A SYSTEM DESIGN METHODOLOGY FOR REDUCING SYSTEM INTEGRATION TIME
AND FACILITATING MODULAR DESIGN VERIFICATION

Lesley Shannon, Blair Fort, Samir Parikh, Arun Patel, Manuel Saldafia and Paul Chow

Department of Electrical and Computer Engineering
University of Toronto
Toronto, Ontario, Canada, M5S 3G4
email:{lesley, fort, parikh, apatel, msaldana, pc} @eecg.toronto.edu

ABSTRACT

This paper provides a realistic case study of using the
previously introduced SIMPPL system architectural model,
which fixes the physical interface and communication pro-
tocols between processing elements (PES) using PE-specific
SIMPPL controllers. The implementation of a real-time
MPEG-1 video decoder using SIMPPL provides a practical
demonstration of how the complexity of system-level design
issues are reduced by enabling rapid system-level integra-
tion and on-chip verification. The adaptation of the MPEG-1
PEs into the SIMPPL framework combined with the system-
level integration was accomplished in 72.5 hours, which is
only 4.5% of the overall system design time, instead of the
more typical system integration times that can be as much
as 30% of the design time.

1. INTRODUCTION

Lengthy design times are an issue for ASIC designs, and
more recently for FPGAsS, as they can be used to implement
complete embedded computing systems on a single chip.
One method of reducing design time is to abstract the low-
level implementation from the designer by trying to capital-
ize on previously designed Intellectual Property (IP) mod-
ules. However, IP reuse is more complex in hardware design
than the reuse of previously designed software functions in
the development of new software. Software designers ben-
efit from a fixed implementation platform with a highly ab-
stracted programming interface that allows them to focus on
adapting software functionality to new applications. In con-
trast, the challenges facing hardware designers when trying
to reuse IP include non-standardized physical interfaces and
communication protocols [1, 2].

Recent work presented the SIMPPL model, Systems I nte-
grating Modules with Predefined Physical Links, where Asyn-
chronous FIFOs are used to connect the different Computing
Elements (CEs) in a point-to-point manner to create the sys-
tem [3]. This model is similar at the system-level to Kahn [4]
and Dataflow [5] Process Networks, however, SIMPPL also
facilitates CE reuse and reprogramming through the under-
lying abstraction of the CE shown in Figure 1. The com-
putational block, called the Processing Element (PE), uses

This research was supported by the O’'Brien Foundation and the Nat-
ura Sciences and Engineering Research Council. The authors would also
like to thank CMC/SOCRN for providing the prototyping system and Xil-
inx for providing the CAD tools.

Rx Tx Internal Rx and Tx
i [Communication Links (FIFOs)
1

SIMPPL Controller {— Local Program Instr

Il s
Controller Status SIMPPL Control

Sequencer (SCS)

PE Control PE Status

Data Rx Data Tx
PE (Hardware IP)
=

H_External 1/0 Signals

Fig. 1. The SIMPPL CE abstraction.

a controller as the physical inter-CE interface that processes
the inter-CE communication protocols. The SIMPPL Con-
trol Sequencer (SCS) provides control instructions to the PE
in addition to those received from other CEs in the system.
The controller executes these instructions to direct how each
PE is used by the system with minimal overhead [3]. Thus,
the controller’s fixed interface allows designers to decouple
the system communication and control from the PE’s com-
putation, while the SCS provides the flexibility to reconfig-
ure the control without modifying the physical interface.

The previous work provided a proof of concept for the
SIMPPL model. It used a controller to interface small mod-
ules in simple video streaming applications to demonstrate
that the SIMPPL controller is a viable method of reduc-
ing the complexity of design reuse, while adding a small
amount of overhead to the CE implementation [3]. This pa-
per extends that work to examine the effects on a non-trivial
system-level design and demonstrate the inherent flexibility
in SIMPPL’s framework that makes it adaptable to different
applications.

The focus of this paper is to describe both the benefits
and constraints of creating and verifying designs using the
SIMPPL model on an FPGA. These include:

the model’s extensibility to new system requirements
the reduced system-level integration effort
an on-chip testbed for thorough verification of CE(S)

a measurement of the resource overhead of the SIMPPL
framework

o ademonstration of the minimized system-level redesign
effort

Demonstrating these characteristics of the framework re-
quires a complex system as a case study. Figure 2 [6] shows
a block diagram implementation of a generic MPEG-1 video
decoder [7] outlining the datapath from the compressed data

Computing
Element (CE)

-

Video Stream
Parser
l 1l =
Motion Video
—>| Compensation Picture Reconstruction Frame
\iaer;]f;li:? (MC) (PR) Frame Buffer
Decoder T Séorf?ge T
(VLD) Run-Level Inverse Inverse Discrete utfer Colour
—> Decoder —>{ Quantization Cosine —» Space
(RLD) (IQ) Transform (IDCT) Converter

Fig. 2. An MPEG-1 video decoder to RGB display.
input to the video output display. The MPEG-1 video de-

coder closely approximates the MPEG-2 video decoder, which

uses 7377 slices on a Virtex-E FPGA in a commerical im-
plementation [6] and is too large for our prototyping system,
yet provides a realistic test system for the system model.

The remainder of this paper begins with Section 2 dis-
cussing how adapting a traditional modular system design
methodology to use the SIMPPL model can reduce design
time. Section 3 describes how the video decoder is imple-
mented within the SIMPPL framework and Section 4 dis-
cusses an on-chip testbed that enables thorough verification
of each CE. The system implementation results are presented
in Section 5 and the conclusions and possible future work
are summarized in Section 6.

2. DESIGN METHODOLOGY

When designing an SoC, there are numerous system specific
issues to consider. This section describes a generic design
methodology for designing within the SIMPPL framework
and some of the application-specific issues that must be ad-
dressed. The particular design choices made for the MPEG-
1 video decoder are then discussed in Section 3.

An initial high-level system specification in languages
such as SystemC [8] is becoming increasingly common for
complex systems. A designer describes SIMPPL modelled
SoCs in these languages by specifying the SIMPPL con-
troller and SCS interfaces for each PE module. Since the
SIMPPL system-level architecture is fixed as a network of
CEs connected via Asynchronous FIFOs, it lends itself to
a modular design methodology. Initially, the PEs are de-
signed and verified as individual modules in simulation and,
where possible, on-chip. The SIMPPL controllers and their
SCSs are then integrated with the PEs and the resulting CEs
are verified in simulation. The remainder of the testing is
performed on-chip to verify that data packets are properly
received, processed, and retransmitted by the CEs using the
on-chip testbed described in Section 4.

While the system-level architecture is fixed, the internal
structure of the CE is flexible because a set CE architecture
is unlikely to work for all applications, which reduces the
usability of the model. Instead, the CE’s architectural defini-
tion is conceptual: the system-level control and communica-
tion must be separated from the PE’s computation as shown
in Figure 1. This means that the designer can select: the
CE’s number of Rx and Tx Communication Links, whether
or not the CE interfaces with off-chip /O, and the number of
SIMPPL controllers per CE, as well as their instruction sets,
to suit each PE’s functionality. Even the granularity of par-
titioning of the system’s dataflow into individual PE’s is left
unfixed to facilitate the adaptation of different applications
to the model.

Inverse Discrete g
Cosine 5
Transform (IDCT) | &

Inverse
Quantization
(IQ)

Video Stream
—> Parser
(Parser)

Variable Length 4
Decoder/Run-Level %—»
Decoder (VLD/RLD) | 9

'IdcinS
1ddWIS
IAddL
‘IchlWI
IAddNL

L—

—

Motion

Compensation [«
(MC) Colour Video
Frame \l | space [Frame
Storage Converter Buffer
status

IddIS

Picture Buffer

! Reconstruction {«—»|
register (PR

(MCIPR)

Fig. 3. The SIMPPL model MPEG-1 video decoder.

By analyzing the design’s dataflow, a system-level archi-
tecture can be chosen that partitions the design into PEs that
are reusable in future applications. The designer must also
consider the computational latency and throughput of each
PE to prevent bottlenecks in the system and to guarantee
that the application’s latency and throughput requirements
are met. Researchers have developed tools that can be used
to model and analyze the system [9] or profile it on-chip [10]
to meet the system performance requirements.

3. MPEG1IMPLEMENTATION

The implementation of the MPEG-1 video decoder using the
SIMPPL model was done by a four-person design team ini-
tially unfamiliar with the model. The changes to the system-

level architecture are described first, followed by the application-

specific implementation of the CE model from Figure 1 and
the updates to the original controller architecture. Finally,
the SCS architecture used for this application is discussed.
In each case, the benefits and overhead inherent to the up-
dated system model are discussed.

3.1. Adapting MPEG-1tothe SIMPPL model
The design team partitioned the video decoder into PEs be-
fore selecting a system-level architecture. While the PE par-
titions are not made to ensure reusability, they are still read-
ily adaptable to CEs. Figure 3 shows a block diagram of
the MPEG-1 video decoder implemented using the SIMPPL
model, which has been redesigned as a pipeline due to the
serial nature of MPEG-1 encoded data. The system is now
divided into five CEs: the Parser, the VLD/RLD, the 1Q,
the IDCT, and the MC/PR. All the CEs are implemented
in hardware except for the Parser. Due to design time lim-
its, the team used software running on a processor, termed a
software CE, to read the MPEG encoded data from external
memory to generate the data-packets for the VLD/RLD CE.

The direct paths from the Parser and the VLD/RLD CE
to the MC/PR CE are removed in the new system model, as
shown in Figure 3. While the direct path from the Parser is
only used to provide status bits about the transmitted blocks
to the MC module, the VLD provides data-packets to both
the MC module and the RLD module for processing. Even
though the SIMPPL controller supports branching opera-
tions, the resulting architecture uses only one datapath. The
new architecture must now provide some mechanism for di-
rectly passing data between two non-adjacent CEs in the
pipeline while ensuring that the order of the transmitted data-
packets is maintained. This is addressed by adding new
functionality to the SIMPPL controller and is discussed in
greater detail in Section 3.2.

SIMPPL controllers act as the interface between PEs and
the rest of the system. The predefined interface facilitates

Rx and Tx Communication
Rx | Tx Links (FIFOs)
not used in MPEG1)
SIMPPL SIMPPL Consumer
Consumer (<> Control
Controller Sequencer (SCS)
Status
External ¢ || PE Bits Computing Bypass
1/0 Signals (Hardware IP) Element (CE) Link
SIMPPL SIMPPL Producer
Producer [« Control
Controller Sequencer (SCS)
A
Rx and Tx Communication
Tx] Rx Links (FIFOs)

Fig. 4. The MPEG-1 SIMPPL CE implementation.

Data

Instruction
/ﬁ I/

g3
o g8z
= ~lalolalee DS9S
[a sls|ls|a|22(9(8(9|2
g RIEIRIB|ZS|E|E|E|E| —
© alo|ol|g RIS
g S e o (@ | |o
a <8

(5]

Q.

o

- ~
*Optional Bypass Headers
Fig. 5. A Data packet with four bypass instructions.

the physical integration of components but increases the re-
sources required for the interface logic. Each Asynchronous
FIFO (Communication Link) between CEs provides buffer-
ing for the transmitted data-packets. The Communication
Links also allow designers to decouple the clock domains
and vary the width of the transmitted data words to increase
the bandwidth between CEs. In this system, all the FIFOs
are 33 bits wide, where a single bit indicates the beginning
of a packet header transmission and the remaining 32 bits
pass the state and data values.

The data-packets transferred between modules consists
of two or three fields, where the first field is an instruction
word consisting of the opcode plus the number of data words
in the packet. The second field is optional, providing the
state information about this packet as an address word to
the PE. For example, the status bits that used to be passed
directly to the MC module from the Parser, as shown in Fig-
ure 2, are now stored as state bits in the packet. The remain-
ing field in the packet is the data words that are consumed
by the PE.

3.2. Adaptingthe SSIMPPL CE for MPEG-1
Figure 4 shows a block diagram of the CE architecture for
the MPEG-1 application based on Figure 1’s abstraction. All
the PEs in the MPEG-1 application are implemented in a
pipelined format to allow multiple data packets to be pro-
cessed in flight. This ensures that the real time through-
put requirements for the video display are met. Therefore,
each PE now has independent input and output SIMPPL
controllers called the Consumer and the Producer, respec-
tively, where each controller has its own SIMPPL Control
Sequencer (SCS). Using independent controllers for receiv-
ing and transmitting data allows the Consumer to receive a
data packet for processing while the Producer transmits a
packet to the adjacent CE.

The primary update to the controller addresses the re-
quirement that the VLD/RLD CE be able to pass data di-

C - -
=" continue_program bit
Instruction/State word —

v
Instr E_State E
Instr D [State D
> Null
FsM Instr B [State B
Status Bits scs lnstr A [State A

v
PE

] Convoller [PLEP R B A e

Fig. 6. A CE with multiple packets of data in flight.

rectly to the MC/PR CE, as described in Section 3.1. To
resolve this issue, a new bypass instruction is added to the
SIMPPL controller instruction set. It enables the controller
to receive a packet with a bypass instruction header and then
retransmit the packet, less the bypass instruction. Figure 5
illustrates a data packet that has four bypass instructions
tagged to the beginning. By tagging N bypass instructions
in front of a data packet, the packet will bypass N controllers
before the N+1 controller processes the actual data packet.

IEEEE

1“1

—

3.3. Updating the SCSfor the MPEG-1 system

Since the Consumer controller does not create any data pack-
ets, it does not run a local program. Therefore, an SCS
is not required for this application, although the Consumer
supports one as indicated in Figure 4. All data processing
performed by the Consumer is based on the data packets re-
ceived from the preceding CE via the Rx Communication
Link. However, the PEs in the MPEG-1 video decoder can
consume different types of packets that directly determine
the instructions issued by the Producer for each transmitted
data-packet. The transmitted instruction’s data dependency
requires that the the local program in the Producer’s SCS be
dynamically generated based on the packets received by the
Consumer unlike the static programs used in the proof-of-
concept study.

Figure 6 illustrates how a CE that received packets A
through E in order, where packet C had two bypass instruc-
tions, generates the appropriate program for the Producer’s
SCS. Recalling that the order of packets received by a CE
must be maintained when they are transmitted to the subse-
quent CE, it is imperative that data packets A and B, which
were inflight when packet C arrived, are transmitted first.
To enable this functionality, the instructions from the Rx
Communication Links and those created in the Producer’s
SCS must have variable processing priority. When the con-
tinue_program status bit, as shown in Figure 6, is set, the
controller continues to fetch available instructions from the
SCS, even if there are data packets to be processed on the
receive link. Therefore, each Producer’s SCS uses a FIFO
not only to store the instruction word and the state word for
each packet, but the status of the continue_program bit as
well. The PE enqueues valid instructions into the FIFO for
every data packet in flight, setting the continue_program bit
for each instruction, as indicated in Figure 6.

To ensure that bypassed packets are retransmitted in the
proper order, the PE must detect if the Consumer receives a
bypassinstruction. In this situation, the PE will queue a null
instruction into the FIFO with the continue_program bit set
low, as shown in Figure 6. To guarantee that instructions are
enqueued in the Producer’s FIFO in the correct order, the
SCS state machine must push the correct instruction onto
the FIFO before the Consumer controller finishes reading
the current data packet. The Producer will then dequeue the

System under Test

SUT
(sun Source

Source| | [N e [N Sink
uproc [| ' ’ '[“/ & Sink [v uproc

uproc

Fig. 7. The on-chip testbed for debugging CEs.

instructions and retransmit the data packets in order. When
the “null” instruction is detected with the continue_program
bit set low, the Rx Communication Link will be given pri-
ority. The bypassed packet will then be retransmitted by the
Producer to the subsequent CE and the “null” instruction
will be dequeued from the FIFO.

Thus, for the example shown in Figure 6, the Producer
will transmit packets A and B from the PE. It will then de-
tect a “null” instruction, with the continue_program bit set
low, and process packet C from the bypass link, while si-
multaneously dequeuing the “null” instruction. This will be
followed by packets D and E being sent to the next CE.

4. ON-CHIP TESTBED

The standardized physical interface and communication pro-
tocols of a CE allow the designer to use a flexible testbed
architecture as shown in Figure 7. CEs can be verified in-
dividually, as independent processing stages, or in combi-
nation with adjacent CEs. Furthermore, since the design is
implemented on an FPGA, it is possible to run the testbed
on-chip to verify the behaviour of CEs with a large number
of data packets to obtain quick and accurate results. Previ-
ous work demonstrated that debugging [11, 12] and profil-
ing [10] designs using on-chip resources results in a signifi-
cant reduction of the time required to obtain information for
the designer. Since design verification commonly requires
greater than 50% of the overall design time, sometimes as
much as 70% [13], it may be possible to reduce the percent-
age of time spent verifying the design, and thus reduce the
overall design time.

The testbed comprises the processors and the software
required to generate (Source) and interpret (Sink) data packet
streams for the CEs. The MPEG-1 video decoder is de-
signed for a Xilinx Virtex2v2000, so the MicroBlaze™
soft processor is used in this testbed. High-level functions
are built to generate each data packet from the instruction
and data pointer specified by the user. The user can then
quickly alter the number and types of data packets sent by
the Source to the System Under Test (SUT) by changing
the instructions in the source code and then compiling and
downloading the processor executable to the Source Proces-
sor. Creating the data stream using software allows a sig-
nificantly quicker turnaround time for testing the SUT with
different data packet streams than is possible with the source
data stream coded as a separate hardware module. The Sink
Processor runs a program that detects and interprets pack-
ets received from the SUT and then allows the user to log
them. The Sink processor program can also be combined
with the Source processor program to allow designers to log
the intermediate state of the design as shown in Figure 7.

The on-chip testbed facilitated the detection of a signif-
icant PE error that required the redesign of the MPEG-1
video decoder pipeline. Using the MPEG-1 pipeline from
the VLD/RLD CE to the MC/PR CE as the SUT, the design
team found that a portion of the design specification for the
MC/PR PE had not been implemented. The team created
a new CE called the Missing Macroblock Replacer (MMR)

CE and inserted it into the decoder pipeline just before the
MC/PR CE to correct the error. The modularity and struc-
ture of SIMPPL made this change to the pipeline very easy.

Although the on-chip testbed runs orders of magnitude
faster than in simulation, it does not likely exhibit the ex-
act runtime behaviour of the final system. A runtime data
stream could be irregular with data words sometimes arriv-
ing every clock cycle and sometimes delayed for numerous
clock cycles, thus the Source and Sink may process data
slower or faster than the system at runtime. However, the
Consumer and Producer controllers, which interface the CE
with its preceding and subsequent CEs, are able to abstract
runtime data behaviour from the PE as they separate the
communication protocols from the actual data processing.
Both are able to properly stall the PE if there is no source
data in the Rx Communication Link or no space in the Tx
Communication Link so that the PE exhibits correct runtime
behaviour independent of the data rate.

5. IMPLEMENTATION RESULTS

This section provides the implementation statistics for the
resource usage and the design time of the MPEG-1 video
decoder running at 30 frames per second to generate 320 by
200 pixel images on a monitor using the Xilinx Multimedia
Board’s Virtex 2v2000.

5.1. ResourceUsage
Table 1 summarizes the resources used by the hardware CEs
in the MPEG-1 video decoder system. Column 1 list the
hardware CEs for which the resource usage measurements
will be reported in the remaining columns. This excludes the
Parser CE as it is a software CE implemented on a Micro-
Blaze™ and the focus here is on the overhead for hard-
ware PEs. Columns 2 and 3 report the number of LUTs and
flipflops used by each PE and SCS respectively. The Virtex
22000 provides 56 dedicated Block RAMs (BRAMSs) and
56 hard multipliers as extra design resources, along with the
homogeneous array of LUTs and flipflops in their Combina-
tional Logic Blocks (CLBs). Column 4 reports the number
of BRAMSs and multipliers used in the PEs as none are re-
quired for the SCSs. Since neither the Producer controller
nor the Consumer controller use BRAMSs or multipliers, the
total logic resource usage for the controllers is reported in
terms of LUTs and flipflops in Columns 5 and 6 respec-
tively. Finally, Column 7 reports the percentage of extra
LUTs and flipflops required in addition to the PE to create
each CE. This is calculated by totaling the number of the
LUTs/flipflops used by the two controllers and the SCS and
then dividing it by the LUTs/flipflops used by the PEs.

Consumer as well as Producer controllers have relatively
consistent resource usage among the CEs due to their similar
instruction sets. However, the 1Q and IDCT CE have slightly
larger controllers because they execute bypass instructions
and support variable instruction priority. SCS resource us-
age for all five CEs is minimal, the maximum being 92 LUTs
and 98 flipflops by the VLD/RLD CE’s SCS. This is due to
the fact that its Producer has to generate both packets for the
adjacent 1Q CE and bypass packets. The great variance in
the CE sizes arises from the different PEs they include, how
complex they are algorithmically and how much of their de-
sign can be moved into BRAMSs and Multipliers.

The MMR PE is the smallest because it is a patch to fix
an error. Ideally, its functionality should have been encom-

Table 1. Table of the resource usage of the individual modules and total system.

Module Name PE SCS Number of | Consumer | Producer | % Overhead

(LUTS/ (LUTs/ | PE BRAMSs/ (LUTS/ (LUTs/ (LUTS/
Flipflops) | Flipflops) | Multipliers | Flipflops) | Flipflops) Flipflops)

VLD/RLD CE 606/699 92/98 9/0 119/70 217142 71/30

IQ CE 429/201 86/13 2/2 126/70 302/106 120/94

IDCT CE 1091/1217 67/24 3/16 126/70 302/106 45/16

MMR CE 141/152 47132 0/0 115/69 217142 269/94

MC/PR CE 1705/742 0/0 2/5 115/69 0/0 719

| Total System | 7248/4118 | 292/167 | 16/23 | 601/348 | 1038/296 | 27120 |

passed in the MC/PR CE, but a redesign of the PE required
more testing and risked more errors than adding a separate
module to implement the extra functionality. Although the
percentage overhead of adapting the MMR PE into a CE
was 269% in terms of LUTs and 94% in terms of flipflops,
the percentage overhead of the LUTs for the MMR CE is
greater than 100% because the PE uses less LUTs than the
combination of the producer and consumer controllers, how-
ever, it minimized the design time required to fix the error
as discussed in Section 5.2.

Row 7 summarizes the complete hardware MPEG-1 video
decoder system resource usage in terms of LUTSs, flipflops,
BRAMs and multipliers. Column 2 of Row 7 report the total
number of LUTSs and flipflops in the complete hardware sys-
tem, which comprises the resources required for the FIFOs
used as Communication Links between CEs, the system re-
set manager, and the CEs themselves, and the totals for the
SCSs. The fifth and sixth columns in the final row report
the total overhead of the Consumer and Producer controllers
used in the system and the final column is the percent over-
heard of converting all the PEs to CEs with respect to the
total system resource usage. Based on this calculation, the
total system overhead of the SIMPPL model for the MPEG-
1 design is 27% of the LUTs and 20% of the flipflops used
by the system. However, these numbers have been inflated
by the unplanned inclusion of the MMR CE to patch the
missing part of the design specification. If we assume that
the current MC/PR CE includes the MMR PE’s functional-
ity, we can remove the MMR CE and reduce SIMPPL’s de-
sign overhead to 23% of the LUTs and 17% of the flipflops.
These numbers can be further reduced to reflect the neces-
sity of system integration and control logic if the SIMPPL
framework is not used. Thus, even if the SIMPPL model
with its increased flexibility and simplified integration is not
employed, a portion of this extra logic is still required to
implement dedicated protocols for passing data correctly be-
tween the different PEs shown in the original MPEG-1 block
diagram in Figure 2. A reasonable first order approxima-
tion of the necessary dedicated system control logic is the
sum of all the SCSs used in the system as they implement
the PE control state machines. Therefore, an approximation
of the overhead of the SIMPPL framework is calculated as
the resources used by all the controllers divided by the to-
tal system resources. The approximated actual overhead of
the SIMPPL framework is reduced to 19% of the LUTs and
14% of the flipflops in this MPEG-1 system.

5.2. Design Time Statistics
Table 2 provides a synopsis of the design times required for
the different phases of the MPEG-1 video decoder system’s

hardware design in terms of hours. The first column reports
the portion of the design time being measured and Columns
2 through 6 list the different hardware CEs for which these
numbers are reported. Column 7 reports the percentage of
the total design time that the sum of the hardware CE design
times attributes to each phase of the design.

PE design and initial debugging are reported in the sec-
ond row. This is the design time required to create the ini-
tial PE design, debug it in simulation and, where possible,
perform some initial on-chip debugging. These values vary
greatly depending on the complexity of the PE and how
much independent algorithmic development was required.
As previously mentioned, the MMR PE is relatively simple
and both the IQ PE and IDCT PE are well-defined with read-
ily available example implementations. Both the VLD/RLD
PE and the MC/PR PE required a significant portion of time
to develop and debug their algorithms.

Before trying to convert their PEs into CEs, the design
team members each required about ten hours to learn about
the details of the SIMPPL model. This includes understand-
ing the operation of the Consumer and Producer controllers
and how the SCS directs the local operations of the PE.
These hours are not included in Table 2 as they are a one-
time, non-recurring cost for using the SIMPPL framework
as opposed to being specifically attributable to the MPEG-1
video decoder design. The PE-Consumer and PE-Producer
integration times measure the time required to adapt the PE
interface to the controller’s requirements. This was most
costly in the cases of the MC/PR PE-Consumer integration
and the VLD/RLD PE-Producer integration, which required
that their PE interfaces be adapted to the controller require-
ments. The Producer’s SCS design time was dependent on
the complexity of the dynamic program that could be run by
the Producer. Once both the Consumer and Producer had
been integrated along with SCS, CE testing was performed
to verify that packets were being properly received and re-
transmitted by the CE.

At this point, the design team was able to perform a sec-
ond phase of PE verification using the on-chip testbed to
thoroughly test the operation of their CE. Once the CEs had
been verified, the correct system-level connections and con-
straint specification files were generated in 12 hours. The
total system design time was reported to be 1608 hours of
which 1376 hours, or 85.6%, of the time was required for
the PE design and initial debugging phase and another 9.9%
for the on-chip phase of PE verification. This means that
only 4.5% of the time was actually used to generate the
CEs from their PEs and then integrate them into the sys-
tem. For complex designs, system integration can tradition-

Table 2. Table of the CE design and integration times required for the system given in hours.

Measured Design Time VLD/RLD | 1Q | IDCT | MMR | MC/PR | Percentage of
CE CE CE CE CE Total Time
PE design and initial debugging 480 80 96 19 700 85.6%
PE-Consumer Integration 35 4 1 0.25 15 1.5%
PE-Producer Integration 10 4 1 0.25 0 0.9%
Producer’s SCS Design 15 3 1 0.5 0 0.4%
CE Testing 2 5 3 0.5 5 1.0%
Second Phase PE Verification 9 8 16 15 125 9.9%
Total System Integration Design Time 12
Total System Design Time 1607

ally account for as much as 30% of design time [13], more
than 6 times the system integration time for the MPEG-1
video decoder usingthe SIMPPL model. This allowed the
designers to focus the majority of their efforts on creating
properly functioning PEs, as opposed to system-level con-
trol and communication protocols.

An interesting point of comparison is to look at the de-
sign times required for transforming the 1Q PE into the 1Q
CE versus the IDCT PE into the IDCT CE. Both CEs were
created by the same individual, where the 1Q CE was devel-
oped first. As can be seen from Columns 3 and 4 in Rows 3
through 6 of Table 2, adapting the 1Q PE into a CE required
significantly longer than for the IDCT CE. This was due to
the designer’s learning curve for understanding the SIMPPL
CE model. Once the 1Q CE was completed, the designer
was sufficiently comfortable with the model to successfully
implement a comparable interface in six hours as opposed
to the 16 hours initially required.

Similarly, by the time the need for the MMR CE was de-
termined, the design team had almost completed the system.
The large resource usage overhead of using SIMPPL con-
trollers to adapt the MMR PE into a CE required only 1.5
hours and the increase to the system integration time was
nominal due to the designer’s familiarity with the model. If
an application-specific system model had been used for the
video decoder, the time to fix the MC/PR module and reinte-
grate it into the system would have been significant and the
entire verification phase would have to have been repeated.
Instead, the complete design of the MMR CE, from the ini-
tal PE design to the final on-chip verification required only
22 hours.

6. CONCLUSIONSAND FUTURE WORK

The usage of SIMPPL controllers as the physical and com-
munication protocol interface between CEs greatly facili-
tated the system-level design. The SIMPPL framework at-

tributed approximately 23% more LUTs and 16% more flipflops

of overhead to the system design, where the resource usage
of the controllers is independent of the PE’s size. The de-
signers required only 4% of the overall design time to adapt
the inital PE designs into CEs, which could be thoroughly
verified on-chip with large data packet streams to ensure that
they exhibited the correct behaviour. The system-level inte-
gration time was 12 hours, less than 1% of the total system
design time.

This study examined the numerous system-level issues
and proposed an effective method of verifying and integrat-
ing CEs at a coarse granularity, however, future work will

need to address system-level debugging at finer granular-
ity. While the proposed testbed is useful for verifying that
data packets flow correctly through the system, it provides
no method of detecting internal errors to the CE or PE if
the data is processed incorrectly. Since this system is im-
plemented as a pipeline, it facilitates the detection and lo-
cation of the source of CE-specific design errors. However,
the SIMPPL model also supports branching systems where
verifying the correct global level operation is more difficult.
The complexities of these system architectures compounds
the need to obtain CE specific debugging information. Thus,
creating a tool that allows the user to obtain CE specific de-
bugging information on-chip is the next phase of research.

7. REFERENCES

[1] H.Chang, L. Cooke, M. Hung, G. Martin, A. J. McNelly, and
L. Todd, Surviving the SOC revolution: A Guide to Platform-
Based Design. Norwell, Massachusetts: Kluwer Academic
Publishers, 1999.

M. Keating and P. Bricaud, Reuse Methodology Manual
for System-on-a-Chip Designs. San Francisco, California:
Kluwer Academic Publishers, 1998.

L. Shannon and P. Chow, “Simplifying the Integration of
Processing Elements in Computing Systems using a Pro-
grammable Controller,” in IEEE FCCM. Symp., Apr. 2005,
pp. 63-72.

G. Kahn, “The Semantics of a Simple Language for Parallel
Programming,” in Proc. of the IPIF Congress 74, 1974.

E. Lee and T. Parks, “Dataflow Process Networks,” Proceed-
ings of the IEEE, vol. 83, no. 5, pp. 773-799, May 1995.

“CS6651: Amphion MPEG2 Video Decoder for FPGA,” on-
line: http://www.amphion.com/ ¢s6651.html.

J. Mitchell, W. Pennebaker, C. Fogg, and D. Legall, MPEG
Video Compression Standard. London, UK: Chapman &
Hall Ltd., 1996.

“SystemC Home Page,” http://www.systemc.org.
“Ptolemy Home Page,” http://ptolemy.eecs.berkeley.edu.

L. Shannon and P. Chow, “Maximizing System Performance:
Using Reconfigurability to Monitor System Communica-
tions,” in IEEE Int. Conf on FPT, Dec. 2004, pp. 231-238.

T. Rissa, W. Luk, and P. Cheung, “Automated Combination
of Simulation and Hardware Prototyping,” in Int. Conf. on
Eng. of Reconfig. Systems and Algs, June 2004.

K. S. Hemmert, J. L. Tripp, B. Hutchings, and P. A. Jackson,
“Source Level Debugger for the Sea Cucumber Synthesizing
Compiler,” in IEEE FCCM Symp., Apr. 2003, pp. 228-237.

“MEDEA+ EDA Roadmap 2003: Executive Summary Eu-
rope,” online: http://www.medea.org/webpublic/ publica-
tions/publ_relation_eda.htm.

(2]

(3]

[4]

[5]

[6]
[7]

(8]
(9]
[10]

[11]

[12]

[13]

