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ABSTRACT

In recent years the financial world has seen an increasing de-
mand for faster risk simulations, driven by growth in client
portfolios. Traditionally many financial models employ Mo-
nte-Carlo simulation, which can take excessively long to
compute in software. This paper describes a hardware im-
plementation for Collateralized Debt Obligations (CDOs)
pricing, using the One-Factor Gaussian Copula (OFGC) mo-
del. We explore the precision requirements and the resulting
resource utilization for each number representation. Our re-
sults show that our hardware implementation mapped onto a
Xilinx XC5VSX50T is over 63 times faster than a software
implementation running on a 3.4 GHz Intel Xeon processor.

1. INTRODUCTION

In the past few years there has been a growing demand for
computationally intensive financial calculations. This de-
mand can generally be attributed to the increasing number of
financial instruments within a client’s portfolio and the ever
present need to make real-time decisions. Recently, one of
the fastest growing instruments has been Collateralized Debt
Obligations (CDOs). Their total global issuance has more
than tripled from US$157 Billion in 2004 to US$552 Bil-
lion in 2006, and despite the recent sub-prime US mortgage
crisis, the 2007 issuance still surpassed US$485 Billion [1].

The mechanism behind a CDO allows financial institu-
tions to mitigate the dangers of owning a portfolio with high
risk debt assets (such as sub-prime mortgage loans) by sell-
ing the risk to investors. In a typical CDO, multiple assets
are combined into a Collateral Pool, which is repackaged
into different risk/profit CDO tranches, with each tranche
covering a certain percentage of the monetary amount within
the pool, and the tranches are sold to investors in return
for interest payments. The investor keeps receiving inter-
est payments as long as there are no losses within the pool.
However if a loss occurs, i.e., one of the loans defaults, the
investors that own the riskiest tranche start losing their in-
vested principal. When the losses exceed the amount cov-

ered by the current tranche, the next riskiest tranche starts
being affected.

This process of reselling debt has proven to be an effi-
cient way for a bank to transfer credit risk to the investors,
generate money through tranche sales, and shrink its own
balance sheet. A critical component in the process is being
able to accurately price the cost of a given tranche in real-
time, i.e., predicting how many assets will default by a given
time interval. Over the recent years, multiple models have
been proposed for CDO pricing. These models commonly
try to leverage between accuracy and speed. The models can
be divided into two categories: more generic slower (in soft-
ware) Monte-Carlo models [2] and faster more restrictive
analytical models [3]. Despite the speedups provided by an-
alytical models, the Monte-Carlo pricing remains widely in
use due to its flexibility and applicability to a general CDO
portfolio without having to make any assumptions regarding
the data. One of the most widely used Monte-Carlo models,
due to its simplicity and flexibility, is the One-Factor Gaus-
sian Copula (OFGC) first introduced by Li [2].

Previous works in hardware acceleration of financial sim-
ulation have focused on single option pricing [4][5], inter-
est rates [6], and Value-at-Risk simulations [7]. All these
works have focused on pricing individual instruments. To
our knowledge we are the first to attempt credit derivative
pricing, which requires a different model to calculate over-
all losses within a portfolio.

In this paper, we propose a hardware implementation
of Li’s model, which provides a significant speedup over
the software implementation by exploiting fine-grain paral-
lelism within the model. Our main contributions are:

• A simulation architecture that allows simultaneous off-
chip data transfers and computations,

• A pipelined hardware implementation of the OFGC
model,

• A detailed examination of the precision requirements
for the data and the resulting resource utilization,



• A comparison between the software implementation
running on a 3.4 GHz Pentium Xeon processor and
five fixed-point cores running on a Virtex 5 XC5SX50T
chip, resulting, on average, in over 63-fold speedup.

The paper structure is as follows. Section 2 provides a de-
tailed description of a CDO mechanism. Section 3 presents
the OFGC model. Section 4 describes the hardware imple-
mentation. Section 5 reports the results of our implementa-
tion. Section 6 summarizes our results.

2. COLLATERALIZED DEBT OBLIGATION

A typical financial company can own a variety of risky debt
obligations as part of its asset portfolio, such as: bonds,
loans, credit default swaps (CDS), and even CDOs. To mit-
igate the risk associated with debt obligations the financial
company, termed thesponsor, creates a separate entity called
a Special Purpose Vehicle (SPV), to isolate CDO investors
from its own credit risk. The sponsor then either sells the
actual debt obligations to the SPV, or just the risk associated
with them, while the actual assets stay with the sponsor.

The SPV groups all the debt obligations into a Collat-
eral Pool and issues tranches to the investors as shown in
Fig. 1. Each tranche has an attachment and a detachment
point. When the cumulative losses in the Collateral Pool ex-
ceed the attachment point of a given tranche, the investors in
the tranche start to lose their principal, and when the cumu-
lative losses reach the detachment point, the investors in the
tranche lose their entire investment. However, for the life-
time of the tranche, the investor receives interest payments
on the remaining principle [8].

Each tranche has a different risk factor. As can be seen
from Fig. 1, the Equity tranche, with the 0% attachment
point, is the riskiest tranche, while the Super Senior tranche,
with the 12% attachment point, is the safest. Using the at-
tachment and detachment points alongside the expected pool
losses, each tranche can be priced.

3. ONE-FACTOR GAUSSIAN CUPOLA MODEL

In 2000, Li [2] introduced a Gaussian Cupola model for
estimating Collateral Pool losses. The flexibility and the
simplicity of the model established it as one of the most
prominent methods of pricing CDOs. However, its main
drawback is that it uses Monte-Carlo paths to calculate ex-
pected losses, which could be time consuming on a typical
PC. However, the model contains a high degree of paral-
lelism that can be exploited in hardware to attain a signifi-
cant speedup.

For a given tranche the problem definition is:
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Fig. 1. Collateralized Debt Obligation Structure.

A: Attachment point
D: Detachment point
Ni: Recovery adjusted notional, which is the mone-

tary amount a financial institution can recover in
the case theith asset defaults

αi: Correlation factor between the state of global mar-
ket and asseti

βi:
√

1− α2
i

τi: The time at which asseti defaults
In a pool of n assets, Li proposed modelling default proba-
bilities using a Poisson process with a parameterλi. The
probability of theith asset defaulting prior to timet be-
comes:

P (τi < t) = 1− exp (−λit), (1)

The curveP (τi < t) is known as a default boundary
curve for asseti. Furthermore, the model assumes that the
default probabilities relate to a random variableYi by:

P (τi < t) = P (Yi < y(t)), (2)

WhereYi is:
Yi = αiX + βiZi, (3)

in which bothX andZi are zero mean unit variant Gaussian
random numbers.X is a systemic factor that represents the
current market condition and is constant for all assets in the
pool for a given Monte-Carlo path.Zi is the idiosyncratic
factor, unique to each asset.

Since, bothX andZi follow standard normal distribu-
tions,Yi is also normally distributed. It follows that:

y(t) = Φ−1[P (τi < t)], (4)



whereΦ is the standard normal cumulative distribution func-
tion.

Combining Eqns. (4), (3), and (2), and conditioning on
the market stateX = x, the default probability becomes:

P [αix + βiZi < Φ−1(P (τi < t))]

= Φ−1(
Φ−1(P (τi < t))− αix

βi
),

(5)

Eqn. (5) is the equivalent of searching for the intersec-
tion point betweenYi and the default boundary curve in each
Monte-Carlo path.

For each Monte-Carlo path, the overall pool losses for a
given time instancet, are:

L(t) =
n∑

i=1

Ni × Ii(Yi, t), (6)

whereIi is the indicator function:

I(Y, t) =
{

1 Y < P (τ < tk) t0 ≤ tk ≤ t
0 Otherwise

}
, (7)

A tranche can only start sustaining losses when the total
loss exceedsA, and only cover up toD − A losses, which
gives the following tranche loss equation for a single Monte-
Carlo path:

L̂(t) = min(max(L(t)−A, 0), D −A), (8)

The expected value for the actual tranche loss is the av-
erage of all Monte-Carlo paths:

E[L̂(t)] =
1

#Paths

#Paths∑

j=1

L̂j(t), (9)

4. HARDWARE IMPLEMENTATION

In this section we present a multi-OFGC core simulation ar-
chitecture, as well as the hardware implementation of the
one-single factor Gaussian Copula model.

4.1. Simulation Architecture

Top-level parallelization is performed over the Monte-Carlo
paths, since all Monte-Carlo paths are independent of each
other. The paths are equally divided amongst the OFGC
cores. Similarly, path independency makes it easier to dis-
tribute input data. All OFGC cores are loaded simultane-
ously with the same data. The difference in the outputs of
the cores stems from the different Gaussian values generated
at each Monte-Carlo path.

The simulation architecture is designed to perform mul-
tiple tasks in parallel. The design is broken into three sep-
arate stages as shown in Fig. 2: distributor, independent
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Fig. 2. Multi-Core Simulation Architecture.

OFGC cores, and a collector. The addition of separate dis-
tributor and collector cores allows the OFGC cores to be
kept active at all times.

The distributor core uses double buffering, achieved us-
ing dual-ported Block RAMs, to hide the latency of load-
ing data onto the Field Programmable Gate Array (FPGA).
We have established, based on our benchmarks, that we can
keep the accelerator fully active. We calculated the theoret-
ical maximum number of transfer bits by taking the largest
pool size and number of time steps within our data, 400
and 35 respectively, and assuming each asset has its own
default curve (a theoretical maximum that is significantly
larger than what our data would indicate). The worst case
scenario number of bits is found to be 512 Kbits (actual
maximum within our benchmarks was 66 Kbits), while the
shortest calculation takes 2.66 ms, hence a data transfer rate
over 192Mbits/s with the host will be sufficient to keep all
OFGC cores busy.

The Collector core, shown in Fig. 2, is decoupled from
the individual OFGC cores through FIFOs. This allows the
OFGC cores to start a new simulation while the collector
core finds the average tranche losses over all Monte-Carlo
paths and sends the results to the host.



4.2. One-Factor Gauusian Cupola Hardware

A fully pipelined design of the One Factor Gaussian Cupola
model is presented in Fig. 3.

In Stage 1, two Gaussian Random Number Generators
(GRNG) are used to generateX andZi, andYi is created
based on Eqn. (3).

In Stage 2, there are eight replicas of a comparator core
that implement Eqns. (5), (6) and (7). Each replica performs
theYi < P (τi < t) comparison for a subset oftks, assigned
in a sequential mod eight manner. These comparisons them-
selves are independent and hence can be performed in paral-
lel. The decision to select eight replicas is based on conve-
nience and resource conservation. We define a Replication
Utilization Factor, RUF:

RUF = tmod(#ofreplicas), (10)

wheret is the total number of time steps in a simulation.
More replicas potentially provide a greater speedup when

RUF is approximately equal to the number of replicas; how-
ever, the overall design grows large and many of the com-
parator units become underutilized when RUF is about 0.
Eight is chosen as a convenient power of 2, making parti-
tioning as well as arithmetic operations in the control path
more efficient, and provides a good speedup and low utiliza-
tion cost for a t that is normally distributed with a mean of
20, the theoretically ideal value [3].

In Stage 2, the Block RAM (BRAM) stores multiple par-
tial sums for eachL(tk). This is done to avoid stalling the
pipeline. The adders at Stage 2 have a pipeline latency that
often create a situation where the value ofL(tk) is needed
at the input to the adder while it is still being computed.
Hence, one of the partial sums is used instead. The greater
the adder latency the more partial sums are in flight. The
downside of this approach is that at the end of each Monte-
Carlo path these partial sums have to be combined to form
the total number of Collateral Pool losses at a given time
step.

In Stage 3, the partial sums are combined. Once all par-
tial sums are available in the comparator cores their values
are transferred to the temporary memory storage. This al-
lows all stages above Stage 3 to start a new Monte-Carlo
path. If the number of assets in the pool or the number of
time steps is sufficiently large, combining partial sums and
creating new ones can be done in parallel. However, if the
new partial sums are ready before the previous ones have
been combined the pipeline has to stall. This is only seen
once with our smallest benchmark, Benchmark 5, which
contains a pool of only 14 assets and is simulated for only
six time steps requiring eight partial sums for each time step,
which is the maximum possible value in our design.

Stage 4 is the hardware representation of Eqn.(8). It
takes the total pool losses for a given time step and calcu-
lates the losses within the currently simulated tranche.
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Fig. 3. One-Factor Gaussian Cupola Hardware Core.

Stage 5 is the final accumulator, which combines the
tranche losses over all Monte-Carlo paths.

5. RESULTS

In this section we examine the resource utilization and the
speedup obtained for different precision representations for
rate adjusted notionals. Since no widely accepted bench-
marks exist and all financial transactions are confidential,
we developed our own benchmarks based on the Dow Jones
CDX indices [9] and publicly available Moody’s rating in-
formation [10].

5.1. Benchmarks

Nine different test benchmarks are constructed and shown
in Table 1. The first eight are based on Dow Jones CDX in-
dices, which are commercially traded CDO-like instruments
that are based on collateral pools consisting of companies
and government organizations in North America and emerg-
ing markets. Benchmarks 1 through 8 are created using the
same number of assets and the credit rating as the original



Table 1. Test Benchmarks.
Benchmark Based on # of # of # of

# Data from Assets Time Default

Steps Curves

1 CDX.NA.HY 100 15 5

2 CDX.NA.IG 125 35 5

3 CDX.NA.IG.
HVOL

30 19 4

4 CDX.NA.XO 35 22 4

5 CDX.EM 14 6 4

6 CDX.DIVER-
SIFIED

40 23 5

7 CDX.NA.HY.
BB

37 13 4

8 CDX.NA.HY.
B

46 26 4

9 [3] 400 24 2

CDX indices. Based on the credit ratings, default boundary
curves,P (τi < t), are obtained from Moody’s[10]. How-
ever, since Moody’s uses annual default rates, the values are
extended using Eqn. (1) to attain quarterly time steps. The
actual notionals are also obtained from [10], which are cor-
porate bond defaults for 1999. There are a wide range of
notionals from $0.6 million to $6.6 billion. A ninth bench-
mark is added to represent a very large collateral pool of 400
assets. The data for it is obtained from [3].

All other input data for every benchmark are randomly
generated:

• αi : uniformly distributed from [0, 1].

• Return rates: normally distributed with a mean of 0.40,
ideal return rate [3], and 0.15 variance.

• Number of time steps: Normally distributed with a
mean of 20 steps and a variance of 10 steps.

• Each asset in the pool is randomly assigned to one of
the default boundary curves.

The tranche attachment points are taken to be the same
as in CDX.NA.IG: 0%, 3%, 7%, 10% and 15%.

5.2. Design Evaluation

All FPGA designs are compared to a software implementa-
tion, written in C++, running on an Intel Xeon 3.4 GHz pro-
cessor with 3GB RAM. All designs are written in Verilog
and synthesized using Xilinx ISE 9.2. Resource utilization

and design frequency are post place and route values ob-
tained using Xilinx Xplorer, which iteratively narrows in on
an optimal design frequency. The results are validated using
the Xilinx ML506 Evaluation Platform, which has a Virtex
5 XC5SX50T -1 speed grade chip, while the performance
values in Table 2 assume a faster -3 speed grade.

To obtained performance and accuracy measurements
each benchmark is run ten times, with different GRNG seeds,
for 100,000 Monte-Carlo paths on all hardware designs and
the double-precision C++ software implementation. All ac-
celeration and accuracy values are reported with the soft-
ware program as the baseline reference. For each design an
average benchmark error is calculated as summation of the
absolute distance between the design’s result and the base-
line result divided by the baseline result and averaged over
the number of runs, ten. The average error reported in Ta-
ble 2 is the benchmark error averaged over all benchmarks.

The most resource intensive portion of the design is in
notional summation, Stages 2 through 5. We have explored
different representations for the notionals: floating-point single-
precision, double-precision, and fixed-point. We have also
explored the benefits of using DSP units for the pipelined
floating-point adders, in Stages 2 and 3. The results are
summarized in Table 2, the percentages next to each utiliza-
tion value indicate the portion of the total resource avail-
able on the chip that is being used by the design. For both
single- and double-precision floating-point designs incorpo-
rating DSP units reduced the LUT and Flip-Flop utiliza-
tion. However, the benefits are more evident in the single-
precision representation where incorporating DSP units re-
sults in a larger LUT utilization savings, as well as a higher
design frequency.

While the single-precision floating-point notional design
occupies significantly less resources than the double-precision
counterpart, the result has 1.97% error. To try to get the best
of both worlds (the resource utilization of single-precision
and the accuracy of double-precision) single-precision no-
tionals are used in Stages 3 and 4, and a double-precision
accumulator is incorporated at Stage 5. Experimentally, the
error is found to be significantly reduced to 2.19E-5%.

Examining the data at all stages within the simulation it
is established that 42 bits are sufficient to represent the no-
tionals and 54 bits for the final accumulator to obtain iden-
tical results to the double-precision representation. This is
shown as Fixed Point in Table 2. Through ISE it is found
that each additional notional bit requires 62 additional Flip-
Flops and 74 LUTs.

The least resource consuming design from each repre-
sentation is replicated as many times as resources permit
and incorporated into the overall simulation architecture as
shown in Fig. 2. The Replicated Frequency is the perfor-
mance of the multi-core system. The resulting acceleration
is summarized at the bottom of Table 2. The smallest core,



Table 2. Performance/Area Results.
Single-Precision Floating-Point Double-Precision Floating-Point Single-

Precision
Notionals &
Double-
Precision
Accumulator

Fixed Point

Without DSP With DSP Without DSP With DSP

Flip-Flops 7097 (21.7%) 6530 (20.0 %) 10454 (31.2%) 9910 (30.4%) 6721 (20.5%) 4906 (15.0%)

LUTs 8660 (26.5%) 7052 (21.6%) 13548 (41.5%) 13325 (40.8%) 7599 (23.3%) 5224 (16.0%)

BRAMs 15 (11.4%) 15 (11.4%) 31 (23.4%) 31 (23.4%) 15 (11.4%) 15 (11.4%)

DSPs 9 (3.1%) 29 (10.1%) 10 (3.4%) 40 (13.9%) 30 (10.4%) 7 (2.4%)

Freq (MHz) 235.2 248.8 187.3 190.9 244.8 268.2

Average Error
(%)

1.97 1.97 0 0 2.19E-5 0

Single Core
Acceleration

13.1x 13.9x 10.5x 10.7x 13.7x 15.6x

# of Cores 4 2 4 5

Replicated
Freq (MHz)

208.4 140.8 210.0 218.5

Multi-Core
Acceleration

46.5x 15.7x 46.9x 63.6x

Fixed Point, allows the most replications, five, which results
in a 63.6 -fold acceleration.

6. CONCLUSION

This paper describes a hardware architecture for pricing Col-
lateralized Debt Obligations using the One-Factor Gaussian
Cupola Model [2]. We demonstrate how an FPGA can be
used to exploit fine-grain parallelism in a Monte-Carlo fi-
nancial model to achieve significant acceleration over the
software implementation. We have also examined the preci-
sion requirements for the notional data and the resulting re-
source utilization. Similar to [5], we have established that a
fixed-point representation can adequately represent the data,
while utilizing the least resources. This is due to bounded
notionals and a final accumulator that only needs to be large
enough to a sum a known maximum number of notionals.
Any other model with a similar structure can do the same.
Future work will concentrate on expanding the simulation
model to a more general multi-factor Gaussian Cupola.
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