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ABSTRACT

Configurable architectures offer the unique opportunity
of customizing the storage allocation to meet specific ap-
plications’ needs. In this paper we describe a compiler ap-
proach to map the arrays of a loop-based computation to in-
ternal memories of a configurable architecture with the ob-
jective of minimizing the overall execution time. We present
an algorithm that considers the data access patterns of the ar-
rays along the critical path of the computation as well as the
available storage and memory bandwidth. We demonstrate
experimental results of the application of this approach for
a set of kernel codes when targeting a Field-Programmable
Gate-Array (FPGA). The results reveal that our algorithm
outperforms naive and custom data layouts for these kernels
by an average of 33% and 15% in terms of execution time,
while taking into account the available hardware resources.

1. INTRODUCTION

Configurable architectures offer the unique opportunity of
realizing hardware designs that are tailored to the specific
data and computational patterns of a given application code.
A common approach to increase the performance of an im-
plementation on a custom computing machine is for design-
ers to aggressively exploit instruction-level parallelism (ILP).
This invariably leads to a substantial increase in the data
bandwidth required for keeping the functional units busy.
This approach exacerbates the importance of data organiza-
tion, in particular arrays, in order to allow the implementa-
tion to exploit the available memory bandwidth.

Previous compiler-based techniques for increasing the
data bandwidth have focused on data distribution and nei-
ther take into account the impact of scheduling nor the com-
putation’s critical path in the application of the data-oriented
transformations. On the other hand, techniques that do con-
sider critical paths lack the high level array analysis, leading
to mapping solutions that aim at reducing the execution time
without any consideration of data access behavior.

In this paper we present a compiler approach and an al-
gorithm to map a computation’s data arrays to a set of het-

erogeneous storage resources. We consider three common
data-oriented transformations, namely distribution, replica-
tion, and scalar replacement, and take advantage of off-
chip memory, internal memory banks (RAM blocks in case
of an FPGA), and discrete registers. The proposed algo-
rithm combines the data access pattern information of the
arrays with the analysis of the critical path of the computa-
tion. It applies the various data-oriented transformations to
each array with the objective of minimizing the execution
time subject to the available storage and bandwidth. The
novelty of our approach lies in creating a single framework
that combines various high-level compiler techniques with
lower-level scheduling information, while considering the
target architecture’s resource constraints. Our preliminary
results show that our algorithm leads to designs that are on
average 15% and 33% faster than the designs using custom
data layout and naive mapping techniques.

Our algorithm is independent of any code transforma-
tion, however it shows significant advantage in cases of loop
unrolling where the execution requires a higher data band-
width. The work here is geared towards image/signal pro-
cessing computations that can be structured as perfectly or
quasi-perfectly nested loops, with symbolically constant loop
bounds that manipulate array variables.

In emerging multi-core architectures with a rich set of
storage structures the placement and management of data
will become increasingly important. Mapping algorithms
based on data behavior and scheduling information, such as
the one described here, will ultimately allow designers to
develop better design solutions and/or explore a much wider
range of design choices without becoming involved in the
myriad of low-level and error-prone details.

This paper is organized as follows. In section 2 we present
a motivation and background for array mapping. In section 3
we describe the compiler analyses that support the proposed
array mapping algorithm. In section 4 we present prelimi-
nary experimental results of the application of our algorithm
to a set of kernel codes targeting an FPGA device. We re-
view related work in section 5 and conclude in section 6.
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Fig. 1. Various mapping techniques applied to the example code in figure 2.

2. MOTIVATION & BACKGROUND

We now illustrate the application of the data transformations
used in our mapping algorithm to an example code that ma-
nipulates array variables as depicted in figure 2.

for (i = 0; i < 5; i++)
for (j = 0; j < 10; j++)
for (k = 0; k < 20; k++){
C[i][j] += (A[i][k] * B[k][j])/4 + B[k][j+2];

}

for (i = 0; i < 5; i++)
for (j = 0; j < 10; j+=2)
for (k = 0; k < 20; k++){
C[i][j] += (A[i][k] * B[k][j])/4 + B[k][j+2];
C[i][j+1] += (A[i][k] * B[k][j+1])/4 + B[k][j+3];

}

Fig. 2. Example code. Original (top); After unrolling the j
loop by a factor of 2 (bottom).

Data Distribution: This transformation partitions the ar-
ray’s data into disjoint sets and maps them to distinct mem-
ory modules, thereby increasing the available bandwidth,
while preserving the total storage used for holding the data.
In figure 2, references C[i][j] and C[i][j+1] access non over-
lapping sections of the array. We can distribute the data
for array C between two different memory modules, bind-
ing each reference to one memory, thus allowing concurrent
accesses to the corresponding data elements (figure 1(a)).

Data Replication: This transformation increases the avail-
ability of the data by creating copies of the data in distinct
memory modules. Though costly in terms of storage, it can
be used profitably when the replicated data is small and fre-
quently read, as there is an issue of consistency of repli-
cas in the presence of write operations. In figure 2, we can

replicate the B array among 4 memories and concurrently
access the data referenced by B[k][j], B[k][j+1], B[k][j+2]
and B[k][j+3] (figure 1(b)).

Scalar Replacement: This transformation converts array
references to scalar variables and then maps them to reg-
isters. The first access to each scalar replaced data item
(typically a read operation) requires a memory access, but
subsequent accesses can use the data cached in the regis-
ters. This transformation, however, may be infeasible due
to the large number of required registers. For example, in
figure 1(c), array B would require bk × bj = 200 registers
to cache the data accessed in the first iteration of the i to be
reused in the remaining iterations of the same loop.

Clearly, applying these transformations indiscriminately for
all the data references may lead to capacity issues. Instead,
we make the observation that the storage resources and the
corresponding mapping transformations should aim at re-
ducing the critical path of the computation. For example in
figure 2, considering the dependency and therefore sched-
ule, computation needs concurrent accesses only to B[k][j]
and B[k][j+1]. References B[k][j+2] and B[k][j+3] are only
accessed at a later time and can share the bandwidth with
B[k][j] and B[k][j+1] (figure 1(d)).

The algorithm presented in this paper targets the refer-
ences that have affine subscripts and are uniformly generated
(see e.g., [9]). In our architectural model a processor can
simultaneously access various multi-ported memory banks
but we are not concerned with the low-level physical mem-
ory organization of each memory bank. In our critical path
analysis we assume sufficient functional units so that the
memory ports are the only source of data access contention.
Finally, our data mapping is fixed for the entire duration of
the computation.



3. CUSTOM ARRAY MAPPING

We now describe our array data mapping algorithm that takes
into account the computation’s critical path, the array refer-
ences’ access patterns, and the available hardware resources.

Analysis of Critical Paths: Our algorithm captures the com-
putation of the body of a loop nest as a Data-Flow-Graph
(DFG) derived from the static-single-assignment (SSA) in-
termediate form. In the DFG edges represent data depen-
dences and nodes (augmented with latency information) rep-
resent data accesses or arithmetic/logic operations. Control
flow is represented by the graphs corresponding to the two
branches of a conditional statement1.

Given a DFG we define the critical path (CP) as the
longest execution path(s) given the access delays of data ref-
erences. A critical graph (CG) is a subgraph of the DFG
that only includes its critical path(s). We also define a Cut
of the CG as a minimal subset of its data reference nodes,
such that their removal would bisect all the paths of the
CG. Removing the access latencies associated with the ref-
erences of a cut reduces the CPs of the DFG by a memory
latency time [6]. The nodes of a cut need to be consid-
ered inclusively, as improving only a subset of them will
not reduce the execution time of the critical graph. Fig-
ure 3 depicts the DFG and the initial CG and its cuts for the
computation in the body of the example code in figure 2.
Source and sink are artificially added nodes, representing
the beginning and end of the computation. The four sets of
cuts for this example include {B[k][j], A[i][k], B[k][j+1]},
{B[k][j], A[i][k], C[i][j+1]}, {B[k][j+1], A[i][k], C[i][j]},
and {C[i][j], C[i][j+1]}.

Analysis of Data Access Patterns: We analyze the data ac-
cess patterns for the N references to each array A in order
to uncover opportunities for concurrent data accesses [2].

If the references access array data sections that do not
overlap, the data can be partitioned to N distinct sets. Al-
ternatively we could apply scalar replacement to array A
and simultaneously access the values corresponding to the
N references directly from registers. If however the data
accessed by the array references do overlap, we are required
to replicate the array’s data across N memories and/or apply
scalar replacement to increase the availability of the data.

When there is simply not enough available bandwidth
to satisfy the bandwidth requirements of a set of references,
the algorithm still uses data distribution and data replication
among the available resources. In this scenario the data ref-
erences share the available memory bandwidth incurring a
latency delay factor of �RequiredBandwidth

AssignedBandwidth� for each array.

1We assume a speculative execution of all the memory operations re-
gardless of the outcome of the control flow predicates.
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Fig. 3. DFG (top) and CG with its possible cuts (bottom).

3.1. Problem Formulation

For the array references of a given cut of the critical graph
the algorithm must find a mapping strategy subject to the
available number of internal registers and memory banks,
such that the execution time of the cut and therefore of the
critical path is minimal. In case of identical designs in terms
of execution time, we select the one with the smallest size.

Here AB, RBA, and NBA respectively represent the
total available bandwidth, the required bandwidth and the
assigned bandwidth for array A. At each stage the algorithm
must assign between 0 and RBA memory bandwidth to each
array variable A in a cut. If there are M arrays in the cut,
the problem is defined as finding the value of NBi (1 ≤ i ≤
M ), in order to minimize (maxM

i=1�RBi

NBi
�) subject to:

{
NB1 + . . . + NBM ≤ AB
0 ≤ NBi ≤ RBi where 1 ≤ i ≤ M

This formulation naturally leads to a simple greedy (and
therefore locally optimal) algorithmic solution where a sin-
gle cut is examined at each algorithm step. As the result of
this lack of a global perspective we expect our algorithm to
derive mapping solutions that are non-optimal, but neverthe-
less lead to good hardware designs.

3.2. Custom Array Mapping (CAM) Algorithm

This algorithm attempts to reduce the latency of the critical
path by greedily applying scalar replacement, data distri-
bution and data replication to the arrays referenced by the
nodes of a cut, one cut at a time.

Initially all arrays are stored in off-chip memory. The
algorithm first creates the DFG and extracts the CPs and its
cuts. In a selected cut 2, the array references need to be ac-
cessed in parallel with the lowest latency. As such the algo-

2Selecting the “best” cut can be based on different metrics and is outside
the scope of this paper.



rithm first attempts to keep the data in registers by applying
scalar replacement to all array references of the cut. In case
of insufficient registers, the algorithm determines if the ref-
erences access disjoint/overlapping sections of the arrays’
data to decide whether to distribute or replicate data across
RB banks. In this phase the algorithm attempts to use as
many memory banks as possible to satisfy the bandwidth re-
quirements of all array references of the cut. In case of insuf-
ficient memory banks to accommodate all the references in a
cut, the algorithm uses a combination of the available regis-
ters and memory modules to minimize the memory latency
of the cut. To accomplish this the algorithm exhaustively
searches the possible combinations of mappings based on
the access patterns and available storage (lines 13-26). The
net result of this phase of the algorithm is a reduction by at
most one memory latency in the critical path, depending on
the mapping decisions in the selected cut.

In subsequent iterations of the algorithm, the critical path
is updated to reflect the newly allocated storage and a new
set of cuts is identified. After selecting the best cut, for
the arrays that have not been mapped before, the algorithm
searches the best mapping policy as in an earlier phase (lines
54-56). Otherwise, and for a reference r corresponding to
an already mapped array A, the algorithm does not alter the
current mapping policies and only updates them as follows:

Scalar Replaced: If A is already scalar replaced then
r can use the data already in registers. No update in the
mapping is required.

Replicated: If the current RBA < NBA, then r can
simply point to the existing copies. Otherwise, the algorithm
creates RBA − NBA new copies of the array (lines 30-39).

Distributed: If r’s data is a subset of an existing parti-
tion, then r will be bound to that partition. Otherwise, the
algorithm needs a new bank to accommodate the new parti-
tion (lines 40-49).

The algorithm continues by updating the critical path
and removing/improving the memory latencies until it ex-
hausts all available storage. The exhaustive search can make
the algorithm exponential in the worst case, however in prac-
tice, and due to the limited number of arrays in a cut, the
search space is small enough for a brute-force approach.

Here we apply the above algorithm to the example code
in figure 2 with its DFG and CG depicted in figure 3. We
assume 4 memory banks, M0, . . . , M3 and select the best
cuts based on the minimum amount of required storage.

For the selected cut labeled as (4), since there is no data
reuse for C[i][j] and C[i][j+1] and as they access disjoint
data, the algorithm distributes the array across M0 and M1.
During the second phase the updated critical path leads to
only one possible cut of {B[k][j], A[i][k], B[k][j+1]}. A
fully parallel data access requires 3 banks. Due to insuf-
ficient number of available banks, the algorithm maps one
array, A, to registers and the other array to the available 2

Input: Data Flow Graph of a normalized loop.
Output: Mapping of each array.

MappingAlgorithm
1. firstCut = true;
2. for each array A do {
3. NBA = 0;DelayA = 0;
4. }
5. while there is more storage do{
6. Make the Critical Graph;
7. Extract the set of Cuts;
8. For a selected cut C {
9. DelayC = 0;
10. for each array A in the C do
11. Analyze and calculate RBA;
12. // First iteration
13. if (firstCut) then{
14. if(enough registers) then
15. scalar replace all the arrays;
16. DelayA = LatReg;
17. elseif(RBA < AvailableRAMs)
18. Distribute/Replicate all the arrays;
19. DelayA = LatRAM;
20. NBA = RBA; //for all A ∈ C
21. else
22. for all the possible mappings do {
23. find the mapping that minimizes DelayC;
24. Update NBA; //for all A ∈ C
25. Update DelayA; //for all A ∈ C}
26. Update the available storage;
27. } else // later iterations
28. // Update the mapped arrays
29. for each array A of the cut C do
30. if (previously replicated) then {
31. if (RBA ≤ NBA) then
32. Just point to the same RAMs;
33. else
34. if (enough storage) then
35. Create another RBA − NBA copies of A;
36. Update NBA;
37. else
38. Assign references to the available RAMs;
39. }
40. elseif (previously distributed) then
41. if (references point to the existing data)
42. point to the corresponding RAMs;
43. else
44. if (enough storage) then
45. create the new partitions;
46. Update NBA;
47. else
48. Access external memory
49. }
50. Update DelayA;
51. DelayC = Max(DelayC, DelayA)
52. }// end for
53. // create new mappings for unmapped arrays
54. for each non mapped array X in C do {
55. find NBX such that � RBX

NBX
� ≤ DelayC;

56. Update NBX;}
57. Update the available storage
58. }
59. }
60.}// end while

Fig. 4. Custom Array Mapping Algorithm.



Table 1. Experimental Results.
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banks. The alternative choice of mapping A to the banks
and B to registers would require 200 registers and there-
fore a larger design area. During the final phase the up-
dated critical path information leads to only one possible
cut {B[k][j+2], B[k][j+3]}. Since there has been a previous
mapping decision for B, and the new references’ data are a
subset of the data in the previous mapping, the new refer-
ences can point to the data previously mapped to M2 and
M3. In the final mapping array C is distributed across M0
and M1, array B is distributed across M2 and M3, and ar-
ray A is scalar replaced in registers. The execution time is
shortened by two memory access delays.

4. EXPERIMENTS

We validated the CAM algorithm outlined in section 3.2 for
a set of four image and signal processing code kernels. The
FIR code kernel computes the convolution of a vector’s val-
ues against a sequence of coefficients. The PAT kernel finds
the various occurrences of a character pattern in a string,
while the JAC kernel performs a Jacobi stencil relaxation
computation over a 2-D array variable. Finally, BIC com-
putes a Binary-Image-Correlation between a template im-
age and successively overlapping regions of a larger image.
These kernels are respectively structured as 2, 2, 2, and 4-
deep loop nests with compile-time known loop bounds.

For each kernel, written in C, we applied loop unrolling
and the various array mapping transformations at the source
C level. We then converted the transformed C codes to
behavioral VHDL and into structural VHDL designs using
Mentor Graphics’ MonetTM high-level synthesis tool. We
used Synplify Pro 6.2 and Xilinx ISE 4.1i toos for logic syn-

thesis and Place-and-Route (P&R) targeting a Xilinx VirtexTM

XCV 1K BG560 device. We calculated the wall-clock exe-
cution time based on the number of cycles derived from the
simulation and the clock rate extracted from the P&R phase.

In these experiments we imposed a maximum of 64 reg-
isters to store the arrays data. In practice this limit is set by
the compiler as part of a global resource allocation policy,
orthogonal to these experiments. We further assumed only
4 single-ported memory banks (RAM blocks) available. Ex-
ternal memory accesses take 5 cycles while accessing the
RAMs take only 2 cycles. All the memory accesses are fully
pipelined with an initiation interval of 1 clock cycle.

For each code kernel we derived 18 designs, reflecting
different mapping strategies as well as various unroll factors.
In the Naive mapping all the arrays are mapped to the same
RAM, regardless of the access pattern or the schedule. In the
Custom Data Layout (CDL) [2] arrays are distributed among
different RAMs based on their access pattern, however, ir-
respective of the schedule. In the CAM mapping arrays are
mapped using our algorithm thus taking into account both
the access pattern and how they are scheduled.

Table 1 depicts the timing and area results for the various
designs. In column 2 the value of ’XY’ denotes the loop un-
rolling factors of the two innermost loops. For each mapping
strategy, i.e., Naive, CDL, and CAM, the respective columns
indicate the number of cycles reported by the synthesis tool,
clock period reported by the P&R tool, calculated wall clock
time, number of slices and number of register bits used. Fi-
nally, columns 16-19 reflect the amount of improvement for
the CAM algorithm over the Naive and CDL mappings, in
terms of execution time and number of cycles.

As expected and illustrated by the results, considering



the scheduling leads to a better allocation of resources and
hence to a reduction in the number of execution cycles. The
CAM designs have a clear advantage over their correspond-
ing Naive and CDL designs in all cases, respectively gaining
33.5% and 22.5% fewer cycles on average, in some cases
not even taking advantage of discrete registers. For target
configurable architectures where the clock rate is fixed re-
gardless of the design complexity, the results would reveal
performance improvements for all code variants as derived
from the reduction of the number of clock cycles.

With respect to the clock period, CAM versions suffer
from a 10% average clock degradation compared to CDL
designs. This is mainly due to the complexity of the algo-
rithm as well as the use of scalar replacement that increases
the design size. The CAM algorithm however decreases
the number of clock cycles enough to compensate for the
degradation in the clock rate, gaining an average 33.7% and
15.2% speedup over Naive and CDL designs.

In terms of area, and for cases with no scalar replace-
ment, the performance of CAM is comparable to Naive and
CDL. For the code versions that include some scalar replace-
ment the consumed area in CAM increases due to the use of
registers. However, one must note that we consider the avail-
able storage (area) as an input constraint and find the fastest
design that fits in this area. Therefore we can easily select a
smaller design by changing these constraints if necessary.

In general the performance gains are higher for cases
with a large number of overlapping references, for instance
created by loop unrolling, as CDL maps these references to
the same RAM block. Overall, custom array mapping im-
proves the performance by better utilization of the available
resources, making it an effective mapping algorithm for this
class of configurable computing architectures.

5. RELATED WORK

Proper data mapping is of major importance in increasing
the bandwidth and hence reducing the overall execution time.
The earlier work in [1] describes an algorithm based on a
precedence graph without considering the data access pat-
terns. In contrast the approaches in [2, 5] map the distinct
sections of an array to different RAMs based on the data ac-
cess patterns of array references and regardless of the sched-
ule. Various authors (e.g. [6, 8]) use the scheduling and data
reuse information in order to exclusively map the arrays to
RAM blocks or registers. The work in [3, 11] identifies the
footprint of each array to allocate array variables to memo-
ries, while the approach in [4] describes a methodology to
cache the reusable data in the smaller RAMs. Another body
of work (e.g. [7, 10]) focuses on customizing the local mem-
ory based on the application’s characteristics.

The work described here differs from these efforts in that
it uses a precise notion of access pattern/reuse analysis, ex-

ploits the notion of precedence by focusing on the critical
paths of the computation, and finally uses several compiler
transformations and different storage resources.

6. CONCLUSION

In this paper we described a compiler data mapping algo-
rithm that uses the data access pattern information of array
variables to map them to available storage resources. The
algorithm applies a set of data-oriented transformations and
exploits the available bandwidth guided by the critical path
information in the computation. The preliminary results, for
a set of image/signal processing kernels targeting a Xilinx
FPGA device, exhibit an average 33% and 15% speedup
over the naive and the recently proposed custom data lay-
out mapping approaches.
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