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ABSTRACT 

FPGAs have reached densities that can implement floating-
point applications, but floating-point operations still require 
a large amount of FPGA resources.  One major component 
of IEEE compliant floating-point computations is variable 
length shifters.  They account for over 30% of a double-
precision floating-point adder and 25% of a double-
precision multiplier.  This paper introduces two alternatives 
for implementing these shifters.  One alternative is a coarse-
grained approach: embedding variable length shifters in the 
FPGA fabric.  These units provide significant area savings 
with a modest clock rate improvement over existing 
architectures.  Another alternative is a fine-grained 
approach: adding a 4:1 multiplexer inside the slices, in 
parallel to the LUTs.  While providing a more modest area 
savings, these multiplexers provide a significant boost in 
clock rate with a small impact on the FPGA fabric. 

1. INTRODUCTION 

While modern supercomputers depend almost exclusively 
on a collection of traditional microprocessors, these 
microprocessors have poor sustained performance on many 
modern scientific applications [1].  FPGAs may provide an 
alternative, but scientific applications depend on IEEE 
compliant floating-point computations for numerical 
stability and reproducibility of results.  Increases in FPGA 
density, and optimized floating-point unit designs, have 
made it possible to implement a variety of scientific 
algorithms with FPGAs [2], [3], [4].  In spite of this, there 
are still significant opportunities to improve the 
performance of FPGAs on scientific applications by 
optimizing the device architecture. 

Floating-point units (FPUs) can be embedded in the 
FPGA fabric to provide a large area savings and increased 
clock rates for floating-point based kernels, but they also 

consume 17.6% of the chip [5].  An alternative is to focus 
on less area intensive enhancements to the FPGA fabric 
that improve floating-point units. 

A fundamental component in floating-point arithmetic 
is a variable length and direction shifter.  In floating-point 
addition, the mantissas of the operands must be aligned 
before the computation.  For full IEEE compliance, 
floating-point multiplication and division require 
normalization of the mantissa before and after the 
calculation [6].  Shifters require a series of multiplexers, 
which are currently implemented using LUTs.  In our 
double-precision floating-point cores, the shifter accounts 
for almost a third of the adder and a quarter of the 
multiplier.  Thus, better support for variable length shifters 
can noticeably improve floating-point performance. 

We consider two approaches that optimize the FPGA 
hardware for variable length shifters.  The first approach is 
to embed shifters in the FPGA logic.  Recent FPGAs have 
included embedded units including embedded multipliers, 
block RAMs, and even full microprocessors.  Embedding 
variable length shifters allows configurable logic in the 
FPGA to be used for other purposes and yields a large area 
savings.  The trade-off is an increase in the silicon area that 
is used for dedicated functionality that may not be used by 
all applications. The second approach is to modify the 
general purpose logic of the FPGA by adding a 4:1 
multiplexer in parallel with the traditional LUT.  This 
approach decreases the area required to implement shifters 
in the general purpose logic of the FPGA without wasting 
a significant amount of silicon area. 

To test these concepts, we modified VPR to support 
embedded functional units and high-performance carry-
chains.  VPR was used to place and route benchmarks that 
use double-precision floating-point operations.  The 
benchmarks included matrix multiply, matrix vector 
multiply, vector dot product, FFT, and LU decomposition.  
Each benchmark was tested using three versions of the 
FPGA.  The first is similar to the Xilinx Virtex II Pro [7], 
and is representative of current commercial devices.  The 
second adds embedded shifters, while the third uses 
modified CLBs that have the additional 4:1 multiplexer. 

* Sandia is a multiprogram laboratory operated by Sandia 
Corporation, a Lockheed Martin Company, for the United States 
Department of Energy under contract DE-AC04-94AL85000.  



2. BACKGROUND 

The IEEE-754 standard [8] specifies the floating-point 
numbers used on most computing platforms.  Floating-point 
numbers consist of sign, mantissa, and exponent.  The 
mantissa, f, is multiplied by the base number (two) to an 
exponent, e, as shown in Equation 1 (double-precision). 

 
 ( ) 102321.1 −⋅⋅− ES f=X  (1) 
 

Compliance with the IEEE double-precision format is 
important for cross-platform portability and verifiability; 
double-precision also improves numerical stability. 

Double-precision floating-point has a sign bit, an 11-bit 
exponent and a 52-bit mantissa. Since the mantissa is 
normalized to the range [1,2), there will always be a leading 
one on the mantissa.  The implicit leading one gains a 
single bit of precision, but raises the complexity of floating-
point implementations.  The exponent is represented in a 
biased notation. All stored numbers are “positive”, but have 
been “biased” by half the exponent range.  This 
representation simplifies floating-point comparators. 

The dominant style of FPGAs is the island-style FPGA 
consisting of a two dimensional lattice of CLBs 
(Configurable Logic Blocks).  Connecting the CLBs are 
regular horizontal and vertical routing structures that allow 
configurable connections at the intersections.  In recent 
years, embedded RAMs, DSP blocks, and even 
microprocessors have been added to the island-style 
FPGAs.  However, floating-point applications still require a 
large number of CLBs to perform basic operations. 

3. VPR 

VPR [9] is the leading public-domain FPGA place and 
route tool.  It uses simulated annealing, a timing based 
semi-perimeter routing estimate for placement, and a timing 
driven router.  VPR was used to determine the feasibility of 
the proposed techniques. 

A similar version of VPR was used to test the feasibility 
of coarse grained embedded floating-point units [5].  In 
addition to previous VPR supported types of input pads, 
output pads, and CLBs, the modified version of VPR 
supports multiple embedded blocks.  These embedded 
blocks have parameterizable heights and widths that are 
quantized by the size of the CLB.  Horizontal routing is 
allowed to cross the embedded units, but vertical routing 
only exists at the border of the embedded blocks.  As in 
previous work [5], fast carry-chains were added to insure a 
reasonable comparison.  The synthesis and technology 
mapping approach are covered in the methodology section. 

The baseline FPGA architecture was modeled after the 
Xilinx Virtex-II Pro family of FPGAs and includes most of 
the major elements of current FPGAs (CLBs, 18Kb block 

RAMs, and embedded 18-bit x 18-bit multiplier blocks).  
The CLBs include 4-input function generators, storage 
elements, arithmetic logic gates, and a fast carry-chain.  In 
addition to the standard Xilinx Virtex-II Pro features, the 
architecture incorporates embedded shifters and a modified 
CLB with a 4:1 multiplexer in parallel with the LUT.  The 
various blocks were arranged in a column based 
architecture (Fig. 1. ) similar to modern FPGAs (e.g. [10]).  

The ratio of the number of columns of each component 
type was based on the average requirement for the 
benchmarks and is shown in Table 1.  These ratios are 
based on the average resource requirements, so each 
benchmark be constrained by a different limiting resource.  
The percent of each resource used for each benchmark is 
given in Table 2. through Table 4. where the limiting 
components for each benchmark are shaded. 

The embedded units and fast carry chain are dedicated 
resources that use their own timing parameters.  Embedded 
units can have optional registered inputs and/or registered 
outputs, and are characterized by two timing parameters: 
sequential setup time and sequential clock-to-q.  The 
dedicated route of the carry chain also has its own timing. 

3.1. Component Latency and Area 

The CLBs that were used are comparable to the Xilinx 
slice.  Each CLB has two 4-input function generators, two 
D flip-flops, arithmetic logic gates, and a fast carry-chain.  
VPR uses subblocks to specify the internal contents of the 
CLB. Representing the timing of an unmodified CLB 
required twenty VPR subblocks.  The 4:1 multiplexer 
modification added two VPR subblocks.  Each subblock 
can specify a combinational and sequential logic element 
and has three timing parameters, similar to the embedded 

Table 1.  Ratio of resources for different configurations 
Configuration CLB RAM MULT SHIFT 
CLB & MULT 36 1 1 0 

Embedded Shifters 60 1 2 1 
CLB w/ 4:1 mux 28 1 1 0 

 

 
Fig. 1.  Column based architecture 



units: sequential setup time, sequential clock-to-q, and 
maximum combinational delay.  These timing parameters 
were found in Xilinx data sheets or using Xilinx design 
tools and are shown in Table 5. We also used two 
embedded units that were modeled after the Xilinx Virtex-II 
Pro: an 18x18 bit multiplier and an 18 Kb RAM.  However, 
like the Xilinx Virtex-4 [11], these units are independent of 
each other.  The timing parameters of the embedded 
multipliers and RAMs are based on the Xilinx Virtex-II Pro 
-6 and are shown in Table 5.  

The area (including routing) of the CLB, embedded 
multiplier, and embedded RAM were approximated using a 
die photo of a Xilinx Virtex-II 1000 courtesy of Chipworks, 
Inc.  The areas were normalized by the process gate length.  
All areas are referenced to the smallest component (the 
CLB) and are shown in Table 5.  
 

3.2. Track Length & Delay 

Four different routing track lengths were used: single, 
double, quad, and long, where long tracks spanned the 
entire chip.  The ratio of routing tracks (11:14:21:4) was 
modeled after the Xilinx Virtex-II Pro.  The delay of 
routing in VPR is calculated based on a resistive and 
capacitive model.  Appropriate values for the routing track 
segments were found experimentally by laying out and 
extracting them using Cadence IC design tools. 

 

3.3. Embedded Shifter 

For floating-point operations, the mantissa can be 
shifted by any distance up to the full length of the mantissa.  
Thus, up to 53 bits of shift can be required for IEEE 
double-precision, but shifters tend to be implemented in 
powers of two.  Therefore, shifters of length 32 (for single 
precision) and 64 bits were implemented as shown in Fig. 
6.  

The embedded shifter was designed with five modes 
(shift left, rotate left, shift right logical, shift right 
arithmetic, and rotate right) to increase versatility.  In 
addition, the normalization shifting in floating-point units 
requires calculating a sticky bit.  The sticky bit is the logical 
OR of all of the bits that are lost during a logical right shift.  
The logic to calculate the sticky bit is included in each 
shifter as it adds less than 1% to the shifter size.  

The embedded shifter has a total of 83 inputs and 66 
outputs.  The 83 inputs include 16 control bits, 64 data bits, 
and 3 register control bits (clock, reset, and enable).  The 66 
outputs include 64 data bits and 2 sticky bits (two 
independent sticky bit outputs are need when the shifter is 
used as two independent 32-bit shifters).  The I/O 
connections are evenly distributed around the periphery of 
the shifter and connect to CLB-like connection blocks.  

The benchmark circuits use the embedded shifters in the 
fully registered mode, so only sequential setup time (300 
ps) and sequential clock-to-q (700 ps) were needed:.  
Internally, the combinational delay of the shifter was only 
1.52 ns.  The sequential times were derived from similar 
registered embedded components of the Xilinx Virtex-II 
Pro -6, while the combinational time and the area (0.843 
106 L2) were derived by doing a layout in a 130 nm process.  
The area is 1.27 times the size of the CLB and its associated 
routing, but it does not take into account the area needed for 
additional connections (relative to a CLB) or the area 
needed for connections to the routing structure.  Because 
this area overhead is difficult to estimate, three different 
shifter sizes (two, four, and eight equivalent CLBs) were 
considered.  There were only trivial differences in the area 
and clock rate results (data not shown), so this analysis uses 
size four, which have more connections than one shifter.  

Table 2.  FPGA resource usage (in percent) for baseline 
Benchmark CLB RAM MULT 

Matrix Mult. 75 100 75 
Vector Mult. 89 3 100 
Dot Product 89 0 100 

FFT 84 100 50 
LU 91 67 100 

 
Table 3.  FPGA resource usage (in percent) with shifter 

Benchmark CLB RAM MULT SHIFT 
Matrix Mult. 40 100 38 33 
Vector Mult. 87 6 100 89 
Dot Product 87 0 100 89 

FFT 40 100 25 39 
LU 66 100 75 70 

 
Table 4.  FPGA resource usage (in percent) with 4:1 mux 

Benchmark CLB RAM MULT 
Matrix Mult. 93 100 75 
Vector Mult. 100 3 96 
Dot Product 100 0 97 

FFT 95 100 50 
LU 100 63 94 

    
Table 5.  Embedded component timing and area 

 TSETUP 
[ns] 

TCLK→Q 
[ns] 

Area 
[106 L2] 

Area 
[CLBs] 

CLB 0.32 0.38 0.662 1 
Embedded 
Multiplier 2.06 2.92 11.8 18 

RAM 0.23 1.50 18.5 28 
Shifter 0.3 0.7 0.843 1.27 

 



3.4. Multiplexer 

The fine-grained optimization attempts to enhance 
shifting without impacting the general routing. To 
accomplish this, the only change that was made to the CLB 
was to add a single 4:1 multiplexer in parallel with each 4-
LUT as shown in Fig. 2.  The multiplexer and LUT share 
the same four data inputs.  The select lines for the 
multiplexer are the BX and BY inputs to the CLB.  Since 
each logic block using the unmodified Xilinx Virtex II Pro 
slice has two LUTs, each CLB would have two 4:1 
multiplexers that share their select lines.  For shifters and 
other large datapath elements it is easy to find muxes with 
shared select inputs.  The BX and BY inputs are normally 
used as the independent inputs for the D flip-flops. This 
new usage prohibits that and requires that the input to the D 
flip-flops be from the logic within the CLB.  This trade-off 
prevents increasing the number of inputs to the CLB. 

To test the impact of adding the 4:1 multiplexer, a 4-
LUT and associated logic was laid out and simulated with 
and without the capacitive load of the 4:1 multiplexer.  
Adding the 4:1 multiplexer increased the delay of the 4-
LUT by only 1.83%.  The delay of the 4:1 multiplexer was 
253 ps, which is less than the 270 ps for the 4-LUT from 
the Xilinx Virtex-II Pro -6 datasheet.  The area of the 4:1 
multiplexer was 1.58 109 L2, and adding two of them to 
each CLB increases the size of the CLB by less than 0.5%. 

4. METHODOLOGY 

Five benchmarks were used to test the feasibility of the 
proposed modifications.  They were matrix multiply, matrix 
vector multiply, vector dot product, FFT, and an LU 
decomposition datapath.  All of the benchmarks use double-
precision floating-point addition and multiplication, and LU 
decomposition includes floating-point division.  Each 
benchmark was tested in three FPGA versions.  The first 
version is representative of a modern FPGA and includes a 
combination of CLBs and the embedded 18-bit x 18-bit 

embedded multipliers  The second version adds an 
embedded variable length shifter to the baseline, and the 
third version augments the baseline with a 4:1 multiplexer 
in parallel with the LUT. 

The floating-point benchmarks were written in a 
hardware description language, either VHDL or JHDL [12].  
The benchmarks were synthesized using Synplicity’s 
Synplify 7.6 into an EDIF file.  Technology mapping was 
performed with Xilinx ISE 6.3.  While these are slightly 
older tools, the floating-point units were already hand 
mapped and so only small parts of the design were 
synthesized and/or mapped.  The Xilinx NGDBuild and the 
Xilinx map tool were used to reduce the design from gates 
to slices (which map one-to-one with our CLBs).  The 
Xilinx NCDRead was used to convert the design to a text 
format.  A custom program converted the mapping of the 
NCD file to the NET format used by VPR. 

The benchmarks vary in size and complexity.  Table 6.  
gives the number of components for the benchmarks in the 
baseline architecture. The number of IO, block RAMs, and 
embedded multipliers remain constant for all three versions 
of the benchmarks.  Table 7. gives the number of CLBs and 
embedded shifters for the benchmark versions that use the 
embedded shifters.  Table 7. also shows the number of 
CLBs for each benchmark version that uses the modified 
CLBs and the percentage of the CLBs that make use of the 
4:1 multiplexer modification. Using embedded shifter 
reduces the average number of CLBs by 17.3%.  Similarly, 
the 4:1 multiplexor provides an 8.4% reduction.   

5. TESTING & ANALYSIS 

Even with an extremely conservative estimate of the 
embedded shifter size, adding embedded shifters to modern 
FPGAs significantly reduced circuit size.  As seen in Fig. 3.  
and Fig. 4. , adding embedded shifters reduces average area 

 
Fig. 2.  Bottom half of the CLB with 4:1 mux 

Table 6.  Components for baseline architecture 
Benchmark CLB I/O MULT RAM 

Matrix Mult. 41,502 195 144 192 
Vector Mult. 36,926 2,034 144 4 
Dot Product 36,737 1,492 144 0 

FFT 34,745 590 72 144 
LU 37,634 193 144 96 

 
Table 7.  Components for enhanced architectures 

Embedded Shift Modified CLBs 
 CLB SHIFT CLB CLBs w/ 

4:1 Mux 
Matrix Mult. 36,483 64 39,894 9.9% 
Vector Mult. 30,207 64 33,604 11.7% 
Dot Product 30,018 64 33,403 11.8% 

FFT 27,907 56 30,777 11.7% 
LU 30,506 67 34,145 12.2% 

  



by 14.6% and increases average clock rate by 3.3% 
compared to the baseline benchmarks that only used CLBs 
and embedded multipliers to perform floating-point 
computations.  There was an average increase of 16.5% 
(not shown) in the number of routing tracks used, but this is 
still well within the limits of modern FPGAs (less than 70). 

Only the floating-point units were optimized with the 
embedded shifters – the control and the reminder of the data 
path remained unchanged.  If we consider only the units, 
the embedded shifters reduced the number of CLBs for 
each double-precision floating-point addition by 31% and 
required two embedded shifters.  For the double-precision 
floating-point multiplication, the number of CLBs 
decreased by 22% and two embedded shifters were used as 
shown in Fig. 5.  

Use of the 4:1 multiplexer modification to the CLB also 
showed significant improvements.  Even though only the 
floating-point cores were optimized, there was an area 
savings of 7.3% over the reference benchmarks.  In addition 
to the area savings, there was a speed increase of 11.6%, as 
seen in Fig. 3. and Fig. 4.   Numerous multiplexers are 
known to exist in VHDL datapaths outside of the floating-
point units, and so the size of this advantage should grow if 
this modification was exposed to the synthesis flow. If we 
consider only the floating point units, the addition of the 

multiplexer reduced the size of the double-precision 
floating-point adder by 17% and reduced the size of the 
double-precision multiplier by 10% as shown in Fig. 5.  

6. RELATED WORK 

While there has not been a great deal of work dedicated to 
increasing the efficiency of floating-point operations on 
FPGAs, there has been some work that might be beneficial 
to floating-point operations on FPGAs.  Ye showed the 
benefits for bus-based routing for datapath circuits [13].  
Because IEEE floating-point numbers have 32 or 64 bits 
(single or double-precision) and these signals will generally 
follow the same routing path.  This naturally lends itself to 
bus-based routing. 

Xilinx recently announced their next generation of 
FPGAs; the Virtex-5 replaces the 4-LUTs with 6-LUTs 
[15].  These 6-LUTs would clearly offer the same 
advantage as using a dedicated 4:1 mux, but would also 
consume somewhat more area.  It is likely that the 6-LUTs 
would be more flexible than the dedicated 4:1 mux. 

The embedded multipliers in the Xilinx architectures 
can also implement shifters, but this approach is infeasible 
in modern designs where the multipliers are consumed by 
the floating-point units to do multiplication.  Xilinx 
AppNote 195 also implies that a 56 bit shift would be an 
inefficient technique with regards to silicon area. 

7. CONCLUSION 

The results indicated that adding shifters to the fabric or 
4:1 multiplexers to the CLBs will significantly reduce 
circuit size for floating-point applications with an increase 
in circuit frequency.  The embedded shifter provided an 
average area savings of 14.6% and a clock rate increase of 
3.3%.  The 4:1 multiplexer provided an average area 
savings of 7.3% while achieving an average speed increase 
of 11.6%.  Neither modification significantly increased 
track count.  The embedded shifters are only 1.5% of the 

Fig. 3.  Benchmark clock rates 

Fig. 4.  Benchmark areas 

Fig. 5.  Double-precision floating-point unit  area  



total chip area and the 4:1 multiplexer composed 0.48% of 
the CLB and 0.35% of the total chip area. 
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