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ABSTRACT

In this work we present a new structure for multiplication
in finite fields. This structure is based on a digit-level LFSR
(Linear Feedback Shift Register) multiplier in which the area
of digit-multipliers are reduced using the Karatsuba method.
We compare our results with the other works of the literature
for F397 . We also propose new formulas for multiplication
in F36·97 . These new formulas reduce the number ofF397 -
multiplications from18 to 15. The finite fieldsF397 and
F36·97 are important fields for pairing based cryptography.

Keywords: finite field multiplication, FPGA, pairing
based cryptography.

1. INTRODUCTION

Efficient multiplication in finite fields is a central task in the
implementation of most public key cryptosystems. A great
amount of work has been devoted to this topic (see [1] or
[2] for a comprehensive list). The two types of finite fields
which are mostly used in cryptographic standards are binary
finite fields of typeF2m and prime fields of typeFp, wherep
is a prime (cf. [3]). Efforts to efficiently fit finite field arith-
metic into commercial processors resulted into applications
of medium characteristic finite fields like those reported in
[4] and [5]. Medium characteristic finite fields are fields of
typeFpm , wherep is a prime slightly smaller than the word
size of the processor, and has a special form that simplifies
the modular reduction. Mersenne prime numbers constitute
an example of primes which are used in this context. The
security parameter is given by the length of the binary rep-
resentations of the field elements, and the extension degree
m is selected appropriately. Due to security considerations,
the extension degree for fields of characteristic2 or medium
characteristic is usually chosen to be prime.

With the introduction of the method of Duursma and Lee
for the computation of the Tate pairing (cf. [6]), fields of
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typeF3m for m prime have attracted special attention. Com-
puting the Tate pairing on elliptic curves defined overF3m

requires computations both inF3m and inF36m . In [7] cal-
culations are implemented using the tower of extensions

F3m ⊂ F32m ⊂ F36m

and the inherent parallelism of multiplication in extension
fields is used to accelerate the operations. Hardware designs
and especially FPGA-based ones are suitable platforms for
parallel implementation of algorithms. In that work mul-
tiplications in the first and the second field extensions are
computed via3 and6 multiplications in the ground fields,
respectively, requiring18 multiplications inF397 .

In our current work, which is mostly based on [7], on the
one hand, we use asymptotically fast methods to improve
the performance of multiplication inF397 , and on the other
hand, we propose new multiplication formulas to speedup
multiplication inF36·97 . Using the new formulas, multipli-
cation inF36·97 is done with only15 multiplications instead
of 18. We use the same extension tower, using3 multipli-
cations inF397 to multiply elements inF32·97 , but only 5
multiplications inF32·97 for F36·97 . Our proposed method
has a slightly increased number of additions in comparison
to the Karatsuba method. Notice however that a multiplica-
tion in F397 requires many more resources than an addition,
therefore the overall resource consumption will be reduced.
The details of our method to generate the new formulas have
been omitted to limit the complexity and diversity of mate-
rials in this paper, and have been submitted as another paper
for CHES 2007.

A consistent amount of work has been done on hardware-
based multiplication in finite fields, especially those of char-
acteristic3. The authors of [8] propose a least significant
digit-element (LSDE) multiplier forF3m . This multiplier di-
vides the input polynomials into digits of length D. Whereas
the digits of one input polynomial are processed in parallel,
the digits of the other input polynomial are handled serially.
Then the result is reduced modulo the irreducible polyno-
mial. The same structure has also been used in [7] for multi-
plication inF397 . Our multiplier, on the other hand, is based
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on the digit-serial implementation of LFSR (Linear Feed-
back Shift Register) multiplier which is widely used in the
literature (see [9] or [10]), and performs the modular reduc-
tion during the multiplication. The first contribution of our
current work is the application of the Karatsuba multiplier
inside the digit-multipliers, which results in smaller area for
these multipliers. Our results demonstrate the efficiency of
this design compared to other works. The second contribu-
tion is the application of a method using only5 multiplica-
tions in F32·97 for multiplication in F36·97 . This results in
an area-saving of almost17% compared to the Karatsuba
method which is used in [7].

Our work is organized as follows. Section 2 is devoted
to the general structure of our multiplier forF397 . In Sec-
tion 3 we describe some improvements on the traditional
LFSR multiplier and compare our results with other works
from the literature. In Section 4 the new formulas forF36·97

together with suggestions for a new multiplier are presented,
and Section 5 concludes the paper.

2. MULTIPLICATION IN F397

The finite fieldF397 can be represented as a vector space
overF3. In this representation, elements ofF397 are vectors
of length97 overF3. Addition of elements is computed by
adding corresponding vectors. Multiplication is more com-
plicated, and depends on the selected basis forF397 . There
are two popular bases which are used often in the literature,
namely polynomial and normal bases. A polynomial basis is
generally more suitable for multiplication, hence we choose
this basis in our work.

In the polynomial basis, elements ofF397 are represented
as polynomials of degree at most96 over F3. Two ele-
ments are added by adding of the corresponding polynomi-
als. Multiplication is based on polynomial multiplication
followed by reduction modulo the irreducible polynomial,
which generates the polynomial basis. In our case the irre-
ducible polynomial, which we denote byf(x), is

x97 + x16 + 2. (1)

In the next sections we show the details of polynomial arith-
metic in our designs.

2.1. Arithmetic in F3

The elementa ∈ F3 is represented using the vector(a1, a0)
of two bits such that the elements0, 1, and 2 are (0, 0),
(0, 1), (1, 0), respectively. In this representation the oper-
ations addition, multiplication, and negation (multiplication
by 2) are done, as shown in [11], using Equations 2, 3, and

B0 B1 ... Bm-1

b(x)

A0 A1 ... Am-1

a(x)

M M ... M

Overlap Circuit

cn-1...c1c0

Feedback Circuit

Fig. 1. Structure of a digit-level LFSR multiplier

4, respectively.

(a1, a0) + (b1, b0) = ((a0 ∨ b0)⊕ t, (a1 ∨ b1)⊕ t), (2)

wheret = (a0 ∨ b1)⊕ (a1 ∨ b0)

(a1, a0) · (b1, b0) = ((a1 ∧ b0) ∨ (a0 ∧ b1), (3)

(a0 ∧ b0) ∨ (a1 ∧ b1),

− (a1, a0) = (a0, a1). (4)

The implementation of Equations 2 and 3 is done using 2
LUTs in the FPGA, whereas (4) is only a permutation of
bits.

2.2. Structure of the multiplier for F397

The structure of a digit-level LFSR multiplier is shown in
Figure 1. In this figure the two input polynomialsa(x),
and b(x) are loaded into registersA andB, respectively,
and divided into digits of lengthD. In each clock cycle the
most significant digit ofB is multiplied by the words ofA,
through digit-multipliers specified by M, and added to the
content of the register in the feedback circuit. Inputs to the
digit multipliers are two polynomials of degreeD − 1 in x.
The product is a polynomial of degree2(D − 1). Powers
xD to x2(D−1) of each multiplier must be added to the pow-
ersx0 to xD−2 of the next multiplier. This is done by the
overlap circuit. In each clock cycle the registerB and LFSR
are shifted byD bits to the right. Shifting LFSR to right is
equivalent to multiplication byxD which generates the pow-
ersx97 to x96+D. These powers are reduced modulof(x)
of (1) using the feedback circuit. The name Linear Feedback
Shift Register descends from these feedback structures. For
more information about the digit-level LFSR multiplier and
its costs for classical methods see [10]. In the next section
we discuss our improvements to the traditional LFSR multi-
plier.



3. THE KARATSUBA METHOD

In this section we use asymptotically fast methods to reduce
the size of digit-multipliers. We use a similar approach to
[12] and combine the classical and the Karatsuba methods to
build small digit-multipliers. Two linear polynomialsa1x+
a0 andb1x+ b0 are multiplied classically using the formula

a1b1x
2 + (a1b0 + a0b1)x + a0b0 (5)

with 4 multiplications and1 addition. The same product can
also be computed via

a1b1x
2+((a1+a0)(b1+ b0)−a1b1−a0b0)x+a0b0. (6)

The new formula is called the Karatsuba method (see [13]).
It requires7 operations instead of5, but only3 multiplica-
tions, and uses fewer resources when the coefficientsa0, a1,
b0, b1 are replaced by polynomials. The classical method for
multiplication of two polynomials of degreen − 1 requires
O(n2) operations. Recursive application of the Karatsuba
method reduces the cost of a multiplication toO(n1.59) op-
erations. We represent the classical multiplication of two
polynomials of degreen − 1 by Cn and the method of (6)
by K. The methodsCn for n ∈ N, andK constitute a set
of polynomial multiplication methods. We call this setT.
Using the elements ofT we define the set of recursive mul-
tiplication methodsT∗ which contains the elements ofT and
all recursive combinations of elements ofT

∗. The recursive
combination of the two methodsM andN , for polynomi-
als of lengthsm andn, respectively, is the multiplication
methodMN for polynomials of lengthmn. Let

a(x) = amn−1x
mn−1 + · · ·+ a0, and

b(x) = bmn−1x
mn−1 + · · ·+ b0

be given polynomials. In order to applyMN , we write
these polynomials as

a(x) = Am−1X
m−1 + · · ·+A0, and

b(x) = Bm−1X
m−1 + · · ·+B0,

whereX = xn andA0, · · ·Am−1, B0, · · ·Bm−1 are poly-
nomials of degreen− 1. If the polynomialsAi andBi were
coefficients, the two polynomialsa(x) andb(x) would be
multiplied usingM. The product using the methodMN
consists of several multiplications of the polynomialsAi and
Bi, which are performed usingN . We implement the digit-
multipliers using the elements ofT∗ to reduce their size. Our
approach is similar to [12].

In Table 1 we show the results of implementingF397

multipliers on a XC2VP20-6FF896 FPGA. In this table the
first column is the digit-sizeD. In a digit-level multiplier
with digit-sizeD, inputs are preceded by enough zeros so
that their length becomes a multiple ofD. Hence it is natu-
ral to choose a value ofD such that the difference⌈m/D⌉−

Table 1. Timing and area costs of digit-level LFSR multi-
pliers inF397 for different values of digit-sizeD
D Multiplication # of slices Maximum # of clock

frequency (MHz) cycles = ⌈97/D⌉
1 − 327 300 97
2 C2 800 174 49
4 C4 1716 125 25
7 KC4 2954 111 14
14 KKC4 4006 72 7

m/D is as small as possible. Our values forD are selected
using this criteria and hence differ from other standard val-
ues like multiples of4 in other works (see [8] and [7]). The
string in the second column shows the recursive combina-
tion of the Karatsuba and classical methods which is ap-
plied. It is important to notice that the methodKC2, which
we used for polynomials of degree6, applies to polynomi-
als of length7. Therefore, we add a zero in front of the
polynomial and then remove all the gates containing an op-
eration with the coefficients which are known to be zero.
Hence this multiplier requires fewer resources than a com-
pleteKC2. This point distinguishes our approach from that
in [12]. In the third, fourth, and fifth columns are the num-
ber of slices, maximum working frequency of the multiplier,
and the required clock cycles for our designs.

The results of comparing our results with those in [7] are
shown in Figure 2. Different digit-levels result in different
circuits, which we compare with respect to both time and
area. Area is the number of slices, whereas time is the prod-
uct of clock cycles and minimum period. Both designs are
on the same technology, but the speed grade of the FPGA in
[7] is not available. As it is shown, our designs have better
area-time performance. These improvements result, on the
one hand, by using asymptotically faster methods, and on
the other hand, by integrating the modular reduction stage
into the LFSR. When a small digit-serial multiplier is used
even the small size of a modular reduction must be taken
into account.

4. MULTIPLICATION IN F36·97

Multiplication inF36·97 is done in the same way as in [7], as
a tower of extensions of degrees2 and3, i.e.

F397
∼= F3/(x

97 + x16 + 2)
F32·97

∼= F397/(y
2 + 1)

F36·97
∼= F32·97/(z

3 − z − 1).

The elements ofF32·97 are polynomials of degree1 in s over
F397 , for s a root ofy2 + 1 in F32·97 . The polynomials are
multiplied by applying (6) and then reduced modulos2 +1.
The elements ofF36·97 are polynomials of degree3 in r, a
root of z3 − z − 1 in F36·97 . They are multiplied using the
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Fig. 2. Time vs. area comparisons of our multipliers with
those in [7]

formulas (7) and then reduced modulor3 − r − 1.

(a0 + a1r + a2r
2)(b0 + b1r + b2r

2) =
c0 + c1r + c2r

2 + c3r
3 + c4r

4,where
P0 = (a0 + a1 + a2)(b0 + b1 + b2)
P1 = (a0 + sa1 − a2)(b0 + sb1 − b2)
P2 = (a0 − a1 + a2)(b0 − b1 + b2)
P3 = (a0 − sa1 − a2)(b0 − sb1 − b2)
P4 = a2b2, and
c0 = P0 + P1 + P2 + P3 − P4

c1 = P0 − sP1 − P2 + sP3

c2 = P0 − P1 + P2 − P3

c3 = P0 + sP1 − P2 − sP3

c4 = P4,

(7)

Combining (6), (7) we have the following theorem.

Theorem 1 Letα, β ∈ F36·97 be given as:

α =a0 + a1s+ a2r + a3rs+ a4r
2 + a5r

2s

β =b0 + b1s+ b2r + b3rs+ b4r
2 + b5r

2s.

Let further their productγ = αβ ∈ F36·97 be

γ = c0 + c1s+ c2r + c3rs+ c4r
2 + c5r

2s.

Then the coefficientsc0 · · · c5 of the product can be com-
puted using only15 multiplications inF397 .

Closed-form formulas for this multiplication are shown
in Appendix A. Scalar multiplications are particularly sim-
ple using these formulas. Scalar multiplications are multi-
plications by−1, s, and−s. Negation of coefficients and
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Fig. 3. The proposed structure block for implementing the
formulas of Appendix A

consequently of polynomials is only a permutation of bits,
as seen in Section 2. Indeed multiplication of an element in
F32·97 by s is a permutation, too. Letα = a1s+a0 ∈ F32·97 ,
then

sα = a1s
2 + a0s mod s2 + 1 = a0s− a1.

All of the F397-multiplications can be done in parallel.
This property allows designers to implement as many of
these multipliers as possible, according to their time-area
constraints. On the other hand, these multipliers are used
for other computations such as point addition and doubling
on elliptic curves for pairing-based cryptography. Reading
and writing intermediate values into register files in such ap-
plications is time-consuming. To solve this problem we pro-
pose a new multiplier which is shown in Figure 3. The new
multiplier consists of three pipeline stages, namely, input,
multiplication, and output. During the time of each multipli-
cation inF397 , the input stage loads the coefficientsai andbi
from memory for the next multiplication, and computes the
linear combinations in (8) to computePis. In this time the
output stage adds the last computed productPi to memory
variables according to (9). In this structure the hatched mul-
tiplexers can select either one of their inputs or the sum of
the inputs. In this way all possible multiples of input poly-
nomials can be selected and added to the accumulators.



5. CONCLUSION

In this paper we proposed a new structure for multiplication
in F397 . This structure is based on digit-level LFSR multipli-
ers, where the area of digit-multipliers are reduced using the
Karatsuba method. Another advantage of this approach is
performing the modular reduction during the multiplication.
Our synthesis results showed the performance improvement
compared to other designs in the literature. We have also
presented new formulas for multiplication inF36·97 using
only15multiplications inF397 . When the Karatsuba method
is applied 18 multiplications are required. Furthermore, we
have introduced a feasible hardware structure for realizing
our proposed formulas. Our formulas are for the case that
F36·97 is constructed fromF32·97 using the irreducible poly-
nomialz3 − z − 1. In case that the finite field is constructed
usingz3 − z + 1, the formulas require slight modifications.
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A. MULTIPLICATION FORMULAS FOR F36·97

Let α, β ∈ F36·97 be given as:

α =a0 + a1s+ a2r + a3rs+ a4r
2 + a5r

2
s,

β =b0 + b1s+ b2r + b3rs+ b4r
2 + b5r

2
s,

wherea0, · · · , b5 ∈ F397 ands ∈ F32·97 , r ∈ F36·97 are roots of
y2 + 1 andz3 − z − 1, respectively. Let their productγ = αβ ∈

F36·97 be

γ = c0 + c1s+ c2r + c3rs+ c4r
2 + c5r

2
s.

Then the coefficientsc0 · · · c5 ∈ F397 of the product can be com-
puted using the following formulas.
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P0 = (a0 + a2 + a4)(b0 + b2 + b4)
P1 = (a0 + a1 + a2 + a3 + a4 + a5)

(b0 + b1 + b2 + b3 + b4 + b5)
P2 = (a1 + a3 + a5)(b1 + b3 + b5)
P3 = (a0 + sa2 − a4)(b0 + sb2 − b4)
P4 = (a0 + a1 + sa2 + sa3 − a4 − a5)

(b0 + b1 + sb2 + sb3 − b4 − b5)
P5 = (a1 + sa3 − a5)(b1 + sb3 − b5)
P6 = (a0 − a2 + a4)(b0 − b2 + b4)
P7 = (a0 + a1 − a2 − a3 + a4 + a5)

(b0 + b1 − b2 − b3 + b4 + b5)
P8 = (a1 − a3 + a5)(b1 − b3 + b5)
P9 = (a0 − sa2 − a4)(b0 − sb2 − b4)
P10 = (a0 + a1 − sa2 − sa3 − a4 − a5)

(b0 + b1 − sb2 − sb3 − b4 − b5)
P11 = (a1 − sa3 − a5)(b1 − sb3 − b5)
P12 = a4b4
P13 = (a4 + a5)(b4 + b5)
P14 = a5b5

(8)

c0 = −P0 + P2 + (s+ 1)P3 − (s+ 1)P5−

(s− 1)P9 + (s− 1)P11 − P12 + P14

c1 = P0 − P1 + P2 − (s+ 1)P3 + (s+ 1)P4−

(s+ 1)P5 + (s− 1)P9 − (s− 1)P10+
(s− 1)P11 − P12 − P13 + P14

c2 = −P0 + P2 + P6 − P8 + P12 − P14

c3 = P0 − P1 + P2 − P6 + P7 − P8 − P12

+P13 − P14

c4 = P0 − P2 − P3 + P5 + P6 − P8 − P9 + P11+
P12 − P14

c5 = P0 + P1 − P2 + P3 − P4 + P5 − P6 + P7−

P8 + P9 − P10 + P11 − P12 + P13 − P14

(9)
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