Succ: In a graph G, the set succ(v) for any vertex v ∈ G, is

the set of vertices in G that are reachable from v excluding v.

succ(v) = {u ∈ G | reachable(v, u)∧ u 6= v}

Definition 7. Pred: In a graph G, the set pred(v) for any vertex v ∈ G, is

the set of vertices in G which v is reachable from excluding v.

pred(v) = {u ∈ G | reachable(u, v)∧ u 6= v}

Definition 8. Live Variable: A variable is live at a point in a program if

there exists a path to the exit block such where its value is used before being

redefined.

Definition 9. Tail Recursion: A recursive function where no statements

occur after a recursive function call, except for a recursive function call.

Definition 10. Recursive Condition: The boolean expression with the func-

tion’s arguments as it’s terms that evaluates to true for all inputs that lead to

the function calling itself.
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Definition 11. Terminating Condition: The boolean expression with the

function’s arguments as it’s terms that evaluates to true for all inputs that

cause the function to terminate.

Definition 12. Recursive Tree: A tree that is used to describe the call graph

created by the recursive function as it is executed. A node in the tree corre-

sponds to a call to the recursive function. The recursive tree for the fibonacci

function shown in figure 4.1, when the initial function is called with n = 4

is shown in figure 4.2.

FIBONACCI(n)

1 if n ≤ 1
then

2 return 1
else

3 return FIBONACCI(n− 1) + FIBONACCI(n− 2)

Figure 4.1: The fibonacci algorithm.

n=1 n=0

n=2 n=1 n=1 n=0

n=3 n=2

n=4

Figure 4.2: Recursive tree for the fibonacci function when n = 4
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Definition 13. Recursive Case: The function evaluated when a recursive

call is made.

Definition 14. Base Case: The function evaluated that returns a value with-

out having made a recursive call.

Definition 15. Recursive Depth: The height of the recursive tree.

Definition 16. Recursive Level: The depth of a node in the recursive tree.

Definition 17. Recursive Degree: The out-degree of any node in the recur-

sive tree.

An example function and the corresponding flowgraph is shown

in figure 4.3. The numbers within the blocks refer to the line num-

bers of the statements that block contains. The function given is the

factorial function n!.

An extension is made to the definition of the basic block to aid

analysis specific to the process of the recursive function analysis de-

scribed in this thesis. A basic block containing a statement that con-

tains a recursive function call must only contain that statement. Such

a basic block is termed a recursive block. An application of this ex-

tension to the flowgraph in figure 4.3 is showed in the flowgraph in

figure 4.4. The recursive block is hashed so as to distinguish it from

the other basic blocks. This method of marking a recursive block is

used throughout this document.
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FACTORIAL(n)

1 if n = 1
then

2 return 1
else

3 RecursiveResult ← FACTORIAL(n− 1)
4 return n×RecursiveResult

entry

1

3,42

exit

NY

Figure 4.3: The factorial function and its corresponding flowgraph.

entry

1

3

4

2

exit

N
Y

Figure 4.4: Flowgraph for the recursive factorial function showing the
recursive basic block
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4.3 Inlining Procedure

Function inlining is a process where a call to a function is substituted

by the entire code for the function.

By inlining a function, optimizations that may not be able to be

applied across multiple functions, such as constant propogation and

common sub-expression removal may be applied.

Compilers such as gcc [43] perform function inlining but not for

recursive functions. Optimising compilers like LLVM [42] inline a re-

cursive function only a fixed number of times in an attempt to reduce

the overhead from the function call. These limitations are due to the

inlining process never terminating for a recursive function as each in-

lined function will contain the statement it replaced. However as a

terminating recursive function must have a sequence of statements

that causes the function to terminate there must be a way to inline the

recursive function such that this sequence is obtained.

A recursive function terminates when the terminating condition of

the function is met. In the example function in figure 4.3, the termi-

nating condition is n = 1.

Observing this, it can be seen that when a recursive function is in-

lined, either a set of instructions that lead to termination is inlined,

or a set of instructions that lead to a further recursive call is inlined.

These two different instruction sets can be thought to belong to two
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separate functions: fnon-recursive , the function containing the set of in-

structions that lead to termination, , or frecursive , the function contain-

ing the set of instructions that leads to a further recursive call.

As the selection of the function which is inlined effects termina-

tion, selecting the appropriate function to inline will shape how the

recursive function evaluates. An example application of this inlining

proceduce for the factorial function is shown in figure 4.5.

The call graph in figure 4.5 contains one function that calls another

and then waits for data to be returned. This return of data is shown

by the presence of a back edge (labelled 1) in the graph. The mutual

data dependency that results from this will cause both stages of the

pipeline to stall while waiting for data from its neighbouring nodes.

This in effect allows only a single stage of the pipeline to be operating

at any one time.

x− 1

1

x

x× 1

Figure 4.5: Call graph showing a mutual dependency

This is solved by further splitting the function frecursive into two

functions: fpre-recursive , which contains all statements prior to any re-

cursive call, and fpost-recursive which contains all the statements that may

occur after any recursive call. This allows another stage to be added
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to the pipeline that corresponds to the operations in fpost-recursive .

Figure 4.6, shows an example of this extra stage being added. The

final stage in the graph evaluates the multiplication statement that oc-

cur after the recursive call in the factorial program. It receives as input

the result from the previous recursive call and the original argument

to the recursive call. Arranging the pipeline in this manner eliminates

all cycles and therefore any mutual data dependencies between stages

of the pipeline. This eliminates the stalling scenario described earlier.

x− 1 1

x

x x× 1

Figure 4.6: Call graph extended to remove a mutual dependency

4.4 Partitioning The Function

To begin partitioning a recursive function f into its sub-functions the

flowgraph G for the function f is generated. R is an ordered sub-

set with a cardinality of n that contains all the recursive blocks in

G. Using G the sub-functions of f : frecursive and fnon-recursive , which

correspond to the recursive function and the non-recursive function,

are determined. After obtaining frecursive , the sub-functions of frecursive :

fpre-recursive and fpost-recursive , which correspond to the pre-recursive call
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function and the post-recursive call function, are then determined.

The method used to determine these functions uses the flowgraph

G to obtain the flowgraphs for the functions. In all flowgraphs created

new entry and exit blocks must be added to obtain a correct flow-

graph, and as such, the entry and exit blocks are not considered for

addition to the newly derived graphs. It should also be noted that

after obtaining the vertices of the new subgraph Gsub all the edges

< v, u > in G where both v ∈ Gsub and u ∈ Gsub are added to Gsub.

The first definition to be made is the flowgraph G′ which is a sub-

graph of the flowgraph G that has all the recursive blocks removed.

G′ = {g ∈ G | g /∈ R} (4.1)

The flowgraph Gnon−recursive for the function fnon−recursive is defined

as the set of vertices in the graph G′ that are both reachable from the

entry block, and can reach the exit block.

Gnon−recursive = {g ∈ G′ | g ∈ succ(entry)∧ g ∈ pred(exit)} (4.2)

The flowgraph Grecursive for the function frecursive is defined as the set

of vertices in G that can either reach a recursive block, or are reachable

from a recursive block.
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Grecursive =

n
[

i=1

{g ∈ G | g ∈ succ(Ri)∨ g ∈ pred(Ri)∨ g = Ri} (4.3)

The flowgraph Gpre−recursive for the function fpre−recursive is defined as

the set of vertices in Grecursive that can reach any recursive block.

Gpre−recursive =

n
[

i=1

{g ∈ Grecursive | g ∈ pred(Ri)∨ g = Ri} (4.4)

The flowgraph Gpost−recursive for the function fpost−recursive is defined

as the set of vertices in Grecursive that are reachable from any recursive

block.

Gpost−recursive =

n
[

i=1

{g ∈ Grecursive | g ∈ succ(Ri)∨ g = Ri} (4.5)

Using these definitions it can be shown that the data presented in

figure 4.7, for the accompanying flowgraph is true.

Determining the input and output variables for each function unit

and the order in which a function unit receives and transmits data is

the next necessary step.

The input variables for the pre-recursive and non-recursive func-
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exit

8 9

4 5 6 7

2 3

1

entry

R ={5, 6}

G′ ={1, 2, 3, 4, 7, 8, 9}

Gnon−recursive ={1, 2, 4, 8}

Grecursive ={1, 2, 3, 5, 6, 7, 8, 9}

Gpre−recursive ={1, 2, 3, 5, 6, 7}

Gpost−recursive ={5, 6, 8, 9}

Figure 4.7: Example flowgraph showing results of partitioning

tions are the input variables for the original function as they corre-

spond to new instances of the recursive function. The input variables

for the post-recursive function however differ as it corresponds to a

function beginning midway through the recursive call and thus the

initial state of the post-recursive function corresponds to the state of

the original function after the recursive call, which is the state of the
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pre-recursive function at its exit block. Transmitting the initial function

arguments would require large amounts of the pre-recursive function

to be recomputed to reach the state of the function after the recur-

sive call. To eliminate the need for repeating this computation each

pre-recursive function unit transmits the live variables at the recur-

sive blocks to its corresponding post-recursive function unit. These

live variables are computed by finding all the variables that are live

on exit from the recursive blocks. This is described in equation (4.6).

The post-recursive unit also receives arguments that correspond to the

results of all recursive calls made by that function.

Argspost-recursive =

N
[

i=1

LVout (Ri) (4.6)

4.5 Optimisations

This section will present two optimisations that are made to the recur-

sive function being mapped: the reordering of the function arguments

to reduce the amount of buffering that the function requires and re-

moving call sites from conditional blocks, which causes the recursive

tree to become proper thus simplifying the process of implementing

it in hardware.
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4.5.1 Input Ordering

The order that input variables are streamed into a function unit can

effect the amount of buffering required by the function. To minimise

the amount of buffering required all scalar arguments are streamed

before arrays. This results in the amount of buffering required being

reduced as scalar variables require a constant amount of storage and

thus can be stored in LUTs while an array of unknown length requires

a memory module, and possibly off-chip memory for storage.

The effect that the order of input variables can have on buffering

can be seen in the functions in figures 4.8 and 4.9. Both functions

operate on two input arguments A and v, and both read these argu-

ments by calling the READ-INPUT function. Both functions compute

the number of elements in the array A that are greater than v and out-

put this result using the WRITE-OUTPUT function.

The function in figure 4.8 receives the array A before the scalar

value v. This ordering requires that the function unit buffers the entire

array A, of unknown size. This requires at least one memory module

to be allocated to the function unit, with the possibility of more being

allocated depending on the size of the array.

The function in figure 4.9 receives the array A after the scalar value

v. As A is accessed sequentially only one element from it is ever

buffered. This constant amount of buffering allows the data to be
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buffered in LUTs, conserving the limited on-chip memory resources.

This demonstrates the effect reordering can have on the amount of

data a function buffers and therefore the amount of memory required

by a function.

NUMBERGREATER()

1 value ← READ-INPUT()
2 while value is not the end of the array

do
3 append value to A
4 value ← READ-INPUT()
5 v ← READ-INPUT()
6 greaterThan ← 0
7 for all a in A

do
8 if a > v

then
9 greaterThan ← greaterThan +1

10 WRITE-OUTPUT(greaterThan)

Figure 4.8: Algorithm to compute the number of elements greater than
v in array A

As a recursive function calls itself, the order in which it defines the

variables it uses for the function call must also be considered when the

order of the input variables is determined. Figure 4.10, which as with

figure ?? replaces the recursive call with the function WRITE-OUTPUT

to simulate sending arguments to the next recursive call, contains a

recursive function that uses and defines arguments in a way that re-

quires buffering no matter the input argument sequence. The algo-
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NUMBERGREATERREORDERED()

1 v ← READ-INPUT()
2 greaterThan← 0
3 value ← READ-INPUT()
4 while value is not the end of the array

do
5 if value > v

then
6 greaterThan← greaterThan +1
7 value ← READ-INPUT()
8 WRITE-OUTPUT(greaterThan)

Figure 4.9: Algorithm to compute the number of elements greater than
v in array A with reordered inputs

rithm does the same operation as the algorithm NUMBERGREATER,

but calls itself again with an array only containing the values greater

than v and the value v incremented. The algorithm also takes in an-

other variable n which corresponds to the length of the array. Keeping

the previous ordering to reduce the buffering of input, the variable

are sent in the order n, v, A, however the definition for the argument

n(greaterThan) depends on the definition of the argument A(Anext).

This orders the definitions of the variables for the next function call

v, A, n, which does not match the order of input. This requires that

all the values for Anext must be buffered before greaterThan is finally

defined.

The effect of argument definitions on buffering is determined by
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NUMBERGREATERRECURSIVE()

1 n ← READ-INPUT()
2 v ← READ-INPUT()
3 Anext ← ∅

4 greaterThan ← 0
5 value ← READ-INPUT()
6 i ← 0
7 while i < n

do
8 if value > v

then
9 greaterThan ← greaterThan +1

10 append value to Anext

11 i ← i +1
12 WRITE-OUTPUT(v +1)
13 WRITE-OUTPUT(greaterThan)
14 WRITE-OUTPUT(Anext )

Figure 4.10: Increment algorithm and the streamed version for the
same input order

examining the order of definition for the arguments for the function.

If there is no way to order the definitions to be the same as the order

of the input variables, and such that the function is still correct then

buffering is unavoidable. Arguments that are dependent in this way

occur most often in situations such as this where the size of the array

is required as an input. This is a result of using languages such as

C that do not have constructs that allow the user to determine the

length of an array. Languages such as Java have the .length() construct

which allows the user to determine the length of an array. This is
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one argument against the C language for the application of hardware

development, however a lengthy discussion about the best procedural

language to use for hardware development is not in the scope of this

thesis.

The algorithm for ordering the input arguments is shown in fig-

ure 4.11. The algorithm ORDERARGS has as an input the set of argu-

ments Args. The algorithm first splits the set into two ordered sets

Scalars and Aggregrates , which contain scalar and aggregrate argu-

ments respectively. These sets are then ordered in respect to their first

use before the Aggregrates set is appended to the Scalars set. The or-

dering function SORTARGS orders the arguments based on their first

use in the function. The result of the FIRST-USE(a) is defined as the

block in the call graph that contains the first use of the value a.

4.5.2 Constant Number Of Recursive Call Sites

A recursive function can be written in a way such that it can call itself

a different number of times depending on the input arguments. This

occurs when a conditional statement has one branch that contains a

recursive call and one that does not. This produces an improper re-

cursive tree which complicates building hardware to implement the

recursive function.

The recursive tree is made proper by introducing recursive calls
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ORDERARGS(Args)

1 Aggregrates ← ∅

2 Scalars ← ∅

3 for A in Args

do
4 if A is scalar

then
5 Scalars ← Scalars ∪{A}

6 else
7 Aggregrates ← Aggregrates ∪{A}

8 SORTARGS(Scalar)
9 SORTARGS(Aggregrates)

10 return Scalar : Aggregrates

SORTARGS(Args)

1 SortedArgs ← ∅

2 i ← 0
3 while Args 6= ∅

do
4 Afirst ← Args[0]
5 for B in Args

do
6 if FIRST-USE(Afirst ) ∈ SUCC(FIRST-USE(B ))

then
7 Afirst ← B

8 SortedArgs[i]← Afirst

9 i ← i +1
10 Args ← Args−{Afirst}

Figure 4.11: Algorithm to sort input arguments for a function

with null arguments into branches with no recursive calls. To do this

each recursive block in a conditional branch is moved out of the con-

ditional branch. Each branch of this condition then sets arguments
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for the recursive call, either corresponding to the call it would make

or null arguments if no call is made in that branch. To do this both

branches of the condition must be “cut” at the recursive block, or if

non exist at the root of the branch. A conditional branch with the

same condition is then placed after the new recursive block with its

branches being the remainder of the branches that were cut. This pro-

cess is repeated until no recursive block in the function occurs in a

conditional branch.

BALANCERECURSIVESITE(rb)

1 origin ← block at origin conditional branch for rb
2 end ← block ending the conditional branch for rb
3 R← recursive block with arguments newArgs for call
4 N ← empty block with the same conditional branch as origin

5 for all branches br from origin

do
6 if br contains a recursive block rb

then
7 set rb to the first recursive block in br

8 replace call with assignments from args of rb to newArgs

9 remove rb from Recursive-Blocks

10 add child of N to children of rb

11 set child of rb to R
12 else
13 add null assignments for newArgs to first block in br
14 set child of N to end
15 set child of final block in br to R
16 set child of R to N

Figure 4.12: Algorithm to remove a recursive call site from a condi-
tional branch
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The algorithm for this is shown in figure 4.12.

An example of the application of this to the function in figure 4.13

will now be shown. The flowgraph in figure 4.14 is the flowgraph

for the function with the branch in question being the branch begin-

ning at 1 and ending at 6. The graph that results from application

of BALANCERECURSIVESITE to every recursive block not dominating

exit is shown in figure 4.15.

int f(int a, int n)

{

int g, h;

a = a + 1;

if(n%2==1)

{

g = f(a, n-1);

}

else

{

g = 1;

}

h = f(a, n-3);

return g+h;

}

Figure 4.13: Function with independant call sites

4.6 Summary

This chapter has presented the analysis done on a recursive function.

This analysis was motivated by a discussion on why traditional func-
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entry

1

2 3

4

5

6

exit

Figure 4.14: Flowgraph for a function with a recursive call site in a
conditional branch

tion inlining is not appropriate for unrolling recursive functions.

The analysis described partitions a recursive function into three

smaller functions that are used for inlining. The analysis done also in-

cludes optimisations that reduce buffering by reordering input argu-

ments and forcing the number of recursive calls made to be constant,

making the recursive degree constant for all nodes in the recursive

tree.

The important points in this chapter are: the problems that arise

when applying regular function inlining techniques to recursive func-
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entry

1

2 3

R

N

4

5

6

exit

Figure 4.15: Result of removing recursive call site from the conditional
branch

tions; the decomposition of a recursive function into smaller functions

to allow the unrolling process to terminate and to remove the need to

block; the reordering of function arguments and the effects on buffer-

ing and the suitability of the C language to the problem of streamed

applications based on observations made during experimentation.
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Chapter 5

Drawing the pipeline

Once the analysis of the recursive function has been completed and

the pre-recursive , post-recursive and non-recursive functions have been

obtained they must be arranged in a pipeline to compute the result

of the original recursive function. The pipeline that is created must

match the recursive tree of that instance of the recursive function. The

challenges that this poses will be discussed in this chapter.

Figure 5.1(a), shows a recursive tree with a recursive depth of three

and a width degree of one. As the leaf node of the tree corresponds to

a terminating case of the recursive function, the stage in the pipeline

corresponding to this node will require a non-recursive function unit.

In a similar way all internal nodes will require an instance of the

recursive function which is made of the pre-recursive and post-recursive

functions. The pipeline in figure 5.1(b), is the required pipeline for the
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recursive tree in figure 5.1(a). As can be observed the pipeline is het-

erogenous, with different stages of the pipeline computing different

functions.

(a) Recursive Tree

pre pre non post post

(b) Pipeline

Figure 5.1: Recursive tree and the corresponding pipeline

As the recursive tree grows as the function unrolls, the shape of the

recursive tree is unknown when computation begins. This requires

that the FPGA be configured during runtime. Configuring during

runtime requires the pipeline to be dynamically drawn on the FPGA,

which requires runtime reconfiguration. Using runtime reconfigura-

tion allows the logic on the FPGA to be configured to match the recur-

sive tree at any given time of the computation.

The use of runtime reconfiguration introduces a latency to the un-

rolling of the function, as the amount of time required to configure a

stage being significanly higher than computation time on the FPGA.

This latency is reduced by beginning runtime reconfiguration as early

as possible, which allows the reconfiguration to be pipelined with
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computation. This is done by predicting the need for runtime re-

configuration before it is required. Techniques to predict this are dis-

cussed in section 5.2.

As the recursive tree grows, the number of nodes in the tree grows

exponentially. This can result in massive amounts of hardware be-

ing required to compute recursive trees of short height. A technique

that reuses function units on the device that still maintains constant

throughput through the pipeline relative to the first node is discussed

in section 5.3.

5.1 Chapter Aims

• Introducing the latency that arises from unrolling the pipeline

on-demand.

• The use of heuristics to predict the need to unroll before further

stages are required, thus reducing the latency introduced by the

unrolling process.

• Analysis of the ratio of work done between nodes in the recur-

sive tree with the aim of reducing the number of nodes in the

recursive tree by balancing the work load between nodes.
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5.2 Prediction Techniques

Before discussing methods to predict growth of the pipeline some

terms that will be used throughout this section will be defined.

Definition 18. Triggering Argument: The first argument into the system

that requires a deeper pipeline than the one currently configured.

Definition 19. Overflow: When the final stage in the pipeline detects that

it requires further stages to be configured and stalls the system.

Definition 20. δp: The time taken for a single stage in the pipeline for a

recursive function to execute.

Definition 21. ∆R: The time taken to reconfigure a single instance of the

recursive pipeline.

Definition 22. SD: The number of stages in the pipeline after the stage

that detects the need for reconfiguration, with SD = N at the first stage of a

pipeline of length N.

If configuration was initiated only when overflow occured the sys-

tem must stall while configuration of a new stage occurs. As the con-

figuration of even a modest sized function unit takes a time measured

in milliseconds ∆R ≫ δp, which leads to a lot of execution time being

wasted while the system stalls during reconfiguration.
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If configuration was initiated before overflow occured the perfor-

mance penalty that occurs while stalling can be reduced by a value

of SD · δp. For a sufficiently large SD the reconfiguration can be com-

pletely pipelined with computation thus eliminating latency.

Ideally SD = N would be the goal for any prediction technique.

Prediction where SD = N is termed optimal prediction and is dis-

cussed in section 5.2.1.

Circumstances where SD 6= N occur when optimally predicting

the need for reconfiguration requires too much hardware or involves

computing the entire recursive function. Heuristics are empolyed for

prediction in this instance. This is termed non-optimal prediction and

is discussed in section 5.2.2.

5.2.1 Optimal Prediction

Predicting the need for a new stage of the pipeline involves evaluat-

ing the terminating condition on the input arguments. If a triggering

argument is found when it enters the pipeline the system has the time

for that data item to reach the final stage of the pipeline to configure a

new stage. If the stage is still not configured the system may have to

stall but the latency has been reduced.

To apply the terminating condition to the input arguments the

variables in the condition must be substituted with their definitions
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until they are expressed only in terms of the input arguments of the

function. The algorithm for this is shown in figure 5.2.

REDUCE-EXPRESSION(E,Arg-List)

1 Used -Expressions ← all expressions used in E
2 Changed ← FALSE

3 for UE in Used -Expressions

4 do
5 if UE /∈ Arg-List

6 then Changed ← TRUE

7 UE -Def ← DEF(UE )
8 Replace UE with UE -Def

9 if Changed

10 then
11 returnREDUCE-EXPRESSION(E,Arg-List)
12 return E

Figure 5.2: Algorithm for reducing expression to arguments

This procedure can produce a value that changes over the evalu-

ation of a single instance of a function. Consider the function in fig-

ure 5.3. The function reduces the size of the array in half each time

with a base case of size 1. The relationship between the depth of the

pipeline D and the input arguments is shown in equation (5.1). As-

suming that the size of the input array A was unknown and that it

was inputted into the pipeline as a stream, the depth of the pipeline

would change over time. It can be shown that at a time t the depth

of the pipeline corresponds to equation (5.2), where A.length(t) corre-

sponds to the size of the input stream for the array A at time t. This
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value is recorded and the equation computed by keeping a counter

on the size of the stream. The triggering argument for this function

becomes the argument into the system which causes D(t) to increase.

HALF-ARRAY(A)

1 if A.length = 1
2 then return A
3 else
4 i ← 0
5 while i < B .length

6 do B[i]← A[i] + 1
7 i ← i +1
8 return HALF-ARRAY(B)

Figure 5.3: Algorithm with arguments to be reduced

A.length

2D
= 1 (5.1)

D(t) = ⌈log2 (A.length(t))⌉ (5.2)

Controller

1 2 N N + 1

δp δp δp

Figure 5.4: Overflowed recursive pipeline reconfigured by controller

Prediction that directly calculates the depth from the terminating

condition and the arguments is precise. The function is evaluated by
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a controller at the beginning of the pipeline as shown in figure 5.4.

This allows the system to predict the possibility of overflow as soon

as a triggering argument enters the system, i.e. when SD = N. This

reduces the latency from ∆R to ∆R − Nδp. With a sufficiently large

value of N,
(

N ≥ ∆R

δp

)

, this term is reduced to 0.

5.2.2 Non-Optimal Prediction

When the function for predicting the depth of the recursion is too com-

plex to realise in hardware because it would require too much logic to

be synthesised or as in some cases involves evaluating the entire re-

cursive function, heuristics are used to approximate the depth of the

recursion. The majority of algorithms that exhibit the need for such a

heuristic are partitioning algorithms such as quick sort that partition

the input data into smaller sets to use as arguments for the recursive

calls. In the example of quick sort with an input set of size N, the

size of the partitioned sets can range between 1 and N. If the sets

are partioning into sizes of N
2

, the depth of recursion will be log2(N),

however if the sets are partitioned into sizes 1 and N, the depth of

recursion will be N.

Two different approaches were considered to predict the depth of

the pipeline: an aggressive approach that predicts the maximum pos-

sible depth of the pipeline and a conservative approach that predicts
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Figure 5.5: SD during the operation of Quick Sort

the minimum possible depth of the pipeline, given certain inputs. In

the case of quick sort the aggressive approach will predict the need

for N stages in the pipeline. This however is a poor approximation

as analysis shows that the depth of recursion on average should be

O(log(N)). This poor approximation results in inefficient use of FPGA

resources. A conservative approach would allocate the minimum size

pipeline, which would be a recursive depth of O(log(N)), but it is

unlikely that the function call graph will correspond to a properly

balanced tree and as such it will need to be reconfigured which in-

troduces latency into the system. However, it is better to introduce

latency but realise the maximum possible depth of recursion than to

reduce latency at the cost of realising a low depth of recursion.

To improve the accuracy of the conservative approach the approx-

imation is applied at each level of the recursion. The results for this

are shown in figure 5.5, which shows how many stages were left in
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the pipeline after the stage that predicted the need for a new stage in

the pipeline, with 0 being the final stage of the pipeline. This graph

shows that the need for reconfiguration was always found before the

final stage of recursion, however with a relatively small value for δp,

the reduction of latency is not that great.

5.3 Reducing Hardware Use

Allocating a function unit to each node of the recursive tree can result

in poor utilisation of FPGA resources, as this allocation method does

not ensure proper work balancing. This unbalanced work load results

from function units at deeper points of recursion most likely working

on smaller data sets, thus requiring less time to compute results. In

circumstances such as this it is possible to allocate a function unit that

controls multiple nodes of the recursive tree, thus reducing the num-

ber of function units that are needed to implement the entire recursive

tree.

It is desirable that the throughput of each node is similar to that

of the root node of the recursive tree, as if a later stage of a pipeline

requries more time to compute than previous stages, either previous

stages must stall or an infinite sized FIFO buffer must be introduced

between stages of the pipeline. As only a finite amount of memory
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and logic exists on FPGA devices and stalling is not desirable, to main-

tain constant throughput each stage in the pipeline should do at most

the same amount of work as the first stage in the pipeline. Further-

more maintaining the invariant that all stages do approximately the

same amount of work means that it is desirable that no stage in the

pipeline stalls while waiting for prior stages to communicate results.

If this invariant were not maintained stages of the pipeline would be

idle during execution thus not making full use of the logic that has

been configured. To maintain this invariant and still maintain con-

stant throughput analysis is required into the amount of work done

at each stage of the recursion and the amount of logic, in this case the

number of function units, that should be allocated to do this work.

To efficiently allocate resources the ratio of work done between

the first level of recursion and every other level of recursion must be

determined, from which the ratio of function units between levels of

recursion that will produce constant throughput can be determined.

This is done recursively by comparing the work done between subse-

quent levels of recursion.

Consider a recursive function with a complexity of O( f (N)). A

node in its recursive tree that receives D sized input and has N chil-

dren where the ith child receives Di sized input is shown in figure 5.6.

The ratio of work done between the root node and its children is
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shown in equation (5.3).

1 N

D1 DN

D

Figure 5.6: Node in recursive tree noting amount of data between
nodes

f (D)

∑N
i=1 f (Di)

(5.3)

The result of the ceiling function on this ratio is the number of

function units that need to be allocated to compute the result for all the

children nodes with the same throughput as the previous node. This

will be termed the recursive growth rate, as it describes the growth in

the number of function units between levels of recursion.

Algorithms with a recursive growth rate of one require only a sin-

gle function unit to be allocated per level of recursion. Such algo-

rithms match the following four criteria:

1. f (A) ≥ f (B),∀A ≥ B

2. D ≥ ∑N
i=1 Di

3. f (0) = 0

4. d f (N)

N
(A) ≥ d f (N)

N
(B),∀A ≥ B
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All algorithms belonging to the divide-and-conquer class of algo-

rithms match the first, second and third criteria, and the author of

this thesis is yet to find a divide-and-conquer algorithm that does not

match the fourth criteria.

A reduction in function units allocated per level allows deeper re-

cursive trees to be allocated on an FPGA device, with algorithms such

as merge-sort that contain N nodes in its recursive tree requiring only

log2(N) function units. Using this method also addresses a large prob-

lem in mapping recursive functions in hardware, where the height

of most recursive trees is small compared to the width as the width

grows exponentially in respect to the height.

5.3.1 Context Switching

Allocating a single function unit to control multiple nodes in the re-

cursive tree forces the function unit to be executing multiple instances

of the recursive function in “parallel”. This parallelism is the same

parallelism found in conventional uni-processors systems that switch

between processes to simulate multi-tasking. Uni-processor systems

implement context switching to enable this operation. A context switch

in a microprocessor flushes the state of all CPU registers to memory

and then loads the state or context of another process that is ready

to execute. A similar process is implemented in the recursive func-
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tion units. When receiving data for an instance of the recursive func-

tion that differs from the current instance being computed the state is

flushed to memory and the state of the new instance is loaded before

execution continues.

Context is controlled in a method similar to that used by the tagged

dataflow architecture [61]. The tagged dataflow architecture contains

function units that operate on a set of arguments. A function unit will

receive arguments for many instances of the function, with a unique

tag describing the instance of the function the argument belongs too.

Upon receiving a data token, the function unit checks memory to see

if it has the rest of the arguments for that instance of the function.

If it does it retrieves the arguments from memory and executes the

function, otherwise it stores the new data token in memory.

The method adopted in this thesis differs from the dataflow archi-

tecture as processing begins as soon as an argument enters the system.

Upon receiving an argument the function evaluates all expressions

that it can using this argument and the results of expressions from

previous arguments, before storing the results of these expressions

that are to be used later in the function in memory.
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Context Tag

To enable context switching a context tag is sent with each data item

by a communicating function unit. The tag is an integer that exists in

the range [0,∞), with the initial data into the first stage of recursion

having a tag of 0. Every subsequent function unit implements the

bijective function in equation (5.4) to generate new tags. A bijective

function is necessary in the same way the function return addess is

necessary in a regular stack based solution to recursion, in that from

the tag the post-recursive function can identify what instance of the

function it should output data to and create the appropriate tag. A

pre-recursive function unit for a recursive function that contains R re-

cursive sites, outputs data with tags (Rt, Rt + 1, · · · , Rt + R − 1) for

input data with a tag t; the corresponding post-recursive function unit

will output data with a tag t, for all input data with tags in the range

of [Rt, Rt + R− 1].

f (tag, r) = (tag× t) + r

where

tag : the inputted tag

r : the index of the recursive call site in the function

t : the number of recursive call sites in the function

(5.4)
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5.3.2 Unbalanced Recursive Trees

Function units controlling nodes in the recursive tree from different

branches may result in the function unit being allocated to nodes that

do not exist. For the remainder of this discussion the case of a single

unit being allocated per recursive level will be used as it is the easiest

to conceptualise.

The pipeline for the recursive function must be unrolled to the

height of the recursive tree; however, an unbalanced recursion tree

will result in branches having different depths. If the data were to

be passed through the pipeline for a branch of less height than the

entire tree the data will have the pre-recursive function operated on

it too many times. An example of this is shown in figure 5.7, where

node 3 requries a non-recursive function unit at the second stage of

the pipeline but there is a pre-recursive function unit configured in the

second stage of the pipeline. Therefore a mechanism is required that

allows the data to be passed through unnecessary levels of recursion

until it reaches the non-recursive function unit.

Skip Tag

The mechanism to pass data along results in another tag named skip

tag being added to data being transmitted, which is initially set to 0.

Each pre-recursive function unit checks if the terminating condition
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Figure 5.7: Example of a branch of depth 2 executing on a pipeline of
depth 4

has been met for any input arguments. If the terminating condition is

met this tag is set to 1 and the arguments are sent out. Any subsequent

pre-recursive function unit that receives a tag ≥ 1 increments the tag

and passes the data along. The non-recursive function unit operates

irrespective of the value of the tag, however the post-recursive func-

tion units only operate on data where the tag is set to 0, decrementing

and passing along the data for any tags ≥ 1. This results in the cor-

rect depth pipeline being simulated for each branch of recursion. An

example of this operation for a branch of depth two operating on a

pipeline of depth four is shown in figure 5.8, where the value of the

skip tag for the arguments for node 3 are shown. As can be seen the

value is set to 0 only at one pre-recursive and one post-recursive func-

tion unit, thus calculating the correct function.

This procedure is also used to simplify circumstances where re-

cursive functions do not result in proper recursive trees. This occurs
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Figure 5.8: Example of a branch of depth 2 executing on a pipeline of
depth 4

in functions which may call themselves anywhere between 0 and N

times instead of only 0 or N times. Null arguments are passed through

the pipeline in the event of a recursive call not being made with the

skip tag being set to 1. This allows the post-recursive function unit to

determine when it has received all the results from the recursive calls

as there will always be N results for it to gather.

5.4 Summary

This chapter presents the methods used to create the pipeline using

the function modules obtained in chapter 4, which included meth-

ods to reduce the performance penalty incurred while unrolling the

pipeline as well as methods to decrease the size of the pipeline with-

out reducing performance.

The important points made in this chapter are: the use of predic-

tion heuristics used to predict the need to unroll the function before
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the new stage is required, thereby reducing the latency introduced

while unrolling the function; the relationship between the number of

nodes in the recursive tree a function unit can control, the amount of

work it does and the amount of data; the possibility of reducing the

growth of hardware used by a recursive function from exponential

to linear and the use of a tagging system to facilitate context infor-

mation and the ability to realise unbalanced recursive trees on linear

pipelines.

Mapping Recursive Functions To Reconfigurable Hardware
PhD. Thesis - George Ferizis 2005



Chapter 6

Hardware Implementation

Once RTL descriptions for the different function units have been gen-

erated, areas on the FPGA device must be configured to compute their

operations with interconnections made between the function units

that require the ability to communicate with each other.

Placing a static pipeline on the FPGA to achieve optimal logic use

can be reduced to the 2-d bin packing problem, which has been shown

to be NP-complete [34], however techniques that perform well on

small problems [44], and approximations to optimal placement are

possible for larger problems [28, 40]. These techniques cannot be ap-

plied to the problem described in this thesis as the pipeline changes

over time.

A technique that places function units onto the FPGA device as

they are needed must attempt to place the function units such that
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routing to future function units that may be placed is possible with

a minimum number of wires used and a minimal wire length. Spe-

cific research into 2-d on runtime reconfigurable FPGA hardware [60],

has resulted in the use of heuristics that attempt to reduce the frag-

mentation introduced but this research has not dealt with tasks that

are dependent on communication. This problem is addressed in this

thesis by examining the placement problem from the point of view of

the network on the device in section 6.3. Techniques to simplify the

problem, such as partitioning of the area on the device into columns

and grouping function units together are discussed before this in sec-

tion 6.2

While unrolling a homogenous pipeline further stages may be ap-

pended to the pipeline with no requirement that already configured

stages must be changed [17]. This property is not true for heteroge-

nous pipelines such as the pipeline created while unrolling recursive

functions. The pipeline created by the unrolling process requires that

a non-recursive function unit must be at a position no less than the re-

cursive depth of the branch of recursion it is controlling. A function

that requires unrolling from a depth of d to a depth of d + 1, now re-

quires the pre-recursive operation to be done at the stage correspond-

ing to the node at depth d. This requires the non-recursive function

unit that was configured to control the stage for depth d to be recon-
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figured to perform the operations of a pre-recursive function unit. The

use of Runtime Reconfiguration(RTR) to address this problem is dis-

cussed in section 6.4.

As the function is unrolled the likelihood of the function requiring

more function units that can be placed on the device increases. Abort-

ing the recursive function as it is computing and reporting a lack of

logic space is not a desirable solution, so a solution that successfully

computes the results of recursive functions that require more func-

tion units that can be placed on the device by altering the number of

recursive nodes a function unit operates on while still maintaing the

throughput invariants, is presented in section 6.5.

6.1 Chapter Aims

• The description of placement and routing algorithms.

• The use of RTR for configuration and its impact on the perfor-

mance on the technique described in this thesis.

• Reuse of function units to compensate for the finite space avail-

able on an FPGA.
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6.2 Reducing Complexity

Given a constrained area on an FPGA device modules must be placed

on the FPGA such that logic fragmentation is minimised while at the

same time ensuring that placement always allows for routing between

the placed resource and current resources as well as resources that are

to be placed in the future. While it is critical to make efficient use of

resources, it is also crucial that the placement and routing algorithms

do not consume large amounts of time, thereby reducing their contri-

bution to reconfiguration latency.

To simplify the placement and routing problem to a one dimen-

sional problem it is decided that all function units are synthesized

in columns that span the entire height of the FPGA. This requires

the constrained area for the function to be the entire height of the

FPGA. The area is partitioned into vertical columns, each of which

is the width of the largest function unit, with buses for communica-

tion on the cell boundaries as shown in figure 6.1. This partitioning

into columns reduces the placement problem to a one dimensional

problem, as opposed to having rectangular shaped function units that

require a two dimensional problem. This reduces the solution space

while trying to place a function unit.

To facilitate equal sized columns all function units have equal area

constraints that requires all function unit modules have a width the
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Buses

Figure 6.1: Column partitioned area with buses

same as the widest module. This results in fragmentation as the area

in the modules corresponding to the smaller function units is not en-

tirely utilized as shown in figure 6.2, where the hatched areas in the

device are utilized areas and blank areas unused areas.

As the fragmentation is relative to the width of the column, the

only way to reduce the fragmentation is to alter the width of the col-

umn. In certain circumstances, it is possible to reduce fragmentation

by increasing the width of the column and grouping function units

into the same column. Analysis of this also gives insight into the po-

tential value that can be gained by partitioning the recursive function

into pre-recursive and post-recursive functions.

For the purposes of the remaining discussion on the effect of group-

ing function units on fragmentation the following variables will be

defined:
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Figure 6.2: Example placement with fragmentation

• pre for the width of the pre-recursive module

• post for the width of the post-recursive module

• non for the width of the non-recursive module

• max the largest of pre, post and non

• total for the total width of the area the function can unroll in

The recursive tree that is drawn is always proper, as null function

calls pass to a dummy function. Any proper k-ary tree with n internal

nodes has nk−n + 1 external nodes. Using this property it can be seen

that a k-ary recursive tree with n internal nodes will be required to

place n pre-recursive and post-recursive function units and nk− n + 1

non-recursive function units onto the FPGA. Allocating a column to

each of these function units will require nk + n + 1 column partitions

on the device.
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For the remainder of this discussion, n will correspond to the num-

ber of internal nodes in the maximal sized tree that can be drawn on

the device. As each of the n + nk + 1 columns will be of size max ,

total ≥ (n + nk + 1)max .

The first grouping that will be considered is the grouping of two

function units together, g1 and g2 with the remaining function unit u

remaining alone.

Grouping any two function units reduces the number of columns

required for a tree with n internal nodes to nk + 1, as each function

unit in the column can operate independently which enables each to

operate for different nodes in the tree. For better utilization to oc-

cur maxgrouped (nk + 1) ≤ total , where maxgrouped is the value of max af-

ter grouping and maxungrouped is the value of max prior to grouping.

There are three possibilities for the value of maxgrouped and maxungrouped

that must be examined to determine whether this change allows for a

greater number of function units to be place onto the device:

1. maxungrouped = u and maxungrouped = u, ie. when u ≥ (g1 + g2 )

2. maxungrouped = u and maxgrouped = g1 + g2 , ie. when u < (g1 + g2 )

3. maxungrouped = g1 or maxungrouped = g2

If condition 1 is met utilization is always improved as the equation

reduces to the inequality (nk + 1) < (nk + n + 1), which is always true.
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If condition 2 is met, better utilization occurs when the inequality

(nk + 1)(g1 + g2 ) < total is satisfied.

If condition 3 is met, better utilization occurs when the inequality

(nk + 1)(g1 + g2 ) < total is satisfied. This can be reduced to when g1

g2

'

k if g1 > g2 as shown in equation (6.1). As similar proof exists to show

that this can be reduced too g2

g1

' k if g2 > g1 .

nk(g1 + g2 ) < total

total = g1 (nk + n + 1)

nk(g1 + g2 ) < g1 (nk + n + 1)

nk(g2 ) < g1 (n + 1)

g1

g2

>
nk

n + 1

g1

g2

' k as n≫ 1

(6.1)

Grouping pre-recursive and post-recursive function units together,

as shown in figure 6.2 is an interesting case of grouping which merits

further discussion. Grouping these two function units together re-

duces the amount of routing required on the device as the route that

is present between the two blocks is removed. The complexity of rout-

ing and placement is also reduced as the pair of function units in the

group communicate with the same function units, thus reducing the
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number of different routes that are required to half. It should be noted

that this does not reduce the number of wires required for routing as

the previous routes are now required to be bi-directional. To main-

tain parallelism this bi-directionality is implemented by doubling the

wires in a connection.

Non

Post

Pre

Post

Pre

Post

Pre

Non
Pre
Post

Pre
Post

Pre
Post

Grouping the function units together also allows them to share the

same RAM module on the FPGA. This is possible in most modern

FPGA devices as the embedded RAMs are dual port. As a result of

both function units accessing the same memory module it is possible

that the post-recursive function unit may not require a RAM dedicated

to its operation, thereby reducing the total number of memory mod-

ules allocated to the pipeline. In designs where the limiting factor to

the size of the pipeline is the number of distributed RAMs this may

aid in realising a deeper pipeline.

For these reasons the pre-recursive and post-recursive modules are
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always grouped together. The analysis in equation 6.1, applies to this

situation to gauge whether this is detrimental to fragmentation. This

grouping reduces the number of columns required to be nk + 1.

For the analysis as to whether grouping all modules will reduce

fragmentation, one new variable will be introduced pre-post for the

combined size of pre and post . The analysis in equation (6.2) assumes

that pre-post > non, however a similar analysis holds true if that as-

sumption is false.

(nk− n + 1)(pre-post +non) < total

total = pre-post(nk + 1)

(nk− n + 1)(pre-post +non) < pre-post(nk + 1)

(nk− n + 1)(non) < pre-post(n)

pre-post

non
>

nk− n + 1

n
pre-post

non
' k− 1 as n≫ 1

(6.2)

6.3 Communcation Model

The placing of dependent modules onto the FPGA device requires the

routing of signals over some network between the modules to enable

communication.

The FPGA device already contains a configurable network that is
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used to communicate between logic resources on the device that in-

troduces little latency to computation. Implementing function units

that make use of these routing resources means that no logic is used

to implement a network-on-chip, thus allowing for a greater number

of function units to be placed onto the device.

However the network on the FPGA is complex, and as such rout-

ing on the device is an expensive process in terms of time. This further

increases the latency introduced when reconfiguring new stages.

Keeping this in mind it is decided that a network-on-chip is used

for routing between function units. A connection-orientated network

can allow for simple and rapid point-to-point routing and a connec-

tionless network self-routes data, thus eliminating the need to route at

runtime. A network-on-chip does however introduce some problems:

extra logic is required to implement the network which reduces the

maximum depth of the pipeline, and the latency that is introduced as

LUTs are used as switches.

From this there are four requirements for any network-on-chip that

is to be used:

1. Low delay between connections

2. Simple routing algorithms are available for the network

3. Little logic is used for implementation
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4. Logic used scales efficiently as the number of nodes on the net-

work increases

6.3.1 Network

The network used contains toroidal segmented multiple buses that

run across each column. This network is based on the Reconfigurable

Mesh Bus(RMB) network [29]. The RMB is a circuit switched multiple

segmented bus network that guarantees connectivity when it is avail-

able. The RMB is too general purpose for the problem being described

in this thesis, thus some of the functionality was removed to conserve

hardware on the device.

In the network implemnted each horizontal bus line is segmented

at each column, with the segments defaulting to being connected.

When a connection is created the bus segmented in the appropriate

directions. The buses are bi-directional to take advantage of the sim-

plified routing that can be obtained by the grouping together of the

pre-recursive and post-recursive function units. An optimal placing for

a tree with 5 nodes, and with the pre-recursive and post-recursive func-

tion units grouped is shown in figure 6.3.

The number of vertical buses is directly proportional to the re-

cursive width growth (g) of the algorithm, with every column cor-

responding to an internal node of the recursive tree requiring g I/O
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A

B C

D E

B A D C E

Figure 6.3: Segmented bus with 5 columns

buses to communicate with its children and one I/O bus to commu-

nicate with its parent.

Connections can only be made across segments on the same hor-

izontal bus. While this reduces the utilization of resources it greatly

simplifies the routing algorithm and therefore the time taken to route.

6.3.2 Placement Algorithm

The case of placing a pipeline with a recursive width growth of 1 is a

trivial one, as it simply requires drawing a linear pipeline. As such it

will not be discussed in any detail except to mention emperical mea-

surements later.

Drawing a balanced tree on a linear array is typically done by plac-

ing a child node on either side of a parent node an equal distance

between the parent node and its surrounding nodes as shown in fig-

ure 6.4.
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Figure 6.4: H-Tree layout of a balanced binary tree of height 3 in a
linear array

This algorithm places rigid constraints on the placement of the

tree, with it requiring a balanced tree while drawing. An area that

can hold n modules will only be able to have a tree of depth log2(n)

placed onto it. The worst case unbalanced tree with n nodes will have

a height of n−1
2

, and as such n−1
2
− log2(N) nodes will not be placed due

to the placement algorithm, even though area is available. To this end

the algorithm is modified to the algorithm shown in figure 6.5.

The algorithm PLACE in figure 6.5, places the two children nodes

for a node parent , based on information in the array Placed , which is

TRUE at every index corresponding to a column that has a tree node

placed into it, and the array Congestion which holds an integer at each

index of the array describing how many wires pass through the col-

umn corresponding to that index. It attempts to place each of the chil-

dren nodes in between the parent node and the nodes to the left and

right of it. If there are no free columns to place the nodes it places the

node in the largest free area available in the device.

The algorithm LARGESTAREA in figure 6.6 finds the columns at the

boundary of largest number of contiguous free columns in the area. It
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PLACE(parent ,Placed ,Congestion)

1 closestRight ← first used column to the left of parent

2 closestLeft ← first used column to the right of parent

3 if closestLeft = parent−1
then

4 leftPlace ← LARGESTAREA(parent ,Used ,Congestion)
5 else

6 leftPlace ←
closestLeft +parent

2

7 Placed [leftPlace] = TRUE

8 if closestRight = parent +1
then

9 rightPlace ← LARGESTAREA(parent ,Used ,Congestion)
10 else

11 rightPlace ←
closestRight +parent

2

12 Placed [rightPlace] = TRUE

Figure 6.5: Placement algorithm

then decides which boundary to place the new node at by finding the

congestion between the parent and both boundary columns, such that

there is no wire in the freed area, and returning the column that has

the least congestion to it. If the congestions are equal it returns the

closest column.

The algorithm MAXCONGESTION in figure 6.7 finds the maximum

value in the array Congestion betwen the indexes from and to, wrap-

ping around the boundary of the array.
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LARGESTAREA(parent ,Used ,Congestion)

1 largestContig ← the largest series of contiguous unused columns
2 contigSize ← the number of columns in this series
3 oppositeContig ← largestContig + contigSize−1
4 cleft ←MAXCONGESTION(Congestion, largestContig, parent)
5 cright ←MAXCONGESTION(Congestion, parent, largestContig)
6 if cleft < cright

then
7 place ← largestContig

8 elseif cright < cleft

then
9 place ← oppositeContig

10 else
11 place ← CLOSEST(Parent, largestCon f ig, oppositeContig)
12 return place

Figure 6.6: Algorithm to find the boundary of the largest free area that
produces the better placement

MAXCONGESTION(Congestion, from, to)

1 i ← from

2 congmax ← 0
3 length ← Congestion.length

4 while i 6= to

do
5 if Congestion[i] > congmax

then
6 congmax ← Congestion[i]
7 i← (i +1)% length

8 return congmax

Figure 6.7: Algorithm to find the maximum congestion between two
points
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6.3.3 Routing

Routing between two points in the segmented bus network has two

possibilities as the buses are toroidal. When selecting a route, a route

that will not require use of an unused wire is favoured, and if a new

wire must be used the direction that uses the shortest length of wire

is used. The algorithm for this is shown in figure 6.8.

ROUTE(Congestion,Point1 ,Point2 )

1 cong1 -to-2 ←MAXCONGESTION(Congestion,Point1 ,Point2 )
2 cong2 -to-1 ←MAXCONGESTION(Congestion,Point2 ,Point1 )
3 length ← Congestion.length

4 if cong1 -to-2 < cong2 -to-1

then
5 routestart ← Point1

6 routeend ← Point2

7 elseif cong2 -to-1 < cong1 -to-2

then
8 routestart ← Point2

9 routeend ← Point1

10 else
11 Set routestart and routeend for minimum number of hops
12 i ← routestart

13 while i 6= routeend

do
14 Congestion[i]← Congestion[i] + 1
15 i ← (i +1)% length

Figure 6.8: Algorithm for routing between two points

After selecting the positions for the children nodes for k-ary recur-

sive trees, where k ≤ 3, all combinations are enumerated to find the
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best result. As the number of results for a k-ary tree is 2k the value

grows exponentially with k. For larger values of k, the children are

partitioned into k
2

sets of size two, in any arbitrary order and each set

has the best permutation worked out for it in turn.

Placement and routing is controlled by the arbitrator controlling

reconfiguration as it is the logic that determines the need for a new

stage of recursion. It controls the states of all segments in the bus by

feeding data into each column in the bus describing the state of the

segments in it.

Experiments show that this algorithm requires at most n−1
2

to place

and route any k-ary tree with n nodes.

6.4 Runtime Reconfiguration

The modules are placed onto the device using RTR. RTR allows for

partial configuration of logic on the FPGA without interrupting oth-

erlogic that is operating. For this section Xilinx’s Virtex architectures

will be referred too during discussion as they are the only commercial

runtime reconfigurable FPGA devices currently available.

The selection of column orientated module suits the configuration

architecture of the Virtex devices, which implements column based

frames. Changing one bit on the FPGA requires reloading the entire
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frame that bit belongs to. As frames span an entire column, editing

one bit in a column requires the entire column to be reconfigured.

Thus arranging the modules in a way such that as many bits in the col-

umn are reconfigured at the same time reduces the number of frames

being configured and hence the time required to configure the entire

module.

The modular RTR design flows recommended and supported by

Xilinx [26], places the following constraints on the developer:

1. All modules span the entire height of the FPGA

2. Horizontal placement of the modules must be on a four slice

boundary

3. All modules have a width that is a multiple of four slices

4. All communication out of modules is done using a special bus

macro.

Using the modular design flow presents an interesting problem:

routing cannot be placed into the same column as a module as con-

figuring a new module will destroy any routing configuration. Using

a technique such as readback of the current configuration to obtain

the state of the network in the area for that module before editing the

bitstream is a possiblity, however this increases the time required to
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do runtime reconfiguration and either requires the ability to manipu-

late the bitstream which requires an external host, or the bitstream to

be recreated which takes far too long. To solve the problem the rout-

ing is placed in static modules spanning columns between modules as

shown in figure 6.9. Bus macros are used to connect each module with

its neighbour. This method results in logic being underutilized as typ-

ically the control logic for the network does not require a module the

width of four slices.

Routing

Function Units

Figure 6.9: Configurable modules and routing modules placement

Generating bitstreams for each location a module can occupy may

result in many bitstreams being created. Doing this can require a large

amount of memory and as such may not be a satisfactory solution. A

solution such as the solution presented in the XPART package [13],

that when given a bitstream and a bounding rectangle can generate

the bitstream required to configure the logic in that bounding rectan-
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gle in a shape of equal size in another location on the FPGA would

be more suitable. This solution would allow a module to be replaced

into a different area on the FPGA. XPART however relies on the pres-

ence of Power PC cores which are not available on all FPGA devices,

and most importantly the XPART software itself is not readily avail-

able. This makes testing of such techniques difficult on real devices.

To overcome the lack of availablity of these tools, and the lack of hard-

ware to support them at any instance, a simulator was developed for

testing of the RTR techniques presented in this document. This simu-

lator is described in section A.

6.5 Limitations On Logic Size

The amount of logic resources on an FPGA device places a limit on

the number of function units that can be placed on the device. This

limit restricts the size of the pipeline that is created and therefore the

amount of unrolling that can be done.

Limiting the number of times a function can be unrolled reduces

the performance benefit that can be gained from using the unrolling

method described in this thesis. While the finite logic resources re-

stricts the depth of the recursive function that can be realised by phys-

ically placing function units on the device, methods can be used that
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will facilitate recursive depths greater than that which would fit on

the device.

Past techniques into circuits that are larger than the FPGA rely on

hardware virtualization techniques [32, 31, 57, 4], that “page” com-

putational contexts out of the FPGA and place other contexts into the

FPGA in a similar way to a virtual memory system. This technique

cannot be applied to the problem of unrolling recursion as it is ineffi-

cient to save context and then reconfigure the device and reduces the

parallelism available in the system.

Bondalapati et al address this problem when mapping iterative

loops onto reconfigurable devices [17, 14] in two different ways. The

first way they adopt reuses creates a cycle at each stage of the pipeline,

with each stage feeding back onto itself multiple times before passing

data to the next stage. While this reduces the parallelism in the oper-

ation it is the technique that is extended and will be described in this

section.

Functions that map into a pipelined linear array exhibit the prop-

erty that each stage does no more work than the last stage. This allows

for each stage of the pipeline to work on multiple stages of recursion

without requiring buffering to compensate for unconstant through-

put.

Consider the recursive tree in figure 6.10, which shows that every
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level is controlled by a single function unit and the time taken at each

stage of the pipeline is less than the last. The accompanying pipeline

illustrates the pipeline for this tree.

t1 t2 t3

t1

t2

t3

t1 ≥ t2 ≥ t3

Figure 6.10: Recursive tree and its corresponding linear pipeline

If the tree increased to a depth of five and this could not be placed

due to a lack of available logic on the device, each stage of the pipeline

will now control two consecutive levels of the tree, as shown in fig-

ure 6.11 with the invariant that every stage in the pipeline take less or

the same amount of time to do a unit of work being maintained.

t1, t2 t3, t4 t5

t1

t2

t3

t4

t5

t1 ≥ t2 ≥ t3

≥ t4 ≥ t5

t1 + t2 ≥

t3 + t4 ≥

t5

Figure 6.11: Recursive tree and its corresponding linear pipeline im-
plementing reuse
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The same process cannot be applied to functions with recursive

growth rates (g) that are greater than one which result in tree shaped

pipelines as grouping subsequent levels of recursion with their parent

level either causes throughput to become unconstant, or results in an

increase in the degree of the tree corresponding to the pipeline which

increases the complexity of routing.

Instead all sibiling nodes in the tree are grouped together as shown

in figure 6.12. This maintains a tree of degree the same as that of the

original tree, thereby only ever requiring routing to be removed not

added. This does not however maintain constant throughput, as the

work done in the first level is less than the total work done in the

second level due to the recursive growth rate. To maintain constant

throughput the first two levels are grouped together. The proof that

the result of grouping these two levels and the grouping on the sub-

sequent level maintains contant throughput is in equation (6.3). For

the equation two variables are introduced g, for the recursive growth

rate, and d which is the ratio of work done between a recursive node

and all of its children. As shown in equation 5.3 in section 5.3, g = ⌈d⌉,

so therefore g ≤ d.
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Figure 6.12: Tree shaped pipeline reusing nodes in the tree

t1 + gt1 ≥
g2t1

d

g2
− dg− d ≤ 0

| g | ≤
d +

√

d2
+ 4d

2

This is true as g ≤ d and d ≥ 0

(6.3)

Throughput between subsequent stages in the pipeline is constant,

as the work done by two nodes from stage i, 2Wi is greater than the

work done by two nodes from stage i + 1, 2Wi+1, as Wi ≥Wi+1.

6.6 Memory

Many streamed applications do not require memory for operation.

These are applications that access an input stream sequentially. How-

ever some applications exist that require memory to buffer data.

Applications that require the buffering of data do not access data
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in the input stream sequentially, or receive multiple streamed inputs

that arrive sequentially and are dependent on each other. These cir-

cumstances require the data to be buffered in memory while waiting

for the necessary area of the stream to be inputted.

Memory is also required to store context information when a func-

tion unit is controlling multiple nodes in the recursive tree. In cir-

cumstances where input arguments for the multiple nodes it controls

do not arrive in a contiguous stream, a context must be saved which

allows the function unit to remember its state when it receives an ar-

gument for a particular instance of a function. As the number of con-

texts stored by a function unit grows exponentially as the recursive

depth of the node increases memory is required to store the context

information.

As with the von Neumann bottleneck [9], the bandwidth between

the numerous function units on the FPGA and memory becomes crit-

ical to the performance of the method described in this thesis. To pro-

vide this bandwidth the large number of distributed memory mod-

ules that are available on current commercial FPGA devices is utilized.

This chapter begins by presenting information on the memory that

is currently available on current commercial FPGA devices in sec-

tion 6.6.1. Memory allocation schemes that are then presented in sec-

tion 6.6.2.
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6.6.1 FPGA Memory

Modern FPGA devices contain embeded memory blocks on the chip.

These blocks can be accessed by the circuits that implemented on the

FPGA device. The memory blocks are typically arranged around the

edge or in the centre of the FPGA as shown in figure 6.13. The memory

contained in the blocks is usually dual port SRAM memories.

RAM

Logic

Figure 6.13: Memory layout on Xilinx FPGAs

The amount of memory and the number of modules that this is

split into varies between manufaturer and amongst devices depend-

ing on device size and cost. A brief survey containing the number

and size of distributed memory blocks in current Altera and Xilinx

FPGAs is shown in table 6.1. It is worth noting that Altera devices

contain a great number of small memory blocks, and a small number

of large memory blocks while Xilinx devices contain memory blocks
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of only one size. The greater number of logic blocks in Altera devices

gives the user a large amount of bandwidth to the smaller memory

blocks, however due to the bulk of the memory being contained in

larger memory blocks the amount of bandwidth available for larger

data sets is reduced.

Device
512bit
Blocks

4Kb
Blocks

18Kb
Blocks

512Kb
Blocks

Total
Kbs

EP2S15 104 78 0 0 384
EP2S30 202 144 0 1 1,189
EP2S60 329 255 0 2 2,208
EP2S90 488 408 0 4 3,924

EP2S130 699 609 0 6 5,857
EP2S180 930 768 0 9 8,145

XC4VFX12 0 0 36 0 648
XC4VFX20 0 0 68 0 1,224
XC4VFX40 0 0 144 0 2,592
XC4VFX60 0 0 232 0 4,176

XC4VFX100 0 0 376 0 6,768
XC4VFX140 0 0 552 0 9,936

Table 6.1: Size and amount of distributed memory available on Altera
Stratix-II [19], and Xilinx Virtex-4 Devices [22]

It is desirable to use the on-chip memory resources over off-chip

memory resources as there is a greater number of distributed mem-

ory blocks on-chip than there are memory ports to RAM off-chip. As

many function units may require parallel memory access to not re-

duce the parallel operation of the function units it is desirable to in-

crease the number of memory ports available for each function unit to

access. It is also worth nothing that the disparate addresses accessed
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by the function units does not require any two function units to be

accessing the same memory.

A single ported, or even a dual-ported, off-chip memory mod-

ule would require a MMU with time multiplexing to facilitate par-

allel access by distinct function units to the memory. This reduces the

amount parallel operation between the function units as the become

dependent on each others memory access as a consequence of the time

multiplexing forcing them to stall while accessing the memory. Hav-

ing a large number of distributed RAM modules meets the first criteria

necessary of providing many memory ports, whilst taking advantage

of the disparate memory access patterns which not requiring that dif-

ferent function units access the same RAM module does not requre

the memory modules to be of large size.

6.6.2 Allocation

Allocation of the large amount of memory bandwidth available on an

FPGA device using algorithms that observe the behaviour of recursive

functions and differing circumstances in which memory is required is

crucial to using memory efficiently on the FPGA.

This section presents the allocation method used to allocate mem-

ory blocks for context information in section 6.6.2, before presenting

the method used to allocate memory blocks while buffering in sec-
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tion 6.6.2.

Allocation for context information

The amount of memory used to store context information per function

unit is related to the number of contexts that function unit computes.

If the recursion were balanced a function unit operating on a deeper

level of recursion will control more contexts than a previous level of

recursion, and the number of contexts is predictable. The number of

contexts that can be obtained from assuming balanced recursion is the

maximum possible contexts that can be controlled by a node at that

level.

Allocation of memory based on the maximum number of contexts

that may be controlled by a function unit can result in memory being

allocated ineffeciently when the recursion is unbalanced. The value

is not useless however as for function units that at most control a

small number of contexts it is possible to use LUTs to control their

logic. All other function units are allocated a memory module, with

pre-recursive and post-recursive pairs sharing the same module if it is

a dual port memory. The remaining modules are placed into a “mem-

ory pool”. When requiring more storage capacity than available in a

single module a function unit request a module from the pool to store

subsequent data.
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An arbitrator in between the function units and the memory pool

manages all incoming requests. Upon receiving a request the arbitra-

tor finds any free modules in the pool. The first free module found

is allocated to that function unit and marked as allocated. If no free

modules exist, off-chip memory must be used.

For function units that will at maximum control a small number of

contexts no memory module is allocated to them and they use LUTs

to store data. This reduces the number of memory modules that are

allocated.

Memory

M
M

U

Figure 6.14: Memory architecture of device

Allocation for buffering

When buffering unbounded arrays the maximum amount of memory

required is unknown. Applying the allocation method used for the

context memory allows the first function unit in the array to be allo-

cated all the memory modules in the pool in situations where it must

buffer an input array that will not fit in the memory available on the
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device. This inhibits subsequent levels of recursion from accessing

memory.

The allocation scheme chosen for this buffering problem attempts

to allocate memory modules to function units more fairly by analysing

the behaviour of the function. If the change in the amount of data be-

tween recursive functions can be easily determined it is possible to

determine the number of modules allocated to a function unit relative

to another function unit to ensure fairness. In circumstances where

this cannot easily be determined an equal number of modules is allo-

cated per level.

The modules allocated to each function unit act as a cache, with

larger off-chip memory used by all function units as the major storage

element. This greatly reduces the parallelism between function units

as they contend for memory access and is why the proposed method

for parallel recursion exhibits a reduction in performance when array

accesses are not sequential. It is worth noting that a function with

irregular array indexing is examined as a case study in section 7.5,

with a proposal for reordering the input stream to reduce the need for

buffering.
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6.7 Summary

This chapter presented the methods that are required to place the

modules required to compute the result of a recursive function onto

an FPGA device and the method used to route between the modules.

It then presents how memory bandwidth is allocated to the function

units on the FPGA.

The important points made in this chapter are: the partitioning of

the device into columns to simplify placement; the grouping of mod-

ules to reduce fragmentation and routing overhead; the use of a low-

logic on-chip network to route between modules without impacting

on latency; the use of RTR to place new modules onto the device and

to alter modules previously placed onto the device; and the pipeline

stage reuse techniques used to overcome the lack of logic available on

the FPGA device.

It is worth noting that the network used falls well short of the

optimal number of wires required, which is O(log(N)). Techniques

such as compaction of connections, which allows a connection to be

shifted vertically “upwards” through buses after being made, which

is a core feature of the RMB model, could be used to approach this

value. However without a larger amount of hardware dedicated to

routing it would be difficult to approach this value.
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Chapter 7

Case Studies

7.1 Introduction

This chapter presents several case studies which demonstrate the ap-

plication of the techniques that have been described in this document.

The case studies include merge sort, quick sort, strassen’s matrix

multiplication algorithm, quad tree partitioning for force approxima-

tion and tree search. For all function descriptions the symbol ⊕ corre-

sponds to the concatenation operation. When this statement appears

in the form a⊕ b, all the values in the array b are concatenated to the

end of the array a. If b is a scalar its value is concatenated to the end

of a.

All measurements for the case studies were either done using a

Celoxica RC200 board [2] which contains a Xilinx XC2V1000 Virtex-II
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device, or a device simulator. The device simulator was used as in

some circumstances the device being tested on did not support run-

time reconfiguration. The measurements that were made ran on the

highest clock speed that the stack implementation would run at even

if the unrolled function could be clocked at a higher rate. For mea-

surements made on the device simulator results are given in terms of

clock cycles.

As a comparison the results obtained were compared with a stack

based implementation on the same device. A stack based implemen-

tation was chosen as it allows the results to be compared with how

recursion has been previously implemented. Implementing the stack

on the same device allows for a more fair comparison between re-

sults, with the same benefits and limitations being imposed on both

measurements.

Comparing the unrolling method described in this thesis with a

stack based implementation also highlights the differences between

the methodologies presented in this thesis and the traditional meth-

ods of thinking associated with implementing recursion.

Mapping Recursive Functions To Reconfigurable Hardware
PhD. Thesis - George Ferizis 2005



7. Case Studies Merge Sort • 115

7.2 Merge Sort

7.2.1 Algorithm

Merge sort is a simple recursive algorithm that has a predictable depth

given the length of the sequence to be sorted. For the implementation

discussion that follows it is assumed that the length of the entire se-

quence is not known. The function implemented corresponds to the

code in figure 7.1, which has been adapted from the merge sort algo-

rithm by Orenstein et al [53]. This algorithm is based on a bottom-

up description of merge sort. The top-down approach of merge sort

only partitions the input array into smaller arrays. The bottom-up

approach described here can be thought of as partitioning the array

“in-place”, as well as doing the merge operation “in-place”.

This case study has been chosen as it is simple to understand, and

serves as an introductory point for the case studies.

The flowgraph for the algorithm is shown in figure 7.2. Function

analysis on this flowgraph obtains the following basic blocks for the

sub-functions:

• non-recursive: {1, 4}

• pre-recursive : {1, 2, 3, 5}

• post-recursive : {3}

Mapping Recursive Functions To Reconfigurable Hardware
PhD. Thesis - George Ferizis 2005



7. Case Studies Merge Sort • 116

MERGE-SORT(A, window)

1 if window < A.length
2 then index ← 0
3 while index 6= A.length

4 do index ← index +2×window
5 MERGE(A, index, window)
6
7 return MERGE-SORT(A, 2×window)
8 else
9 return A

MERGE(A, index, window)

1 A[index ]←MERGE-LISTS(A[index], A[index + window], window)

Figure 7.1: Merge Sort Algorithm

exit

3

2

1

entry

4

5

Figure 7.2: Flowgraph for the merge sort algorithm in figure 7.1

After removing recursive blocks the function post-recursive con-

tains no blocks, therefore there is no need to place any modules to

operate for this.
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7.2.2 Recursive Growth Width

As only a single function call is made the recursive growth width is

1. This means that only one processor is allocated per level of the

recursive tree to maintain throughput. This results in a linear pipeline

being placed onto the hardware.

7.2.3 Grouping

Grouping the non-recursive and pre-recursive function units reduces

the fragmentation in the system as the size of the non-recursive func-

tion unit is negligible when compared to the size of the pre-recursive

function unit. Following this RTR was not required.

7.2.4 Context

As every function unit operates on a single instance of the recursive

function no context is required.

7.2.5 Buffering

Every stage of the function is required to buffer up to 2 × window

values before operating the MERGE operation as the merge operation

does not have sequential accesses on the arrays being merged. There-

fore a function unit corresponding to the recursive depth of i will re-
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quire enough space to buffer 2i data items. Following this the entire

system will require enough storage for N− 1 items.

7.2.6 Prediction

The number of function units that are required to compute this func-

tion can be calculated with the logarithmic function shown in equa-

tion (7.1), where s is the current size of the inputted sequence.

predmerge(s) =

⌈

log2

( s

2

)⌉

(7.1)

The time for these elements to be required by the newly configured

module, and hence the largest possible time that can be devoted to

reconfiguration before the need to stall the system or buffer data is

proportional to the configured depth of the recursive tree. Thus with

a pipeline of sufficient depth initially configured the reconfiguration

can be completed by the time required to place data at the new module

and thus the cost of reconfiguration can be completely hidden.

7.2.7 Results

The results of implementing this function on the RC200 board are

shown in table 7.1 and the graph in figure 7.3. The comparison was

made between this implementation and a stack based implementation
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Figure 7.3: Merge Sort Results

of merge sort.

As expected the stack based implementation runs in O(N log N)

time, while the unrolled function runs in linear time.

Data Size
Stack

Performance
(Cycles)

Unrolled
Performance

(Cycles)
32 970 500

128 5136 2116
256 11539 4314
512 25622 8117

2048 122908 33310
4096 266271 67207

Table 7.1: Merge Sort Results
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7.3 Quick Sort

7.3.1 Algorithm

Quick Sort is a recursive algorithm that sorts a set. Given an unsorted

set S, the algorithm determines a pivot p ∈ S, and divides the S into

two smaller sets:

• Sle f t = {v | v ∈ S∧ v < p}

• Sright = {v | v ∈ S∧ v > p}

These two sets are then recursively sorted using the quick sort al-

gorithm, until a set with a size less than or equal to 1 is reached. p

is then concatenated onto Sle f t before Sright is concatenated to the re-

sulting set. This produces a sorted set. This algorithm is shown in

figure 7.4.

It is worth noting that the pivot that is selected in our algorithm is

always the first element in the list. To balance the recursion the pivot

is normally chosen such that it splits the set in half, however finding

the median value or even approximating it with the average value

before splitting the input set requires the input set to be read multiple

times. Doing this will require the entire set to be buffered in memory

which is undesired.
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QUICKSORT(S)

1 if S .length ≤ 1
2 then return S
3 else
4 p ← S[0]
5 i ← 1
6 while i ≤ S .length

7 do if S [i ] < p

8 then Sleft⊕p

9 else
10 Sright ⊕p

11 i ← i +1
12 Sleft ← QUICKSORT(Sle f t)
13 Sright ← QUICKSORT(Sright)
14 return (Sle f t⊕ p)⊕ Sright

Figure 7.4: Quick Sort Algorithm

The flowgraph for the algorithm is shown in figure 7.5. Function

analysis on this flowgraph obtains the following basic blocks for the

sub-functions:

• non-recursive: {1, 2}

• pre-recursive : {1, 3, 4, 5, 6, 7, 8, 9}

• post-recursive : {8, 9, 10}

The reason for presenting this algorithm as a case study is that it

contains pre-recursive function units, unlike the merge sort algorithm.

It also features a prediction heuristic that is not optimal.
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Figure 7.5: Flowgraph for the quick sort algorithm in figure 7.4

7.3.2 Recursive Growth Width

As the amount of data between levels remains constant, and the com-

plexity of the function is O(N), the recursive growth width is 1. This

means that only one processor is allocated per level of the recursive

tree to maintain throughput.

7.3.3 Grouping

Grouping all the function units reduces the fragmentation in the sys-

tem as the size of the non-recursive function unit is negligible when

compared to the size of the pre-recursive and post-recursive function
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units. Following this RTR was not required.

7.3.4 Context

Each pre-recursive function unit must store the pivot for each instance

of the recursive function it is operating on. This will at most store

N
2

data items as a recursion tree that is balanced for the quick sort

operation will have a width of N
2

at its widest level as the height of the

tree is log2(N).

Each post-recursive function unit must store the pivot value also.

As the post-recursive function unit shares the same context memory as

the pre-recursive function unit as detailed in section 6.2.

7.3.5 Buffering

No buffering is required. This is due to the values in Sle f t always ar-

riving before the values in Sright.

7.3.6 Prediction

The prediction heuristic for quick sort is a non-optimal prediction

heuristic. Each level of the recursion predicts the minimum depth

of recursion required to sort the data is has inputted into it. The recur-

sive tree of minimum height required to sort N elements using quick
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sort can be found using equation (7.2).

predquick (N ) = ⌈log2 (N)⌉+ 1 (7.2)

As the maximum height of the recursion tree can be N, this value

can be incorrect by a large amount at higher levels of recursion when

the recursion is very unbalanced. It is worth noting that for random

data the height of the recursion tree is on average O(log2(N)) [38, 39].

7.3.7 Results

The results of implementing this function on the RC200 board are

shown in table 7.2 and the graph in figure 7.6. The comparison was

made between this implementation and a stack based implementation

of quick sort.

As expected the stack based implementation runs in O(N log N)

time, while the unrolled function runs in linear time.

Data Size
Stack

Performance
(Cycles)

Unrolled
Performance

(Cycles)
512 47041 8117

1024 101778 16540
2048 214473 30624
4096 558672 59810
8192 1249370 118686

Table 7.2: Quick Sort Results
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Figure 7.6: Quick Sort Results
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7.4 Quad Tree Partitioning

7.4.1 Algorithm

The Quad Tree partioning algorithm is a recursive algorithm that re-

cursively divides a 2-dimensional plane into quadrants until only a

fixed number of points exist in each sub-division. This algorithm is

not of much interest unless something is done with the data that is

partitioned. The algorithm in this section is based on the Barnes and

Hut force approximxation algorithm [10] that divides a plane into re-

cursively quadrants to approximate the force exerted by the sections

of the plane on points in the plane. A quadtree is used to store the

approximation data, with exact data (quadrants with single points)

being stored in the leaves. The data at each node of the tree corre-

sponds to the (x, y), of a point and other data necessary to the force

calculation(for example mass when calculating gravitational force) at

that point. Each internal node describes a point in the plane that ap-

proximates the data for all other points in that quadrant, and as such

the data stored at an internal node is an approximation based on the

data stored in its children nodes. For gravitational force calculations

this is the centre of mass of the quadrant. The algorithm for this is

shown in figure 7.7.

The flowgraph for the algorithm is shown in figure 7.8. Function
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QT(le f t, right, top, bottom, Points)

1 if Points .length ≤ 1
2 then Tree.mass ← Points[0 ].mass

3 Tree.x ← Points[0 ].x
4 Tree.y ← Points[0 ].y
5 return Tree

6 else

7 middle ←
le f t+right

2

8 centre ←
top+bottom

2

9 i ← 0
10 while i ≤ Points .length

11 do if Points[i ].x < middle

12 then if Points[i ].y < centre

13 then Pointssw ⊕Points[i ]
14 else
15 Pointsnw ⊕Points[i ]
16 else
17 then Pointsse⊕Points[i ]
18 else
19 Pointsne⊕Points[i ]
20 i ← i +1
21 Treesw ← QT(le f t, middle, centre, bottom, Pointssw)
22 Treese ← QT(middle, right, centre, bottom, Pointsse)
23 Treenw ← QT(le f t, middle, top, centre, Pointsnw)
24 Treene ← QT(le f t, right, top, centre, Pointsne)
25 Tree.mass ← ∑Treexx .mass

26 Tree.x ← ∑Treexx .mass .Treexx .x

Tree .mass

27 Tree.y ← ∑Treexx .mass .Treexx .y

Tree .mass

28 Tree.sw ← Treesw

29 Tree.se ← Treese

30 Tree.nw ← Treenw

31 Tree.ne ← Treene

32 return Tree

Figure 7.7: Force Approximation Algorithm
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analysis on this flowgraph obtains the following basic blocks for the

sub-functions:

• non-recursive: {1, 2}

• pre-recursive : {1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,14,15,16, 17, 18}

• post-recursive : {4, 5, 6, 7, 8}

entry

1

2

3

8

7

6

5

4 9

10 11

12 13 14 15

16 17

18

exit

Figure 7.8: Flowgraph for the quick sort algorithm in figure 7.4
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The reason for presenting this algorithm as a case study is that

it contains post-recursive function units that actually execute instruc-

tions on the data, unlike the quick sort algorithm. With the exception

of this processing the algorithms are very similar as shown in the flow

graph.

7.4.2 Recursive Growth Width

As the amount of data between levels remains constant, and the com-

plexity of the function is O(N), the recursive growth width is 1. This

means that only one processor is allocated per level of the recursive

tree to maintain throughput.

7.4.3 Grouping

Grouping all the function units reduces the fragmentation in the sys-

tem as the size of the non-recursive function unit is negligible when

compared to the size of the pre-recursive and post-recursive function

units. Following this RTR was not required.

7.4.4 Context

Each pre-recursive function unit must store the middle, centre, le f t,

right, top and bottom values for each recursive function it is comput-
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ing. This will at most store N
2

data items as a recursion tree that is bal-

anced for the quad tree operation will have a width of N
2

at its widest

level as the height of the tree is log2(N).

The post-recursive does not require any context information.

7.4.5 Buffering

No buffering is required, as the array accesses in the algorithm are

completely sequential, and the array data that is returned is not oper-

ated on.

7.4.6 Prediction

A similar prediction heuristic to the one used for the quick sort algo-

rithm is applied to this algorithm. Each level of the recursion predicts

the minimum depth of recursion required to sort the data is has in-

putted into it. The recursive tree of minimum height required to sort

N elements using quick sort can be found using equation (7.3).

predquick (N ) = ⌈log4 (N)⌉ (7.3)

As the maximum height of the recursion tree can be N, this value

can be incorrect by a large amount at higher levels of recursion when

the recursion is very unbalanced. It is worth noting that for random
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data the height of the recursion tree is on average O(log2(N)).

7.4.7 Results

The results of implementing this function on the RC200 board are

shown in table ?? and the graph in figure 7.9. The comparison was

made between this implementation and a stack based implementa-

tion of quad tree partioning.

As expected the stack based implementation runs in O(N log N)

time, while the unrolled function runs in linear time.

Data Size
Stack

Performance
(Cycles)

Unrolled
Performance

(Cycles)
4 498 8639

16 2726 10534
64 12278 15235

256 53366 28794
1024 229238 70618
4096 972686 209960

Table 7.3: Quad Tree Results
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Figure 7.9: Quad Tree Results
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7.5 Strassen’s Matrix Multiplication

7.5.1 Algorithm

Strassen’s matrix multiplication algorithm is a simple recursive algo-

rithm with a predictable depth when given the size of the matrices to

be multiplied. The algorithm corresponds to the code in figure 7.10,

which has been adopted from [58].

The algorithm is a divide and conquer matrix multiplication algo-

rithm that reduces the complexity of matrix multiplcation from O(N3

to O(Nlog27). The division phase of the operation splits each of the

two N×N matrices that are being multiplied into seven N
2
×

N
2

matri-

ces, by taking the four quadrants of each matrix and adding them in

various permutations. The resulting N
2
×

N
2

are then multiplied using

the same algorithm with each other to result in seven N
2
×

N
2

matrices,

P1, P2, · · · , P7. These are then have a merge operation done on them

which again is a permutation of addition of these matrices. They are

then placed into quadrants of a N×N matrix and returned.

The reasons for choosing this algorithm are that it is the only case

study that demonstrates the use of multiple function units per level of

the recursive call. The results presented in this case study show that

if the number of function units allocated per level does not match the

recursive growth width a performance penalty is incurred, and that
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STRASSEN-MULTIPLY(A, B, n)

1 if n = lower

then
2 return MULTIPLY-MATRICES(A, B, n)
3 else
4 A1, A2, · · · , A7← SPLITA(A, n)
5 B1, B2, · · · , B7← SPLITB(B, n)
6 while i ≤ 7

do
7 Pi ← STRASSEN-MULTIPLY(Ai, Bi,

n
2
)

8 i ← i +1
9 R1 ,R2 ,R3 ,R4 ←MERGE-MATRICES(P1, · · · , P7)

10 return

(

R1 R2

R3 R4

)

SPLITX (M, n)

1

(

M1 M2

M3 M4

)

← M

2 i ← 1
3 while i ≤ 7

do
4 Pi ← aiM1 + biM2 + ciM3 + diM4

5 i ← i +1
6 return P1, P2, · · · , P7

MERGE-MATRICES(P1, P2, · · · , P7)

1 i ← 1
2 while i ≤ 7

do
3 Ri ← aiP1 + biP2 + · · ·+ giP7

4 i ← i +1
5 return R1, R2, R3, R4

Figure 7.10: Strassen’s Matrix Multiplication Algorithm
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allocating more function units than the recursive growth width does

not result in any significant performance increase.

7.5.2 Recursive Growth

The total amount of data that is processed per level does increase. The

first level operates on 2N×N matrices, which means it processes 2N2

elements of data. The next level operates on 14 N
2
×

N
2

matrices, or 7
2
N2

elements of data. It can be shown that the amount of data increases

per level at a rate of 7
4

per level. Therefore the recursive growth ratio

is 2.

7.5.3 Grouping

As the non-recursive function units contain multipliers they require a

large amount of area. Thus only the pre-recursive and post-recursive

function units are grouped together.

7.5.4 Context

The context that is required to be stored are the input matrices for

all the instances of the recursive function that a function unit is con-

trolling. A function unit at depth i will at most store contexts for 4i

instances of the recursive function.
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As the depth of a node increases, the number of contexts it stores

increases, but the size of the data in each context decreseas. This is

due to the matrix size reducing from N2 to N2

4
. A function unit at a

depth i multiplies matrices of size N2

4i . Following this the most data

that each function unit will store is N.

7.5.5 Buffering

The amount of data that is to be buffered is O( N2

2
) for each N × N

matrix multiplication. The first level of recursion will require enough

memory storage for N2

2
data items, the next will require 7 N2

8
as it mul-

tiplies 7 N
2
×

N
2

matrices. The ith level of recursion will require enough

memory storage for 7i N2

2×4i . For a depth of d this results in the amount

of storage in equation (7.4).

storage =

d

∑
k=0

7kN2

2× 4k

=

N2

2

d

∑
k=0

(

7

4

)k

≅
N2

2

(

7

4

)d+1

(7.4)
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7.5.6 Prediction

In a similar manner to the merge-sort algorithm this algorithm con-

tinues to split the size of the data given to the next instances of the

algorithm in half, relative to the dimensions of the matrices. Given a

truncation condition where the dimensions of the matrix is lower, we

find that equation (7.5) matches the depth of recursion.

predstrassen(s) =

⌈

log2

(

N

lower

)⌉

(7.5)

7.5.7 Results

The results in table 7.4, demonstrate the performance of the unrolled

pipeline when compared to a stack implementation of Strassen’s algo-

rithm. Results from the stack implementation when the data was of

size 256 was not possible as there was not enough memory available

on the board.

Data Size
Stack

Performance
(Cycles)

Unrolled
Performance

(Cycles)
4 185 177

16 1437 1447
64 10134 8235

256 N/A 62163

Table 7.4: Strassen Matrix Multiplication Results

The effects of changing the recursive growth width on the perfor-
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Figure 7.11: Strassen’s Algorithm Results

mance of the algorithm can be shown in figure 7.5. While the perfor-

mance when the growth rate is set to 2 and 3 features similar ratios

to each other, the performance gap when the value grows at a higher

rate.

Data Size
Growth = 1

Performance
(Cycles)

Growth = 2
Performance

(Cycles)

Growth = 3
Performance

(Cycles)
4 159 177 171

16 1256 1447 1290
64 8812 8235 7809

256 72857 62163 59235

Table 7.5: Comparison of growth width

Mapping Recursive Functions To Reconfigurable Hardware
PhD. Thesis - George Ferizis 2005



7. Case Studies Strassen’s Matrix Multiplication • 139

0

10000

20000

30000

40000

50000

60000

70000

80000

0 50 100 150 200 250 300

C
y

cl
es

Growth Width

Comparison of Growth Width

GW=1
GW=2
GW=3

Figure 7.12: Comparison of Growth Widths

Mapping Recursive Functions To Reconfigurable Hardware
PhD. Thesis - George Ferizis 2005



7. Case Studies Parallel Tree Search • 140

7.6 Parallel Tree Search

This section presents a case study which shows how the methods in

this thesis may be applied to the mapping and maintenance of re-

cursive data structures to reconfigurable systems. The recursive data

structure that is being mapped in this case is a binary tree, with each

node of the tree containing a positive integer as a key.

7.6.1 Algorithm

There are two algorithms that are mapped in this section. The first

is the insertion algorithm shown in figure 7.13, and the second is the

search algorithm shown in figure 7.14.

INSERTVALUE(Node, k)

1 if k < Node.key
2 then if Node.le f t = NULL

3 then create new node at Node.le f t with key set to k
4 else
5 INSERTVALUE(Node.le f t, k)
6 else
7 if Node.right = NULL

8 then create new node at Node.right with key set to k
9 else

10 INSERTVALUE(Node.right, k)

Figure 7.13: Binary Tree Insertion Algorithm

Both of these algorithms will be run on the same hardware mod-
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SEARCH(Node, k)

1 if k = Node.key or Node = NULL

2 then return Node
3 else
4 if k < Node.key
5 then return SEARCH(Node.le f t, k)
6 else
7 return SEARCH(Node.right, k)

Figure 7.14: Binary Tree Search Algorithm

ules, with the insertion code updating the memory blocks for each

hardware module and the search algorithm reading the data in the

memory blocks.

7.6.2 Recursive Growth Width

As both functions only ever call each other once the recursive growth

is 1. This scheme has a single function unit allocated to each level of

the binary tree, with it storing all the values in that level of the binary

tree.

7.6.3 Grouping

The non-recursive for the INSERTVALUE algorithm only stores the data

in memory, hence this is incoroporated into the pre-recursive func-

tion unit. In a similar fashion, the pre-recursive function unit for the
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SEARCH algorithm only reads memory, and hence is also incoropo-

rated into the pre-recursive function unit for the same algorithm. Fol-

lowing this RTR was not required.

7.6.4 Context

The information stored at each function unit is the data for that level

of the binary tree. This will at most store N
2

items.

7.6.5 Buffering

There is no buffering required as all the input data is scalar.

7.6.6 Prediction

As all function units are identical and allocated when the function

beings, no prediction mechanism is required.

7.6.7 Results

The results for insertion into the tree show that insertion for the un-

rolled version is linear. This does not hold true for the stack imple-

mentation where the graph in figure ??, shows a slightly increasing

gradient.
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Data Size
Stack

Performance
(Cycles)

Unrolled
Performance

(Cycles)
512 15871 7153

1024 34815 13297
2048 75775 28657
4096 163839 53233
8192 352255 102385

16384 752663 204785

Table 7.6: Insert Times

The same holds true for searching, with an item being returned

from the search algorithm every 12 cycles. This linear relationship

is not true for the stack implementation with smaller trees requiring

fewer cycles than large trees.

Data Size
Stack

Performance
(Cycles)

Unrolled
Performance

(Cycles)
512 10239 6227

1024 22527 12382
2048 49151 24681
4096 106495 49268
8192 229375 98431

16384 491519 196746

Table 7.7: Search Times
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Figure 7.16: Binary Tree Search Results
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Chapter 8

Conclusion

This chapter presents our conclusions from the research presented in

this thesis, as well as presenting possible future research directions.

8.1 Conclusions and Comments

Mapping recursion to runtime reconfigurable systems, with the aim

of introducing parallelism to the recursive function is possible by un-

rolling the function at run-time. Experimentation shows that for many

well known O(N log(N)) sequential algorithms (sections 7.2, 7.3, 7.4),

parallelism can be extracted to produce hardware that runs in linear

time.

Experimentation on a recursive algorithm that is not truly divide-

and-conquer which runs in polynomial time has also demonstrated
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a performance improvement(section 7.5). This function differed from

the O(N log(N)) divide-and-conquer algorithms in that the data size

increased between recursive calls, thus necessitating more than one

function unit to be allocated per level of the recursive tree. The exper-

iments run on this algorithm also confirm the claim made in this thesis

in regards to the effects of the calculated recursive growth width on

the allocation of function units to a recursive function.

The techniques presented in this thesis for mapping recursion to

reconfigurable hardware, such as the partitioning of the function into

smaller functions, and analysis of the work done between instances of

the function has made the mapping more feasible by ensuring that as

much of the configured hardware is being utilised at any time, thus

alleviating the limitations imposed by the finite area on an FPGA de-

vice. In particular, collapsing of the recursive tree as a result of an-

alyzing the ratio of work between recursive calls has shown that it

is possible to map many well structured recursive calls to reconfig-

urable hardware using a number of processors that is linearly related

to the height of the tree. This eliminates the exponential explosion of

processors if one is allocated to node in the tree as its depth increases.

We have employed methods for predicting the need for further un-

rolling to alleviate the latency introduced by runtime reconfiguration

of the device. The prediction techniques presented in this thesis are
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fairly basic. However they illustrate the effective of employing predic-

tion mechanisms, and highlight the need of further research as predic-

tion heuristics and techniques are possible through function profiling

and statistic gathering by the controlling hardware. Advanced tech-

niques may further increase the performance benefits of the methods

outlined in this thesis.

The physical limitations imposed on the mappings described in

this thesis, such as the logic density of the FPGA device as well as the

memory bandwidth on the device, have been addressed in this thesis

also. However the mapping technique described in this thesis still suf-

fers from inefficient memory utilisation which can result in multiport

RAM modules being allocated to a single function unit, thus reduc-

ing the amount of memory bandwidth available to the function units

computing the result of the recursive function. Further research into

the behaviour of recursive functions in respect to memory use, and

more efficient uses of the memory on the FPGA device would greatly

benefit the methods described in this thesis.

The simulation framework described in Appendix-A provides a

foundation for further research into the simulation of runtime recon-

figurable architectures. The simulator also provides a test bed for the

simulation of designs that directly generate, or edit, the configuration

bitstream. The development of this simulator itself acts as a starting
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point for several avenues of research, including: the development of a

better front end in the form of a GUI, the optimisation of the code pro-

duced with an aim to reduce size and the memory footprint. Research

into the inclusion of techniques for more accurate timing of designs is

another area of interest.

While the recursive growth width gives a good estimate for proces-

sor allocation when the recursive function being mapped is a function

with predictable behaviour, the technique may not give a good esti-

mate for functions with unpredictable behaviour. Research into load

balancing techniques which ensure that all function units are being

utilised may aid in such circumstances and provide a further increase

to the performance of the mapping.

The mapping presented in this thesis shows that it is possible to

build a circuit containing homogenous function units to compute the

result of the recursive function. Further research into load balancing

techniques that balance the work over a homogenous “sea” of func-

tion units may also be a stepping stone to using the methods described

in this thesis for hardware that is not runtime reconfigurable.

The routing protocols presented in this thesis are designed for sim-

plicity, not efficiency or to decrease latency. Further research into

the network that is used for communication between function units

could possibly reduce the communication latency, as well as reduce

Mapping Recursive Functions To Reconfigurable Hardware
PhD. Thesis - George Ferizis 2005



8. Conclusion Future Research Directions • 149

the number of wires required for communication, thereby reducing

the overheads of the network. Again further research into the net-

work increases the feasibility of using the methods presented in this

thesis on hardware that does not allow reconfiguration.

8.2 Future Research Directions

A major future body of research that will benefit the research in this

thesis greatly is the mapping of recursive data structures to reconfig-

urable hardware. The case study in section 7.6, has shown how the

methods presented in this thesis can be used to map recursive data

structures to reconfigurable hardware, with each node in the mapped

structure being able to execute the operations that are required. Fur-

ther research into this area and its application to more complex opti-

misation problems would be of great benefit to scientific computing.

While the main thrust of the research presented in this thesis has

been the mapping of recursive functions in procedural languages such

as C and Java, research into the suitability the same methods being

applied to functional languages such as Haskell or Miranda, and how

this may impact previous research into functional language to hard-

ware compilation [51, 33], provides a direction of interesting research.
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Appendix A

Simulator

This chapter describes a device level simulator that was built to mea-

sure the effects of the latncy introduced by RTR on the performance

of the mapping method described in this thesis.

The simulator is not fixed to one device. The simulator is build

from a plain text description of an FPGA device. This plain-text de-

scription matches the output from the xdl utility that is provided with

Xilinx’s ISE Software package [21]. From this plain-text description

source code for a simulator and bitstream file generator is created.

Providing the source code allows for a generic skeleton to be aug-

mented to suit the intended architecture.

As the simulator provides open code the format of the bitsttream

is known. This allows for the simulation of components on the FPGA

that directly edit the bistream which is used to relocate modules on
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the device.

This chapted will begin by providing a description of the plain-

text file in section A.1, before describing the method used to gener-

ate the source code for the simulator from the plain-text description

in section A.2. The operation of the simulator is then described in

section A.3. The bitstream generator and its implementation is then

described in section A.4. The user interface is then described in sec-

tion A.5.

A.1 Plain Text Description

The plain-text description is a hierarchical description of the compo-

nents on the device. The top level of the hierarchy contains a listing

of tiles, and a listing of primitive definitions. The hierarchy of com-

ponents under tiles, will be detailed first in section A.1.1, before a de-

scription of primitive definitions, is given in section A.1.2. The method

that connectivity is described will then be presented in section A.1.3.

A.1.1 Tiles

A tile is a regular collection of resources that is placed in multiple lo-

cations on the FPGA. Tiles are typed; tiles of the same type contain the

same logic resources and the same routing resources, with the excep-
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tion of bordering tiles which may contain a small number of routing

resources that differ from tiles of the same type not on the edge of the

FPGA.

The tile container containts routing and logic resources. The rout-

ing resources include configurable routing(pips) and static inter-tile

routing which connects pins in the tile to pins in other tiles.

The logic resources in a tile are termed primitive sites. A primitive

site contains a typed logic resource which corresponds to a primitive

definition which will be described in section A.1.2, and a listing of the

static connections from pins on the logic resource to pins in the tile.

The plain text description we use for input to produce the simula-

tor matches exactly the output of the xdl tool provided by Xilinx’s ISE

software which gives a description of a Xilinx device. This descrip-

tion names all tiles and their type before giving a listing of the logic

resources within each tile, the configurable routing resources in each

tile and all the inter-tile connectivity that has sinks or sources in this

tile. We will give a brief overview of the syntax of this text description

file as an aid in describing how the simulator is built.

A condensed grammar for a tile and all the elements hierarchicaly

beneath it is shown in figure A.1.

While a tile’s description does not contain the logic resources di-

rectly it contains the name of a container which is named a primitive
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tile → (prim. site)∗(inter-tile conn)∗(pips)∗

prim. site → (site name)(pin wires)∗

Figure A.1: Tile grammar

Device

Tile

Primitive Site

Element

Figure A.2: Hierarchical organisation of FPGA resources

site. The contents of the primitive sites are defined in the plain-text

file in what is termed a primitive definition.
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A.1.2 Primitive definitions

Primitive definitions are containters that contain atomic logic elements

named primitive elements and static routing between the elements.

The gramar for primitive definitions is shown in figure A.3.

prim. def. → (site name)(pin)∗(prim. element)∗

prim. element → (element name)(element data)

element data → (elem. pin)∗(config)?(conns)∗

Figure A.3: Primitive site

The element data atom describes properties of the primitive element it

belongs too. It names the pins that this pin reads and writes to, noting

their direction, the connections between these pins and pins in other

primitive elements in the current primitive definition, and if the config

atom exists, all possible configuration states of this primitive element.

If the config atom does not exist the primitive element corresponds to

static logic.

The behaviour of the primitive element can often be inferred auto-

matically from either the name of the primitive element, or the contents

of the config atom.

Table A.1 shows the percentage of elements whose behaviour can-

not be determined automatically for two Xilinx devices. While the

numbers do look large it should be noted that the majority of the un-
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known elements were to do with reconfiguration resources such as

ICAP and BSCAN. The majority of IO-Block and Slice logic resources

were implemented automatically.

Device Number of Unique El-
ements

% of Unique Elements

xcv50bg256 68 15.77
xc2v1000bg456 127 14.53

Table A.1: Number and percentage of elements with unknown be-
haviour in various simulated devices.

A.1.3 Connectivity

Two types of connectivity exist on FPGA devices: inter-tile and intra-

tile connectivity.

Inter-tile connectivity is described by the grammar shown in fig-

ure A.4. For every pin the number of inter-tile connections it has is

listed followed by the pins it is connected to in other tiles.

inter-tile conn. → (wire name)(no. conns.)(conn)∗

conn → (tile name)(pin name)

Figure A.4: Inter-tile Grammar

Intra-tile connectivity is described by the grammar shown in fig-

ure A.5. The relationship between pin1 and pin2 is a N − N relation-

ship, but all pairs only occur once.
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pip → (tile name)(pin1)(dir.)(pin2)

Figure A.5: Intra-tile Grammar

Intra-tile connectivity is configurable routing. The connection be-

tween two pins can be set to on or off and this is set when the device

is configured by the bitstream file. This reconfigurable connection is

termed a pip (programmable interconnection point). In this paper

inter-tile connectivity is considered static as the connection between

pins in tiles is always present. Thus the control of these wires is de-

pendent on the configuration state of the pips at either end of the wire.

A.2 Simulator Generation

Generating code for each individual element and tile on an FPGA re-

sults in code that is too large for compilation on many systems. To

reduce the size of the code that is generated the high amount repeti-

tion of resources on FPGA devices is exploited.

To exploit the repetition of resources on FPGA devices the hierar-

chical grouping of these resources that can be ovserved in the gram-

mars in figures A.1 and A.3, are reproduced in the code. A description

of how code is produced for each level of the hierarchy is described in

this section.

Mapping Recursive Functions To Reconfigurable Hardware
PhD. Thesis - George Ferizis 2005



A. Simulator Simulator Generation • 167

A.2.1 Elements

Elements are created to control the operation of the atomic logic re-

sources on the FPGA. These resources include boolean gates, multi-

plexers, LUTs, flip flops, ram modules and IO pads.

These source code that implements each element is placed into a li-

brary, with elements that are common between various different prim-

itive sites only having a single entry in the library. When creating the

source code for an element the library is checked to see if code that

matches this element already exists. If no source code exists in the

library code to implement the element is added to the library. Dur-

ing this process a map is maintained between each element and the

function in the library controlling its behaviour.

A.2.2 Primitive Sites

Primitive sites are maintined in a library in the same way elements

are. The source code for each primitive site must call code in the

element library so that the elements in it operate on input data and

generate output data. The map created while generating the element

library is used to link the elements in the site with the appropriate

function in the library. The source code for primitive sites is created

by parsing the primitive definitions in the output file. As each primi-

tive definition is unique with no repetition a map is not maintained at
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this level of the hierarchy.

sitea()

AND()
LUT()

siteb()

LUT()
LUT()
FF()

Element
Library

AND()
LUT()
FF()

Figure A.6: Library hierarchy of primitive sites and their elements

A.2.3 Tile Implementation

Tiles are also implemented in a library in the same way primitive sites

are. Intra-tile communication is implemented in the tile also. As this

is configurable it is necessary that all communication be indexed. To

facilitate indexing each pin is added to an AVL tree and is indexed by

the name of the pin.

Tiles contain two sets of resources: logic and routing. Tiles exist on

the FPGA device with the same logic resources but different routing

resources. To reduce the code that is produced two libraries are main-

tained: one for logic and one for routing. Each resource is compared

to each library individually, with a map being created between the tile

name and the function in both libraries.

It is worth noting no comparison is requried for logic resources as
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the tiles are typed, with all tiles of the same type containing equivalent

logic resources.

A.2.4 Device Implementation

The tile map obtained while generating the tile library is used for the

implementation of the final device. This level also controls inter-tile

routing. Inter-tile routing is controlled by indexing the relevant pin

in each tile using the AVL tree in the tile structure and creating the

appropriate connection.

A.3 Operation

Elements on an FPGA contain different timing delays, and therefore in

a period of time will operate a different number of times. The method

used to simulate this timing model is described in this section.

A.3.1 Timing Model(s)

The timing model is parameterisable and is specified by the user. It is

loaded at runtime and therefore allows the user to operate a described

device with different timing delays without the need to reproduce the

simulator. The timing model is described in a file that contains a se-

ries of named sets. The sets contain the names of elements the chip
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contains, followed by the timing delay that is to be associated to ev-

ery element in that group. This allows for a reduction in the amount

of data a user is required to input.

Elements with a delay that varies depending on configuration such

as pips are not supported in this simulator with all timing delays be-

ing static. The only element the author of this thesis knows of on FP-

GAs that exhibit this property also happens to be the most common

element, the pip. Pips timing delay increases as the number of con-

nections out from it increase due to the increase in capacitance that

occurs with a higher fan out.

A.3.2 Functionality

The system functions around an event based model. Initially all con-

figured logic elements and the function that describes their behaviour

are added to a min-heap using their timing delay as the key. During

operation the top value in the heap is popped off the heap and oper-

ated on. A depth first search is then done on the heap and the timing

delay of the element that just was popped is subtracted from the key at

every node of the heap before it is placed back into the heap. This pre-

serves the shape of the heap but allows a event-triggered type struc-

ture to be implemented, which is more desirable than implementing

a finishing time event queue, due to the limitations on the size of an
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integer on a machine. To reduce the number of elements that require

this subtraction the size of the heap is reduced by placing all elements

with the same key into the same node of the heap. With the repetition

of logic elements with the same timing delay such as pins, wires and

many logic resources due to duplication this greatly reduces the size

of the heap and thus the cost of the depth first search.

The process for networking resources is different. When a pin is set

by an I/O block or a logic element, that pin is added to the min-heap

with a temporary flag set. When this pin fires we repeat the same

process as we did for a logic element, but do not place the element

back into the heap. Instead the direct sinks for this pin, be it wires or

other pins in the case of pips, are added on the heap with a temporary

flag set. This allows us to further reduce the size of the heap and

still have signals propagating through the system without the need to

trace networks at runtime.

A.4 Configuration Stream

A.4.1 Bitstream Format

The bitstream file that is created is order in a way such that all the con-

figuration data for each tile is organised in a contiguous block in the

bitstream file, and the order of the tiles in the bitstream file matches
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their order in the plain-text description of the device.

The simulator considers each tile to contain an ordered configura-

tion list. This list is made up of data to describe the configuration data

of all configurable primitive elements in that tile and all pips in that

tile. The ordering of this configuration list is determined by the order

in which the configurable elements occur in the listing for the tile. All

tiles of the same type share the same ordered list.

Currently the bitstream is arranged such that the data for each tile

is in contiguous blocks in the bitstream. This however can be changed

to simulate different configuration architectures. It should be noted

that when the chip listing is parsed to obtain these lists the size of the

list contained in each tile is computed. This is used to obtain an index

into the bitstream file for the next tile.

A.4.2 Logic Element configuration

When processing a configurable primitive element the config (fig-

ure A.3) option is processed to extract all the possible states of the

primitive element and determine a numerical enumeration that can

be mapped to these states. This can be done due to the configura-

tion line for a primitive element containing all the possible states of

that element. Certain elements require more information such as pro-

grammable LUTs operating in LUT mode, which require a boolean
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equation based on the inputs as well as information on the operational

state of the LUT. This process typically requires one byte of configu-

ration data per element, with the exception of the LUTs which require

three bytes of configuration data.

When this data is being created and added to the configuration

list a map is kept which returns an index into the configuration list

based on the name of the primitive definition and the primitive ele-

ment within it. This is later used so that the configuration data for this

element can be reported and edited efficiently.

A.4.3 Pip configuration

A similar process is followed for the pips with the pins that each

pip can be connected to being assigned to a numerical enumeration.

These mapped values in the enumeration are used as indexes into the

a bitmap, which contains a bit for each pin the pip can be connected

too, as shown in figure A.7. A constant number of bytes are allotted

to describe each pip. This constant number is determined by finding

the pip that contains the maximum number of possible connections.

This constant is determined when parsing the chip listing.

In a similar way to the primitive elements a map is created be-

tween the name of the pip and the index into the configuration list of

it’s configuration data.
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Figure A.7: A pip connection with 5 possible connections, two of
which are turned on.

A.5 User Interface

A.5.1 Simulator Interface

The device simulator currently has a text based command-line in-

terface. This interface allows for basic operations such as bypassing

on-chip reconfiguration methods to load the bitstream, executing the

functions to operate data on the heap and the loading and reading of

pins and wires from and into files.

The decision to provide a method for bypassing on-chip reconfigu-

ration methods was made to allow for easier device specification with-

out the need to design reconfiguration mechanisms. The user is free

to choose between this method or implementing their own model. It

should be noted that the reconfiguration logic in the Virtex devices is

not automatically derived from the chip listing, however the user can
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implement it using the existing reconfiguration infrastructure.

A.5.2 Bitstream Generation

A bitstream is extracted from a netlist by first converting the .ncd for-

mat file into a Xilinx Design Language (.xdl) [27] format file. The

.xdl file is a text description of a netlist that is easy to read. It consists

of two types: instances and nets.

An instance describes the state of a configurable element. Fig-

ure A.8 shows a portion of the text description of a slice. This instance

named res 1 is a slice that has been placed into slice CLB R16C5.S0 in

tile R16C5. It then describes the configuration state of each element in

this site, which is to be set by the bitstream generator. It should be

noted that every element is described in the .xdl file, with elements

that are not used being set to #OFF.

Using the maps that have been derived the index of this instance

and every element within it in the bitstream file can be determined.

The value that can be gained from the enumeration derived earlier

that describes all possible configuration states of an element is then

written into this index of the file. This becomes slightly more compli-

cated for configured LUTs where the content of the LUT is created by

evaluating the expression described by the equation for the LUT for

every value from 0 to 15.
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inst "res_1" "SLICE" ,

placed R16C5 CLB_R16C5.S0,

cfg "CYSELF::#OFF CYSELG::#OFF

CKINV::#OFF COUTUSED::#OFF YUSED::0

F::#OFF: G::#LUT:D=(A2@A4)

RAMCONFIG::#OFF

Figure A.8: Example configurable element.

A net describes the configurable portions of an entire routed net-

work. Figure A.9 shows a description of the network between pin I in

instance val2 and O in carry. We can see three pips configured, one of

which creates a network between BOT I2 in tile BC4 that is configured

to load pin BOT N1.

net "val2_c" ,

outpin "val2" I,

inpin "carry" O,

pip BC4 BOT_I2 -> BOT_N1 ,

pip BC5 BOT_N21 -> BOT_N_BUF21 ,

pip BC5 BOT_N_BUF21 -> BOT_O2 ,

Figure A.9: Example configurable network.

A.5.3 Runtime Reconfiguration

Runtime reconfiguration is implemented by the command-line inter-

face described earlier. It can also be implemented in the configuration

mechanisms of the device by the user. In the case of the Virtex devices

this corresponds to various elements such as the ICAP and boundary
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scan elements.

In the case of partial reconfiguration, bitstreams are created with

a flag stating they are partial bitstreams. Before the configuration

for each tile the name of the tile is encoded into the bitstream. This

presents a fine grained partial reconfiguration, however if the bit-

streams that are generated are limited to a column based approach

with each tile in the column written into the file coarse grained partial

reconfiguration schemes such as those present in Virtex devices can

be realised.

Partial bitstreams can be generated by the bitstream generator in

two ways. The xor operation that is present in Xilinx’s bitgen soft-

ware is implemented, as well as a mechanism that only writes out

configuration data for tiles that have configuration data in the netlist.

The xor operation finds the difference between two bitstreams and

generates the minimal configuration bitstream to effect these changes

taking into account the granularity of reconfiguration.

It should be noted that the behaviour of elements being reconfig-

ured during the process of runtime reconfiguration is undefined. We

have implemented a predictable behaviour, where both the operation

of a logic element and reconfiguration are atomic. Hence the output

of an element being reconfigured is dependent on which of the two

events occurs first.
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