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WIRES ON DEMAND: RUN-TIME

COMMUNICATION SYNTHESIS FOR

RECONFIGURABLE COMPUTING

REFERENCE TO RELATED APPLICATIONS

The present application claims the benefit of US. Provi-

sional Application No. 60/968,091, filed Aug. 27, 2007,

whose disclosure is hereby incorporated by reference in its

entirety into the present application.

The present application is also related to US. Provisional

Application No. 61/084,429, filed Jul. 29, 2008.

STATEMENT OF GOVERNMENT INTEREST

The work leading up to the present inventionwas supported

by United States Air Force Contract No. FA8651-06-C-0126.

The government has certain rights in the invention.

FIELD OF THE INVENTION

The present invention is directed to field-programmable

gate arrays (FPGAs), and more particularly to a method and

system for configuration and reconfiguration of FPGAs dur-

ing run time operations.

DESCRIPTION OF RELATED ART

FPGAs are first introduced by Xilinx, Inc. in 1985. FPGAs

are semiconductor devices that can be programmed and

reprogrammed to perform logic functions. Each FPGA con-

tains hundreds or thousands of duplicated logic gates and

programmable interconnects . A user or designermay compile

a logic function using software provided by the FPGA ven-

dors. The compiling of the logic function creates binary bit-

streams that can be downloaded into the FPGA to instruct the

FPGA’s programmable interconnect to connect the logic

gates to perform the designed logic function.

The FPGA allows the flexibility of reusing the logic gates

for different logic functions by recompiling and reconfigur-

ing the FPGA. However, the configuration memory of an

FPGA is volatile andmust be configured every time the power

is up. When the power is down or off, the FPGA loses its

functionality. Moreover, recompiling and reconfiguration of

an FPGA is time and energy consuming.

Conventionally, whenever an FPGA is reconfigured or

configured, multiple full bitstreams from a designer’s com-

puter are compiled and downloaded to the FPGA. A disad-

vantage is that the full bitstreams cannot be downloaded on

the fly and the operation of an FPGA may have to stop prior

to receiving new full bitstreams. One solution is partial recon-

figuration where parts ofthe FPGA are constant and continu-

ously running while other parts are reprogrammed and recon-

figured.

Contemporary computer engineering tries to develop sys-

tems that create a balance between price, performance,

power, adaptability and the time and cost effort required to

use the technology. An axiom of reconfigurable computing

research is that adding run-time adaptability to hardware can

improve the three P’s: price (by multiplexing the use of a

smaller FPGA), performance and power efficiency. Even if

such objectives are achieved, the significant increase in

design effort works against the main attraction of FPGA

technology. Reconfigurable application development

remains daunting, largely because inter-module communica-

tion requires low-level physical design and is the responsibil-

ity of the designer. Given the effort required to develop non-
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trivial, run-time reconfigurable (RTR) applications, the price/

performance/efliciency return on investment needs to be

substantial. The current approach to partial reconfiguration

leads to an intermodule communication structure that

remains fixed and often consists of one or more buses. How-

ever, the pervasive lesson in high—perforrnance architecture is

the importance of eflicient communication. Because FPGAs

are mostly uncommitted wires, custom, point-to-point com-

munication between dynamically instantiated modules is

desired in order to maximize communication efficiency.

RTR application design would be much easier if module

communication circuitry was automatically synthesized. A

relatively new research area, communication synthesis is an

essential part of system-on-chip design productivity. Com-

mercial communication synthesis tools exist for application-

specific integrated circuit (ASIC) design, such as Sonics’

SMART. Designers need only provide a library of modules

and memories (which often pre-exist as cores), and all con-

nections and physical constraints are automatically gener-

ated. This degree of abstraction is sorely missing for RTR

application development. As with software and static hard-

ware design, reconfigurable applications should be insulated

from rapidly evolving FPGA architectures.

Xilinx’s efforts to promote RTR formed distinct phases

that have some important lessons. Xilinx’s reconfiguration-

friendly XC6200 architecture was the focus ofthe first phase.

Its commercial failure resulted from, among other things,

poor support for reconfiguration in the associated tools, and a

lack of architectural features (such as fast arithmetic) that

designers were accustomed to. The second phase sensibly

focused on reconfiguration tools for mainstream FPGA archi-

tectures, and resulted in the JBits Integrated Development

Environment. Run-time parameterized designs could be

implemented without using the standard Xilinx tools by hav-

ing a Java program configure all logic and connections in a

structural manner. However, most designers were not willing

to forgo the Register Transfer Level (RTL) design abstraction

with familiar Hardware Description Language (HDL) and

timing-driven implementation tools.

Phase three has been in effect since 2002, and provides

rudimentary support for partial reconfiguration in Xilinx’s

mainstream implementation tools by adding constraints and

special bus macros to the modular design flow. In addition to

the manual effort required to insert and place the bus macros,

a number of limitations arise due to the lack of a run-time

environment. A set of reconfigurable regions may be allo-

cated in a design; however they may not be stacked vertically

because different configuration frames would be required for

each combination ofmodules. Each region must be the size of

the largest module that will occupy it. Inter-module routing

resources are also fixed at design time. The constraints ofthis

static approach result in the same inflexibility or resource

waste as static array allocation in programs.As with software,

the solution is dynamic allocation ofreusable resources from

a large pool.

SUMMARY OF THE INVENTION

It is therefore an object of the present invention to provide

a module-based RTR of FPGAs. Another object is to provide

a flexible allocation of logic and wires from a dynamic pool

and run-time adaptable point-to-point communication. It is

also an object of the present invention to leverage existing

design methodologies and tools and focus on streaming appli-

cations.
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According to an aspect ofthe invention, anothermethod for

reconfiguring an FPGA which has a static region and a

dynamic region is provided. The method includes the steps of:

(a) receiving an FPGA reconfiguration request at a server

located externally of the FPGA; (b) computing reconfigura-

tion of the FPGA at the server, using the request and infor-

mation of predetermined modules; and (c) sending partial

bitstreams from the server to the FPGA to reconfigure the

FPGA.

According to another aspect of the invention, yet another

method for reconfiguring an FPGA which has a static region

and a dynamic region is provided. The method includes the

steps of (a) providing a dynamic module library having infor-

mation ofpredetermined modules; (b) receiving a reconfigu-

ration request external to the FPGA; (c) computing a recon-

figuration of the FPGA at a predetermined location using

predetermined module information from the dynamic mod-

ule library and the reconfiguration request, and generating

reconfigurable partial bitstreams; and (d) sending partial bit-

streams from the predetermined location to the FPGA to

perform the reconfiguration.

According to yet another aspect ofthe invention, a dynamic

module system for reconfiguring an FPGA which has a static

region and a dynamic region is provided. The system

includes: (a) an interface for receiving a reconfiguration

request; (b) a datapath manager for receiving the reconfigu-

ration request and information of predetermined modules,

wherein the datapath manager computes placement of mod-

ules inside the dynamic region of the FPGA and their inter-

connections; (c) a channel routing manager connected to the

datapath manager for determining connections between the

dynamic region and the static region; and (d) a bitstream

toolbox connected to the datapath manager and the channel

routing manager and generating reconfigurable partial bit-

stream to the FPGA via the interface.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments ofthe present invention will be set

forth in detail with reference to the drawings, in which:

FIG. 1 is a drawing which shows an exemplary wrapper

structure;

FIG. 2 is a drawing which shows a datapath placement and

channel allocation inside anFPGA according to an exemplary

embodiment of the present invention;

FIG. 3 is a drawing which shows an example of segmented

channel connecting two modules;

FIG. 4 is a schematic drawing which shows a MP3 decoder

structure according to another exemplary embodiment of the

present invention;

FIG. 5 is a schematic drawing which shows a MP3 decoder

implementation;

FIG. 6 is a schematic drawing which shows a run-time flow

of a reconfiguration computing structure according to yet

another exemplary embodiment of the present invention;

FIG. 7 is a drawing which shows a schematic view of a

module-library build flow according to yet another exemplary

embodiment of the present invention;

FIG. 8 is a schematic drawing which shows an exemplary

FPGA application platform using cascaded filters; and

FIG. 9 is a schematic drawing which shows an exemplary

map ofbitstream data on the fly.

DETAILED DESCRIPTION OF THE PREFERRED

EMBODIMENTS

Preferred embodiments ofthe invention will be set forth in

detail with reference to the drawings, in which like reference

numerals refer to like elements or steps throughout.
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The present invention divides the reconfiguration of an

FPGA into two main steps: (1) creating a dynamic module

library during compile-time operations (preprocessing

dynamically instantiated IP) and (2) computing the recon-

figuration external to the FPGA during run-time operations

(placing modules and completing connections). After the

reconfiguration is computed, the system sends partial bit-

streams that represent the reconfiguration function to the

FPGA. The FPGA contains a basic, static region and a

dynamic region. The dynamic region is also called a sandbox

where, as explained below, logic modules are reconfigured,

placed and interconnected during run-time operations.

The dynamic module library may be created during com-

pile time. The library is composed ofpreprocessed IP blocks,

stored in the form of partial bitstreams. Before compilation,

blocks are encased in wrapper structures whose main func-

tion is to provide routing anchor points for block ports.

An exemplary wrapper structure 100 is shown in FIG. 1.

Referring to FIG. 1, the wrapper structure 100 includes two

input ports 101-102, two output ports 103-104, a prepro-

cessed module 110 with input ports 105 and 107 and output

ports 106 and 108, a post-processed module 120, and four

multiplexers 131-134, each having four input ports and one

output port. The solid lines 140 are direct connections. The

dashed lines 150 are dynamic pass-through connections. The

dotted lines 160 are dynamic input or output connections

from opposite sides.

The first multiplexer 131 has an input directly connected to

the input 101 of the wrapper 100 and an output directly

connected to the input 105 of the preprocessed module 110.

Another input of the first multiplexer 131 is dynamically

connected to the input 102 of the wrapper 100. The second

multiplexer 132 has an input directly connected to the input

102 of the wrapper 100 and an output directly connected to

the input 107 of the preprocessed module 110. The second

multiplexer 132 also has an input dynamically connected to

the first input 101 of the wrapper 100.

The third multiplexer 133 has an input directly connected

to the output 106 of the preprocessed module 110 and an

output directly connected to the output 103 of the wrapper

100. The third multiplexer 133 also has an input dynamically

connected to the input 101 of the wrapper 100 as a pass-

through connection so that a signal at the input 101 of the

wrapper 100 can be sent to the output 103 without passing

through the preprocessed module 110. The multiplexer 133

also has an input dynamically connected to the output 108 of

the preprocessed module 110.

The fourth multiplexer 134 has an input directly connected

to the output 108 of the preprocessed module 110 and an

output directly connected to the output 104 of the wrapper

100. The fourth multiplexer 134 also has an input dynami-

cally connected to the output 106 ofthe preprocessed module

110. The multiplexer 134 has another input dynamically con-

nected to the input 102 of the wrapper 100 as a pass-through

connection so that a signal at the input 102 can be sent to the

output 104 without passing through the preprocessed module

110.

With the multiplexers 131-134 and the direct and dynamic

connections shown in FIG. 1, the wrapper 100 has the flex-

ibility to utilize the preprocessed module 110 in various ways

as demanded by a reconfiguration request. More specifically,

the multiplexers 131-134 allow run-time selection among

same-side and opposite-side connections to the ports of the

preprocessed module 110, and pass-through connections for

signals unrelated to the preprocessed module 110.
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A module interface template describes the wrapper struc-

ture required by a particular IP block. Information in the

template includes the port names and ordering, preferred

block dimensions, dataflow direction, and routing options

(such as the number of pass-through connections). IP block

preprocessing takes as its input the module’s port declara-

tions and interface template, and produces HDL and con-

straints for a wrapped module. The mainstream tools are then

invoked to generate one or more bitstreams for the module.

Defining similar interface templates for a set of modules

promotes port alignment when the modules are connected.

Regarding the module placement and channel allocation

during the reconfigurable computation, to reduce the time and

memory requirements of the run-time placement process,

placement occurs at the module level rather than at the gate

level. This reduces the size ofthe problem from placing many

thousands of cells to placing tens of blocks. Previous work

often takes a naive view ofthe architecture by treating module

placement purely as a packing problem and ignoring inter-

module routing, or by considering only the architecture’s

logic element grid, ignoring features such as block random

access memory (BRAM).

The goal of datapath placement is to promote neighbor

connections and reduce routing delays between blocks by

minimizing the lengths ofthe connecting wires. Modules are

first topologically sorted based on their connections. The

precise placement ofmodules depends on the extra resources

required, such as multipliers and BRAM. Datapaths are pri-

marily horizontal or vertical with folds as necessary. Routing

channels are allocated wherever modules do not connect

strictly through abutment. Within the channel, delay estima-

tion is performed based on wire lengths. FIG. 2 shows an

example ofmodule placement and channel routing allocation

in an FPGA.

Referring to FIG. 2, a configuration of an FPGA 200 is

disclosed. In FIG. 2, the FPGA 200 includes a processor 210,

a static logic region 250, and a sandbox 230. The sandbox 230

includes a plurality of dynamic modules 220, sandbox con-

nections 260, a dynamic routing channel 240 and routing

registers 270. The processor 210 is connected to the sandbox

connections 260 to configure the connections of the modules

220 inside the sandbox 230. Inside the sandbox 230, the

dynamic routing channels connect signals received at the

sandbox connections 260 to various modules 220. The size of

the sandbox 230 is preferably chosen by a designer. The

sandbox 230 allows a reconfiguration server to place various

kinds and sizes ofmodules 220 inside the sandbox 230. The

modules 220 inside the sandbox 230 can be interconnected in

any manner using the dynamic routing channels 240.

The purposes of placing or positioning the dynamic mod-

ules 220 in the sandbox 230 are to satisfy special column

alignments for BRAM and digital signal processing (DSP),

promote neighboring modules ’ connections within datapaths,

and to avoid free space fragmentation as modules 220 are

removed or replaced. The purposes for channel-routing are to

route between synchronous anchor points along module port

edges and to achieve route delays of less than one clock

period.

Regarding channel routing allocation, because contempo-

rary FPGAs have a large amount of routing resources avail-

able, general routing is basically a graph search problem. By

contrast, the inter-module routing requirements in the present

invention are limited to the channels reserved between the

input/output ports of adjacent modules. This approach per-

mits routing with constructive algorithms based on templates

that specify the sequence of wire segments to use.
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FIG. 3 shows an example of how a channel connection

between two neighboring modules might be realized. FIG. 3

shows Module A (300), Module B (310) and available seg-

mented channel routes 320 between the Modules A and B.

The solid lines 330 are used segments ofthe channel. Dashed

lines 320 are unused segments. The dark rectangles 340 are

joined segments.

Returning to the issue of channel allocation in an FPGA,

the channel routing procedure utilizes an abstract architecture

that represents a subset of the wires and connections present

in a configurable logic block (CLB). By deriving the subset

from resources common to two or more FPGA families, the

abstract architecture allows channel routing to be treated in an

architecture independent manner. The wires consist of unidi-

rectional segments which span three CLBs and travel north,

south, east or west. EachCLB contains the start, midpoint and

end for ten segments in each direction. Connectivity in the

abstract switch matrix is rich enough to support complex

channels. After all signals have been routed in terms of the

abstract architecture, routes are mapped to the corresponding

resources in the actual architecture.

In addition to the local wires used for channel routing, the

use of long lines for run-time connections is also considered.

In the Xilinx Virtex-II/Pro architecture, long lines span the

entire chip width or height as continuous segments, while in

the V1rtex-4 and -5 families, they span 25 and 19 CLBs,

respectively. Long lines are attractive in that they are not

essential resources for routing within modules. Unfortu-

nately, they suffer from sparse connectivity among CLBs,

lean connectivity to other wires within a CLB, and low den-

s1ty.

The low density of long lines may be prohibitive for mod-

ules having wide data ports. Long lines may be more useful

for control signals related to run-time housekeeping. Such

communication might include a signal from a controller

instructing a module to suspend or complete the current

operation and prepare to be relocated or removed.

The following presents an example that demonstrates the

feasibility of flexible module placement and communication

over dynamic routes. The choice of an MPEG-1 Layer 3

(MP3) audio decoder as the application was motivated by the

algorithm’s reliance on streaming data transfer between sig-

nal-processing stages. As shown in FIG. 4, the decoder 400 is

a system-on-chip with a 36-point inverse modified discrete

cosine transform (IMDCT) core. The module is faster than

the software IMDCT function by a factor of 2.54 (including

communication overhead), and speeds up the overall decod-

ing process by a factor of 1.13.

In FIG. 4, the MP3 decoder 400 includes an interface

region and the FPGA region. The interface region includes

the host PC interface logic 402, two general-purpose input/

output (GPIO) units 406, a timer 408, an external memory

controller 410, and a 2 MB static random access memory

(SRAM) 404. The FPGA region includes a MicroBlaze 412,

IMDCT result first-in, first-out (FIFO) unit 414, and a sand-

box 416 which is equivalent to the sandbox 230 in FIG. 2.

The host PC interface logic 402 receives the MP3 stream

and sends the PCM stream. The host PC interface logic 402 is

connected to the GPIO units 406. The external memory con-

troller 410 is connected to the 2 MB SRAM 404. The Micro-

Blaze 412 is connected to the GPIO units 406, the timer 408,

and the external memory controller 410 via the on-chip

peripheral bus (OPB). The MicroBlaze 412 has a fixed point

software decoder 413 and FSL input/output ports. An output

port ofthe MicroBlaze 412 is connected to input anchor-point

port 424 of the sandbox 416. The sandbox 416 has an output

anchor-point port 423 connected to the IMDCT Result FIFO
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414, which sends signals to an input port of the MicroBlaze

412. The sandbox 416 includes dynamic routes, anchor-point

ports 422-423, and a dynamic IMDCT module 426. The

IMDCT module 426 includes a module interface logic 418

and an IMDCT core 420. The module interface logic 418 is

connected to the dynamic routes of the sandbox 416 Via the

input/output anchor-point ports 424-425.

In operation, the host PC interface logic 402 sends an MP3

partial bitstream to the MicroBlaze 412 Via the GPIO 406.

The MicroBlaze 412 then sends the MP3 partial bitstream to

the sandbox 416 to configure the modules and their connec-

tions inside the sandbox 416.

FIG. 5 shows the MP3 decoder implementation on a Xilinx

Virtex-II XC2V4000 FPGA. Because the module does not

communicate with other dynamic modules, it uses long-line-

specific anchor points rather than the wrapper described

above. Through run-time-generated partial bitstreams, the

IMDCT module is dynamically loaded, removed, and verti-

cally repositioned within the sandbox region. By coordinat-

ing the reconfiguration with the software application, these

changes can take place while other phases of the decoding

process continue in software. Due to the long lines’ sparse

connection points, the module is restricted to nine positions

within this sandbox, occurring at intervals of six CLBs.

Streams are correctly decoded with the module absent or in

any of the positions.

The IMDCT module utilizes two BRAMs and one 18x18

multiplier cell. Four distinct vertical alignments ofthese cells

can occur within the module, depending on its placement. To

address alignment, the module is implemented and stored for

all four possibilities at build time. When generating a partial

bitfile for a particular vertical position, the run-time tools

draw from the appropriate implementation. Note that, due to

the six-CLB relocation restriction, only two distinct cell

alignments occur in this design.

Dynamic route timing is managed with a simple, conser-

vative approach. In FIG. 4, each dynamic net is “bookended”

by registers on both end points. By establishing at design time

that the worst-case dynamic route delay is less than one clock

period, no timing consideration is required at run-time. The

mainstream tools implement and verify timing for routes

outside the bookend registers.

A data-push protocol accommodates the two-cycle latency

introduced by the bookend registers without the loss of

throughput. The hardware and software interfaces guarantee

that the receiver can always accommodate the number ofdata

items to be transferred. This guarantee eliminates the need for

handshaking signals from the receiver, allowing either sender

to push one 32-bit sample per clock cycle.

Anchor points are the bridge between static and dynamic

routes. Hard macros instanced by a build-time flow include

physical module pins. Dynamic nets are bookended by reg-

isters within the anchor points. This allows a synchronous

boundary between static and run-time timing verification. In

addition, mainstream tools can verify timing for static routes

at build time. The run-time framework manages timing

between bookend registers, in which dynamic routes need

only attain a delay less than one clock period and conservative

delay estimates for the router’s wire segments. Typically

there is no timing pressure for the router, thus allowing ample

slack. For long-haul routes, the router may instance addi-

tional registers. For maintaining the communication perfor-

mance, protocols that accommodate bookend latency are

used for module interface logic. Protocols and interfaces are

designed for streaming transfers with no throughput compro-

mise.
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FIG. 6 shows a schematic overview of a reconfiguration

system 600 for computing the reconfiguration of an FPGA

during run-time operations, according to an exemplary

embodiment of the present invention. The reconfiguration

system 600 includes a dynamic module library storage 610, a

dynamic module server 620, and an application platform 630

having an FPGA 631 to be reconfigured.

The dynamic module library storage 610 includes logic-

gate Modules A through Z. Each module is preprocessed and

contains a partial bitstream, physical annotation, and catalog

data of the module. Physical annotation is an Extensible

Markup Language OiML) file created by the preprocessor for

each module. The XML file describes the dimensions of the

module, location of the ports on the module’s wrapper, and

any special resource or alignment requirements for the mod-

ule.

The dynamic module server 620 includes a reconfigurable

communication interface 621, a reconfigurable supervisor

622, a library manager 623, a bitstream toolbox 624, a placer

625 and a router 626.

The application platform 630 includes the FPGA 631, an

application base full bitstream 632, a SelectMap/ICAP 633,

an application controller 634, and a reconfigurable commu-

nication interface 635. The interface 635 of the application

platform sends signals to and receives signals from the inter-

face 621 ofthe server 620. The application controller 634 may

be located within the FPGA 631 or external to the FPGA 631.

FIG. 6 further includes an Application Base Full Bitfile 640

with physical annotation 660 and Application Datapath Defi-

nitions 650 connected to the dynamic module server 620. The

Application Datapath Definitions 650 defines the sandbox

dimensions, resources available such as memory and DSP

blocks, and input/output port locations.

The main function of the dynamic module server 620 is

three fold: datapath management, channel routing, and bit-

stream interfacing. With datapath management, the server

takes a reconfiguration request from a designer, selects the

dynamic modules available in the module library 610 to carry

out the request and determines placement of the selected

modules in the sandbox inside the FPGA 631. The server 620

then performs the channel routing, i.e., determining how the

selected modules are interconnected and how they are con-

nected to the devices in the static region and the input/output

ports of the FPGA 631. The server 620 subsequently sends

bitstreams that represent the reconfiguration task to the appli-

cation platform 630 via the interfaces 621 and 635 in order to

execute the reconfiguration of the FPGA 631. The operation

ofthe server 620 occurs during the run time ofthe FPGA 631.

In operation, initially the application platform 630 receives

a request for reconfiguration of the FPGA 631 from a

designer. The device making the request could be a processor

external to the FPGA 631, or an embedded processor within

the FPGA 631. Upon receiving the reconfiguration request,

the application platform 630 sends the request to the dynamic

module server 620 via the reconfigurable communication

interfaces 621 and 635.

In the dynamic module server 620, the reconfiguration

supervisor 622 receives the reconfiguration request via the

interface 621, a list of available datapaths for the application

ofthe request from the Application Datapath Definitions 650,

and a list of available dynamic modules A-Z from the module

library storage 610. After analyzing the request and utilizing

the information about the available modules and datapaths,

the reconfiguration supervisor 622 selects the modules and

datapaths and sends a module request to the placer 625. Upon

receiving the module request, the placer 625 retrieves

selected modules from the module library storage 610 and
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physical annotation of the selected modules. The placer 625

determines how the selected modules are placed in the sand-

box in the FPGA 631 and sends information regarding the

module placement, module and variant identifications to the

bitstream toolbox 624.

The router 626 receives the module connections and pin

locations from the placer 625 and sends modifications of

programmable interconnect points (PIP) and lookup tables

(LUT) to the bitstream toolbox 624. The bitstream toolbox

624 gathers the data from the placer 625 and router 626,

module information from the library storage 610, and a full

bitstream of the Application Base Bitfile 640, and generates

partial bitstreams to the FPGA 631 Via the interfaces 621 and

635. The partial bitstream reconfigures the FPGA 631 accord-

ing to the reconfiguration request.

The reconfigurable communication interfaces 621 and 635

may be a physical interface, e.g., an Ethernet connection,

between different computer systems, or just a logical inter-

face between the application platform and the dynamic mod-

ule server software components running on the same com-

puter system. The reconfiguration interface 635 is available to

the FPGA application platform 630 via a network or on-board

link, and to a command line shell on the server workstation.

The module server 620 thus presents a generic interface for

RTR requests because it gets a list of datapaths available for

the application, a list of available modules A-Z from the

library 610, a list ofdatapaths currently in the system and a list

ofmodules present in a datapath. The server 620 also adds or

removes a datapath, replaces a module in a datapath, gener-

ates partial bitstreams that cover all changes since last bit-

stream.

FIG. 7 shows an overview of the compile-time flow 700

that builds the dynamic module library 610. The compile-

time flow 700 includes input files 710, a preprocessor 720,

intermediate files 730, and output files 750. The input files

710 include module source files 712 (such as HDL/EDIF/

NGC) and prepared module template file 714 describing the

modules. The preprocessor 720 is connected to receive infor-

mation from the module source files 712 andmodule template

file 714 and produces the intermediate files 730 and output

files 750. The intermediate files 730 include a top-level UCF

732, top-level HDL 734, wrapper structure HDL 736, and

makefiles and scripts 738. The intermediate tools 730 also

includes Xilinx tools 740 which is connected to receive infor-

mation from the top-level UCF 732, top level HDL 734,

wrapper structure HDL 736 and makefiles and scripts 738.

The Xilinx tools 740 send a bitfile 742 to the post-processor

744. The module bitfile 742 is processed by the bitstream

toolbox in the post-processor 744. The output files 750

include a module catalog data 752, variant-specific physical

annotation 754, and module bitfile 756.

In operation, the compile-time flow 700 creates a folder

structure to store the dynamic modules, executes the prepro-

cessor 720 and platform implementation tools 740, and calls

the postprocessor 744. The output ofthe operation is a partial

bitstream, which includes only the configuration bits, and an

XML description file, both ofwhich are stored in the dynamic

module library for use during the run-time operations.

FIG. 8 shows an exemplary FPGA application platform

800 according to yet another embodiment of the present

invention. The application platform 800 includes the recon-

figuration communication interface region 810 which

includes an OffChip Components region 811 having a 64 MB

SDRAM 812 and Ethernet PHY 813. The communication

interface region 810 also includes an external memory con-

troller 814, an Ethernet MAC 815, an internal configuration

access port (ICAP) 817, and an ICAP controller 816. The 64
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MB SDRAM 812 is connected to the external memory con-

troller 814. The Ethernet PHY 813 is connected to the Ether-

net MAC 815. The ICAP controller 816 is connected to con-

trol the internal ICAP 817.

The application platform 800 further includes a Micro-

Blaze 820, three datapath input interfaces 830, three output

datapath interfaces 840, and a sandbox region 850. The

MicroBlaze 820 of the FPGA has an on-chip peripheral bus

(OPB) interface port connected to the external memory con-

troller 814, Ethernet MAC 815, and ICAP controller 816. The

MicroBlazer 820 also has FSL master ports and FSL slave

ports. The master ports send information to the three datapath

input interfaces 830 while the slave ports receive information

from the three datapath output interfaces 840.

The sandbox 850 includes three input port anchor points

851 for three independent datapaths and three output port

anchor points 852, a dynamic low-pass module 853, and a

dynamic high-pass module 854. The dynamic low-pass mod-

ule 853 includes an input port anchor point 855, output port

anchor point 856, a module interface logic 857 connected to

a low-pass FIR filter core 858. The dynamic high-pass mod-

ule 854 includes an input port 859, an output port 860, a

module interface logic 861 connected to a high-pass FIR filter

core 862. The low-pass module 853 and high-pass module

854 are connected in cascade. In the sandbox 850, solid lines

863 are static connections and dashed lines 864 are dynamic

connections. The input ports 851 for the three independent

datapaths are dynamically connected to the module interface

logic 857 of the dynamic low-pass module 853. The module

interface logic 857 then sends the data to the module interface

logic 861 of the dynamic high-pass module 854. The module

interface logic 861 of the high-pass module 854 sends a

dynamical output signal to the output ports 852 of the sand-

box 850 to the datapath output interfaces 840.

The dynamic filter modules 853 and 854 may be single-

channel FIR filters. The modules 853 and 854 may incorpo-

rate BRAM and DSP48 Slices. The platform may be a Vir-

tex-4 platform such as an Avnet/Memec V4LX60 MB board

containing a Xilinx XC4VLX60 FPGA. The input and output

ports 851, 852, 855, 857, 859, and 860 are port anchor points

with bookend registers.

The present invention with the partial bitstreams and

reconfiguration computing external to the FPGAs allows

reconfiguration on the fly. FIG. 9 shows how the bitstreams on

the fly flow when the sandbox 850 is empty and when the

low-pass filter module 853 and high-pass filter module 854

are added to the datapath in the sandbox 850. With the partial

bitstreams generated by the dynamic module server 620 in

FIG. 6, such in-house bitstream tools enable rapid system

composition.

The present invention provides numerous capabilities. For

example, the present invention provides the following capa-

bilities for the Xilinx Virtex-II (Pro) andVirtex-4: block copy/

mask module instantiation; individual PIP control in all gen-

eral interconnect tiles and select global clock tiles; assign

LUT functions; read/write for full, active partial and inactive

partial bitstreams; and graphical and text-based maps ofcon-

figuration data including a surrogate for FPGA Editor graph-

1cs.

Table 1 below shows the performance ofthe dynamic mod-

ule server. In this instance, the server platform specifications

include Intel Pentium M 1.6 GHZ, 512 MB RAM. The execu-

tion time includes: reading module bitfiles and ancillary data

from hard disk files and writing partial bitstream to memory

in preparation for network transfer, not to a disk file.
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TABLE 1
 

Remove second

filter module

Create datapath with

two FIR filter modules

 

 

Reconfiguration Request in empty sandbox from the datapath

Number of channels routed 3 1

Datapath analysis and 102 ms 86 ms

module placement

Routing 360 ms 191 ms

Bitstream Generation 557 ms 435 ms

Miscellaneous Tasks 121 ms 98 ms

Total Time (from request to 1140 ms 810 ms

completed bitstream)

 

In the present invention, four application platforms are

targeted: a standalone FPGA, an FPGA with an external

processor, an external server network connected to multiple

FPGAs, and a server controlling a cluster ofFPGAs. It should

be noted that the application platforms are not limited to only

these four platforms. Across all platforms, the user applica-

tion does not necessarily directly manage any reconfiguration

or relocation that is taking place. The application program-

ming interface (API) provided to reconfigurable applications

hides the location of the configuration control and data. For

example, loading a partial bitstream is a basic function in all

platforms, although the source of the bitstream may be local

(for the standalone and embedded variants) or from a server

(for the networked and cluster environments). When an appli-

cation is ported from one platform to another, the basic inter-

face does not change even though new services may be

requested such as module relocation.

In the standalone variant a single FPGA reconfigures itself,

preferably through a processor or controller on the FPGA.

The processor or controller loads bitstreams through the

internal configuration access port from internal or external

memory, and could use configuration flash to store partial

bitstreams. The on—board controller has relatively modest

computing power, which limits its operations to simple mod-

ule loading and swapping. This platform suits small FPGAs

with few dynamic regions, such as those that might be used in,

for example, a micro unmanned aerial vehicle (UAV). An

on-board controller monitors external signals and requests

from the modules currently instantiated on the chip.

The embedded variant is similar to the standalone plat-

form, except that the controller is external to the FPGA. This

increases the space available for reconfiguration on the

FPGA, allowing more application modules to be managed. A

coprocessor architecture is provided, wherein a general-pur-

pose processor serves as both the module controller and the

host processor, while the FPGA accelerates specialized pro-

cessing tasks. Software defined radio (SDR) systems could

also leverage this variant’s ability to use a controller to swap

waveforms, as defined by partial bitstreams, without inter-

rupting SDR operation.

The present invention disclosed above provides a module-

based RTR of FPGAs, flexible allocation of logic and wires

from a dynamic pool, and run-time adaptable point-to-point

communication. The present invention also provides a library

of modules managed by an RTR server, automated tool flow

and architecture independent framework. Finally, the inven-

tion focuses on streaming applications and using leverage

existing design methodologies and tools.

While preferred embodiments of the invention have been

set forth above, those skilled in the art who have reviewed the
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present disclosure will readily appreciate that other embodi-

ments can be realized within the scope of the invention. For

example, although the term “reconfiguration” is used

throughout the disclosure herein, but it should be understood

that the present invention is applicable equally to the configu-

ration of the FPGAs at power up. Also, numerical values are

illustrative rather than limiting. Therefore, the present inven-

tion should be construed as limited only by the appended

claims.

We claim:

1. A method for reconfiguring an FPGA which has a static

region and a dynamic region, the method comprising:

(a) receiving an FPGA reconfiguration request at a server

located externally of the FPGA;

(b) computing reconfiguration of the FPGA at the server,

using the request and information of predetermined

modules; and

(c) sending partial bitstreams from the server to the FPGA

to reconfigure the FPGA;

wherein the dynamic region is configured such that the

modules to be located in the dynamic region are not

constrained to lie within regions defined within the

dynamic region, but instead may be placed as resources

in the dynamic region allow.

2. The method of claim 1, further comprising:

(d) providing a dynamic module library having the prede-

termined module information.

3. The method ofclaim 2, wherein step (d) ofproviding the

dynamic module library is performed during compile time;

and step (b) of computing the reconfiguration is performed

during run time.

4. A method for reconfiguring an FPGA which has a static

region and a dynamic region, the method comprising:

(a) receiving an FPGA reconfiguration request at a server

located externally of the FPGA;

(b) computing reconfiguration of the FPGA at the server,

using the request and information of predetermined

modules; and

(c) sending partial bitstreams from the server to the FPGA

to reconfigure the FPGA;

wherein step (b) of computing the reconfiguration com-

prises:

(b-l) selecting a list of modules using the predetermined

module information;

(b-2) determining placement of the modules in the

dynamic region of the FPGA using the list of selected

modules and the reconfiguration request;

(b-3) determining connections among the selected mod-

ules;

(b-4) determining channel routing between the selected

modules in the dynamic region and the static region;

(b-5) generating the reconfigurable partial bitstreams using

information generated from steps (b-2), (b-3) and (b-4).

5. The method of claim 4, wherein the partial bitstreams

perform placement of the selected modules inside the

dynamic region of the FPGA, interconnect the modules, and

create channel routing between the static region and the

dynamic region.

6. A method for reconfiguring an FPGA which has a static

region and a dynamic region, the method comprising:

(a) providing a dynamic module library storing predeter-

mined modules;

(b) receiving a reconfiguration request external to the

FPGA;

(c) computing reconfiguration of the FPGA at a predeter-

mined location using the reconfiguration request and the
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predetermined module information from the dynamic

module library, and generating reconfigurable partial

bitstreams; and

(d) sending partial bitstreams from the predetermined loca-

tion to the FPGA to perform the reconfiguration;

wherein the dynamic region is configured such that the

modules to be located in the dynamic region are not

constrained to lie within regions defined within the

dynamic region, but instead may be placed as resources

in the dynamic region allow.

7. The method of claim 6, wherein the dynamic module

library is created at compile time; and wherein step (c) is

performed during run time of the FPGA.

8. The method ofclaim 7, wherein the predetermined loca-

tion is a dynamic module server.

9. The method of claim 6, wherein step (c) comprises:

(c-l) retrieving a list of datapaths available in the FPGA;

(c-2) selecting modules from the predetermined modules

for the reconfiguration; and

(c-3) determining placement and connections of the

selected modules in the datapaths.

10. The method of claim 9, wherein the predetermined

location comprises an interface for receiving the reconfigu-

ration request and for sending the partial bitstreams to the

FPGA.

11. A method for reconfiguring an FPGAwhich has a static

region and a dynamic region, the method comprising:

(a) providing a dynamic module library storing predeter-

mined modules;

(b) receiving a reconfiguration request external to the

FPGA;

(c) computing reconfiguration of the FPGA at a predeter-

mined location using the reconfiguration request and the

predetermined module information from the dynamic

module library, and generating reconfigurable partial

bitstreams; and

(d) sending partial bitstreams from the predetermined loca-

tion to the FPGA to perform the reconfiguration;

wherein the dynamic module library comprises a plurality

of wrapper module structures, each module having a

pre-processed module, a plurality ofmultiplexers, and a

plurality of input and output ports, wherein the pre-

processed module, the multiplexers and the input and

output ports are interconnected.

12. A dynamic module system for reconfiguring an FPGA

which has a static region and a dynamic region, comprising:

an interface for receiving a reconfiguration request;

a manager for receiving the reconfiguration request and

information ofpredeterminedmodules, and determining

placement and connections of modules inside the

dynamic region of the FPGA; and

a bitstream toolbox connected to the manager and gener-

ating a reconfigurable partial bitstream to the FPGA via

the interface;
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wherein the manager is configured such that the modules to

be located in the dynamic region are not constrained to

lie within regions defined within the dynamic region, but

instead may be placed as resources in the dynamic

region allow.

13. The dynamic module system of claim 12, wherein the

manager comprises:

a datapath manager for determining the placement of the

modules; and

a channel routing manager for determining the connections

of the modules.

14. The dynamic module system of claim 13, wherein the

datapath manager further receives bitstreams that define con-

figuration of the static region in the FPGA.

15. A dynamic module system for reconfiguring an FPGA

which has a static region and a dynamic region, comprising:

an interface for receiving a reconfiguration request;

a manager for receiving the reconfiguration request and

information ofpredetermined modules, and determining

placement and connections of modules inside the

dynamic region of the FPGA;

a bitstream toolbox connected to the manager and gener-

ating a reconfigurable partial bitstream to the FPGA via

the interface; and

a reconfigurable supervisor connected between the inter-

face and the datapath manager, the reconfigurable super-

visor receiving the reconfiguration request from the

interface and the predetermined module information,

and generating a module request to the datapath man-

ager;

wherein the manager comprises:

a datapath manager for determining the placement of the

modules; and

a channel routing manager for determining the connections

of the modules; and

wherein the datapath manager further receives bitstreams

that define configuration of the static region in the

FPGA.

16. The dynamic module system of claim 15, wherein the

reconfigurable supervisor further receives information

regarding dimensions and resources ofthe dynamic region of

the FPGA.

17. The dynamic module system of claim 16, wherein the

datapath manager comprises a placer for selecting modules

for the dynamic region from the predetermined module infor-

mation and determining placement and connections of the

selected modules.

18. The dynamic module system of claim 17, wherein the

placer further receives physical annotation information ofthe

selected modules.

19. The dynamic module system of claim 18, wherein the

datapath manager further comprises a router connected to the

placer and generating interconnecting information to the bit-

stream toolbox.


