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Abstract: Modeling the interactions of biological
molecules, or docking is critical to both understand-
ing basic life processes and to designing new drugs.
Here we describe the FPGA-based acceleration of a
recently developed, complex, production docking code.
We find that it is necessary to extend our previous 3D
correlation structure in several ways, most significantly
to support simultaneous computation of several corre-
lation functions. The result is a hundred-fold speed-up
of a section of the code that represents over 92% of
the original run-time. An additional 4% is accelerated
through a previously described method, yielding a to-
tal acceleration of almost 25 x for typical protein-ligand
combinations.

1 Introduction

A fundamental operations in biochemistry is the inter-
action of molecules through non-covalent bonding (see
Figure 1). Modeling this process of molecular dock-
ing is critical both to evaluating the effectiveness of
pharmaceuticals, and to developing an understanding
of life itself. In the former, millions of drug candidates
may need to be evaluated for each molecule of medical
importance. Computational experiments are therefore
likely to be preferred over chemical.

Figure 1. Docked complex of two proteins generated
using Pymol [5].

*This work was supported in part by the NIH through awards
#R21-RR020209-01 and and #R01-RR023168-01A1, and facilitated
by donations from XtremeData, Inc., SGI, and Xilinx Corporation.
Web: http://www.bu.edu/caadlab.

tEMail: {herbordt|bharats}@bu.edu

The basic computational task for docking is to find
the relative offset and rotation (pose) between a pair of
molecules that gives the strongest interaction. There
are several issues. First, biomolecules can flex and ro-
tate around chemical bonds. Second, certain molecule
pairs interact only when one or both flex in a process
known as induced fit. Third, modeling induced fit in
some cases requires dynamic modeling, e.g., based
on molecular dynamics. Fourth, the best docking pose
for many molecule pairs can be determined via simple
computations, but that of other pairs may be difficult
even with the most sophisticated. As a result, hierarchi-
cal methods are often used: (i) an initial phase where
candidate poses are determined, and (ii) an evaluation
phase where the quality of the highest scoring candi-
dates is rigorously evaluated.

This work describes the acceleration of PIPER, a
state-of-the art code that performs the first of these
tasks. PIPER minimizes the number of candidates
needing detailed scoring with only modest added com-
plexity [7].
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Figure 2. Shape complementarity, collisions, misses,
and poor matches (from [10]).

Many docking applications including PIPER as-
sume, at least initially, a rigid structure (see Figure 2).
This still allows modeling of various force laws that gov-
ern the interaction between molecules, inluding geo-
metric, electrostatic, atomic contact potential, and oth-
ers. A standard technique maps the molecules’ charac-
teristics to three dimensional grids. The most energet-
ically favorable relative position is determined by sum-
ming the voxel-voxel interaction values for each mod-
eled force at all positions to generate a score, and then
repeating this for all possible translations and rotations.

The resulting computational complexity is large.



With typical grid sizes of N = 128 in each dimension
and the total number of angles 10, 000, 10'° relative po-
sitions are evaluated for a single molecule pair. Typi-
cally, the outer loop consists of the rotations while the
translations are handled with a 3D correlation. Since
the latter require O(N®) operations, this type of ex-
haustive search was long thought to be computation-
ally infeasible [8]. The introduction of the FFT to dock-
ing [6] reduced the complexity of each 3D correlation
to O(N?3log N) for steric (shape only) models; further
work expanded the method to electrostatic [3] and sol-
vation contributions [1].

In previous work [10, 11] we showed that, for FPGA-
based coprocessors, the original direct correlation—
rather than an FFT-is sometimes the preferred method
for computing rigid molecule docking. Two reasons for
this are the inherent efficiency with which FPGAs per-
form convolutions and the modest precision (2-7 bits) of
the original voxel data. Note that this precision goes to
106 bits (double imaginary floating point) for the FFT.
We also introduced a novel addressing technique for
performing rotation that uses only a modest amount of
logic, and whose latency can be entirely hidden. And
finally, we presented an efficient filtering method that
computes on-the-fly the biological importance of the
poses and so minimizes the host-accelerator commu-
nication.

In this work we extend these methods to facil-
itate integration into PIPER. In particular, we have
added support for (i) pairs of large molecules as nec-
essary for modeling protein-protein interactions; previ-
ously we only supported protein interactions with small
molecules, (ii) the efficient combining of a potentially
large number of force models; previously we had flex-
ibility in the force model, but required it to be simple,
and (iii) handling charge reassignment after every ro-
tation; previously we assumed that charge assignment
was done only once.

The particular contributions are a modified structure
to support these features and experiments that deter-
mine optimal configuration among several design pa-
rameters. The result is a hundred-fold speed-up of
PIPER'’s correlation computation and a 25-fold speed
up of the entire application. The overall significance is
in reducing the typical running time from days to hours
thereby dramatically increasing the throughput of com-
putational docking experiments.

The rest of this paper is organized as follows. We
next give a brief overview of PIPER. There follows the
basic design for the 3D correlation. After that we give
some implementation details and how they were deter-
mined. We conclude with results and discussion.

2 The PIPER Docking Program

2.1 Overview

A primary consideration in docking is preventing the
loss of near-native solutions (false negatives); as a re-
sult, rigid molecule codes tend to retain a large number
(thousands) of docked conformations for further analy-
sis even though only a few hundred will turn out to be
true hits. “Improving these methods remains the key
to the success of the entire procedure that starts with
rigid body docking [7].” PIPER addresses this issue by
augmenting commonly used scoring functions (shape,
electrostatics) with a desolvation computed from pair-
wise potentials; the rest of this section is based on the
primary reference to that system [7].

Pairwise potentials represent interactions of atoms
(or residues) on the interacting molecules. Different
pairs of atoms have different values; these are em-
pirically determined (and sometimes called knowledge
based). For K atom types, there is a K x K interac-
tion matrix; each column (or row) can be handled with
a single correlation resulting in K forward and one re-
verse FFT. Since K is generally around 20 (and up to
160), and since the FFT dominates the computation,
use of pairwise potentials could drastically increase
run time. A fundamental innovation in PIPER is the
finding that eigenvalue-eigenvector decomposition can
substantially reduce this added complexity. In partic-
ular, “adequate accuracy can be achieved by restrict-
ing consideration to the eigenvectors corresponding to
the P largest eigenvalues where 2 < P < 4, and thus
performing only 2 to 4 forward and one reverse FFT
calculations.” In practice, however, up to 18 terms are
sometimes used.

PIPER’s energy-like scoring function is computed
for every rotation of the ligand (smaller molecule) with
respect to the receptor (larger molecule). It is defined
on a grid and is expressed as the sum of P correla-
tion functions for all possible translations «, 3, v of the
ligand relative to the receptor

E(e,8,7) =YY Ry(i,j, k) Lp(ita, j+B,k+7) (1)

P ij,k

where R, (i, 7, k) and L, (i +«, j + 3, k+ ) are the com-
ponents of the correlation function defined on the re-
ceptor and the ligand, respectively.

For every rotation, PIPER computes the ligand en-
ergy function L,, on the grid and performs repeated FFT
correlations to compute the scores for different energy
functions. These scores are then combined and an in-
verse FFT taken to obtain the total energy scores for
the various 3-axis translations.

The performance profile is shown in Table 1. A po-



Table 1: PIPER run times for one rotation.

Phase Run time | % total
(seconds)

Rotation 0.00 0%

Charge assignment 0.17 3.4%

FFTs 4.7 92.5%

Filter top scores 0.21 4.1%

tential speed-up of 25x is achievable by accelerating
correlation (described here) and filtering (see [11]). Ac-
celerating charge assignment is also possible using the
methods developed in [4].

2.2 PIPER Scoring Functions

The scoring function used in PIPER is based on
three criteria: shape complementarity, electrostatic en-
ergy, and desolvation energy (through pairwise poten-
tials). Each of these is expressed as a 3D correlation
sum, and the total energy function is expressed as a
weighted sum of these correlation scores:

E = Eshape + wZEelec + wSEpair (2)

Shape complementarity refers to how well the two pro-
teins fit geometrically (see Figure 2) and here is com-
puted as a weighted sum of attractive and repulsive van
der Waals (Pauli exclusion) terms, the latter accounting
for atomic overlaps: Egpape = Fottr + W1 Erep.

Electrostatic interaction between the two proteins is
represented in terms of a simplified Generalized Born
(GB) equation [1]. The electrostatic energy is obtained
as a correlation between the charge on the ligand grid
and the potential field on the receptor grid. Unlike in
our previous work, charge distribution is recomputed
for every rotation.

Desolvation is a measure of change in free energy
when a protein-atom/water contact is replaced by a
protein-atom/protein-atom contact. In PIPER, it is rep-
resented using pairwise interaction potentials, as previ-
ously discussed, through P correlation functions.

3 Correlation Structure

Figure 3 shows the systolic 3D correlation array pro-
gressively formed starting from a 1D correlation array
[11]. This structure is an extension of the 2D correla-
tion array described in [9]. The systolic array performs
direct correlation at streaming rate. In our original im-
plementation, voxels for the ligand grid are stored in
the compute cells on the FPGA and the voxels of the
receptor grid are streamed through it, generating one
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Figure 3: Structures to compute 3D correlations.

correlation score per cycle. In this work we have ex-
tended the design to support two large molecules (see
Section 4.3).

As shown in Figure 3a, the 1D correlation structure
consists of pipelined compute cells. The input voxel
is broadcast to every cell and the partial scores com-
puted by each cell are passed to the next cell, with
the last compute cell generating the total row score.
The operation of the compute cells can be written
as Scoregy = Scorey, + F(Vozelr,Voxelr) where
Score;, is the score from the previous compute cell
and F(Vozely, Vozelg) is the function between the two
voxels. For correlation, F(Vozelr,Vozelg) translates
to a product between the two voxels. An advantage of
direct correlation using this method is that it can han-
dle linear or non-linear functions between the voxels,
as opposed to the FFT method which can only handle
linear functions.

In order to connect multiple 1D correlation rows to
form a 2D correlation plane, the 1D correlation scores
need to be delayed. The number of scores generated
by each 1D correlation is N, + M, — 1, where N, and
M, are the sizes of the two grids along the z-axis. A
delay of IV, is inherently provided by the compute cells.
To delay the scores by the remaining M, — 1 cycles, 1D
line FIFOs are used. Similarly, to connect multiple 2D
correlation planes to form a 3D space requires plane
FIFOs of size (M, + N, — 1) x (N, — 1).

On typical high-end FPGAs, these FIFOs can be im-
plemented using block RAMs. Note that the size of the
FIFO is proportional to the size of the larger grid M,.
In addition, since the FIFOs are used to delay the cor-



relation score, the width of the FIFOs is dependent on
the number of bits the correlation score requires. Al-
though enough block RAMs are present to implement
FIFOs for grids of quite large sizes, incorporating multi-
ple correlations can pose a problem. This is discussed
in the next section and a modified correlation pipeline
proposed.

4 Supporting Multiple
Energy Functions

4.1 Overview

There are two obvious ways to extend the structure
of Section 3 to compute the multiple correlations re-
quired of PIPER: compute them singly or together. Nei-
ther is by itself preferred. The first method uses the
same control structure as previously, but for each dif-
ferent correlation, the FPGA is reconfigured to the ap-
propriate data types and energy model. The scores
must be saved off-chip and combined. That is, the &
FFTs are replaced with k£ correlations, plus the over-
head of reconfiguration and combining. The second
method involves expanding the structure to perform &
different correlations simultaneously. This method re-
quires only a single pass through the large grid, and
generates k independent correlation scores per cycle.
Recall from Section 2.2, however, that the energy func-
tions are weighted so that for £ functions

k
Score,,: = Score;, + E w; X correlation_score; (3)

i=1

Thus combining on-the-fly requires multiplications as
well as additions, resulting in (perhaps) a substantially
more complex compute structure. Combining can be
done in three ways: within each compute cell, upon
completion, or by integrating the weights into the scor-
ing functions. These options are how examined.

Combining within the compute cells obviously re-
quires that the weighted sums be computed within each
one. The problem here is the number of multipliers that
this requires: k times the number of cells, or between
256 and 2000 additional multipliers. This is problematic
for current FPGAs and would end up drastically reduc-
ing the number of compute cells.

Combining on completion means that we must prop-
agate k independent running scores through the line
and plane FIFOs of Figure 3; the width of the FIFOs
must then be increased by kx. Even with average
sized grids, the block RAM requirements to implement
the FIFOs are way over the available block RAMs on
present day FPGAs, making this approach impractical.

Integrating the weights into the grids requires sig-
nificantly increasing the precision throughout the entire
system. This reduces the number of compute cells and
thus the throughput. While a plausible solution, it is still
not preferred.

4.2 Augmented Structure
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Figure 4: Modified 3D correlation pipeline.

The solution we use is a hybrid: we compute all
the energy functions simultaneously and we combine
the running scores once per row (see Figure 4). One
non-obvious detail is that, now, the scores entering and
leaving the FIFO are weighted sums of individual cor-
relation scores, whereas scores computed by the com-
pute nodes are still £ individual correlation sums. Thus,
compute cells cannot simply add the output of the FIFO
to their current score. This requires a slight change in
the existing pipeline and the compute cells. The com-
pute rows no longer receive the partial correlation score
from the FIFO. The weighted score from the FIFO is
sent directly to the score combiner module at the end
of next compute row. The score combiner computes
the weighted sum of partial correlation scores from the
current compute row and adds it to the weighted score
from the FIFO of the previous row as shown in Equa-
tion 3. Note that a new FIFO is needed in order to align
the weighted sum with the output of the 1D correlation
array before it enters the score combiner.

The voxel data at every grid point must repre-
sent energy values for different energy functions. To
implement PIPER energy functions, we modified the
voxel data to contain the following five (or more) en-
ergy values: attractive van der Waals, repulsive van
der Waals, Born electrostatics, Coulomb electrostatics,
and P pairwise-potentials. In serial PIPER code, these



Table 2: Number of bits per voxel for computing various
energy functions.

Energy Term Number of bits
Receptor | Ligand
Attractive v. d. Waals 8 4
Repulsive v. d. Waals 4 4
Electrostatics 9 9
Pairwise potentials 9 9

energies are represented using single precision float-
ing point numbers. In our FPGA implementation, we
use the fixed point numbers shown in Table 2 with no
loss of precision. This drastically increases the number
of compute cells that can fit on the FPGA and thus the
throughput.

The basic compute cell has been extended to com-
pute multiple correlation functions per cycle. As can
be seen in Table 2, computing the pair-wise potentials
does not require a multiplier, but merely an AND. Since
multipliers are the critical resource in this design, P
(the number of pairwise potentials) can be quite large
without affecting the number of cells that can fit on the
FPGA.

4.3 Piecewise Ligand Docking

In order to support larger ligand grids with PIPER en-
ergy functions, we implemented a scheme to compute
correlation scores in pieces. Note that the receptor
size can still be large as previously. We call this piece-
wise correlation, as it basically involves loading differ-
ent pieces of the grid into the FPGA correlation cores
and storing the partial scores in the score memory. We
added a new controller FSM that controls the loading
of a grid-piece, generation of correlation scores, and
generation of the address of score memory where the
current partial score must be added. A new-score ac-
cumulator is also added that fetches the current score
from the score memory, adds the new partial score to
it, and stores it back to the same location in score RAM.

Table 3 compares logic utilization for correlation
pipelines with and without support for piecewise cor-
relation. For this example, a simple compute cell is
used resulting in an 8 x 8 x 8 on-chip array of cells.
The designs in the first two rows both operate on an
8 x 8 x 8 ligand; the difference is that the second has
the overhead hardware for swapping. We see that the
overhead for supporting piecewise correlation scheme
is minimal. Also, the clock rate is virtually unchanged.
The last two rows show the support required to oper-
ate on 162 and 322 ligands, respectively, keeping the
number of hardware cells constant. Clearly, larger cor-

Table 3: Resource utilization for piecewise correlation,
Xilinx Virtex-Il Pro VP70.

Design Resource Utilization
slices | flip-flops | LUTs

No piecewise support | 31009 | 22110 | 33522

8 x 8 x 8 ligand

Piecewise support 31457 | 22429 | 34295

8 x 8 x 8 ligand

Piecewise support 31519 | 22448 | 34405

16 x 16 x 16 ligand

Piecewise support 31630 | 22475 | 34627

32 x 32 x 32 ligand

relations can be supported without much increase in
resources required.

5 Results

Our target system is a Xilinx Virtex-1l Pro XC2VP70-5
FPGA on Wildstar-1l coprocessor board from Annapolis
Microsystems. The coprocessor board is plugged into
one of the PCI slots of a Dell workstation running the
Windows XP operating system. The API from Annapo-
lis Microsystems is used to transfer the data between
the host and the FPGA. The unaccelerated PIPER ref-
erence code is run on a similar system.

Before the correlation between the receptor and lig-
and grid is performed, they need to be assigned with
charges corresponding to different energy functions.
This is currently done on the host using the PIPER
code. For the receptor, PIPER assigns the charges
only once, since it stays fixed throughout the entire
docking process. This grid is downloaded into the
FPGA and stored in on-chip block RAMs. For every
rotation, the PIPER program rotates the ligand and up-
dates charges on the ligand grid. This grid is then
downloaded into the correlation cells on the FPGA. In
the case of piecewise correlation, the ligand grid is
downloaded into off-chip SRAM, whence it is loaded
as just described.

Once the ligand is downloaded, the FPGA corre-
lation starts, generating one correlation score per cy-
cle. These scores are passed to a data reduction fil-
ter, which selects a pre-specified number of top scoring
positions and stores them on the on-chip block RAMs.
Upon completing the correlations for one rotation, the
host program is instructed to download the ligand grid
for next rotation. As the grids can be downloaded dur-
ing processing, the data transfer latency can be com-
pletely hidden.

Our test for validation was done in two parts. The
first validated the FFT correlation of the original PIPER



against direct correlation sums. This was done us-
ing MATLAB: the results for the two correlations were
identical. The second part involved verifying the di-
rect correlation results generated by our hardware ac-
celerator against those generated by a serial correla-
tion code. We simulated our FPGA correlation pipeline
using ModelSim and verified the resulting correlation
scores against those generated by direct correlation
function in MATLAB.
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Figure 5: Complexity of correlation cell versus number
of cells per dimension for various FPGA technologies.

A fundamental result here is the trade-off between
the complexity of the energy function and the number of
grid cells that can fit on the FPGA and thus the amount
of parallelism in the design (see Figure 5, area deter-
mined through post place-and-route). For all cases, we
assume the same four non-pairwise energy functions;
the X-axis refers to the number of pairwise potentials
computed in addition to those four. The Y-axis repre-
sents N, the size of one dimension of the 3D grid of
computation cells. In the left-hand part of the graph,
multipliers are the limiting resource. In the middle, the
number of multipliers stays roughly the same; adding
more pairwise correlations increases only slice utiliza-
tion. In the right-hand part of the graph, the number
of slices limits the grid size. Translating these values
into performance, even the smallest FPGA results in a
100x speed-up for typical protein-ligand combinations
for the four (or fewer) terms generally used.

6 Discussion

We have presented an FPGA acceleration of a sophis-
ticated, current, production docking code. In the pro-
cess, we created a novel addition to our 3D correlation
structure to enable effective computation of complex
correlations. The result was a factor of hundred speed-
up for 92.5% of the original computation for typical
protein-ligand combinations. Acceleration of another

4% using an existing method brings the total accelera-
tion up to 25x. Accelerating the remaining 3% is work
in progress — using a previously developed method for
charge-to-grid assignment [4] appears promising.

We believe that this is the only work in accelerating
docking with FPGAs. Its significance is in its poten-
tial to drastically increase the pace of discovery in both
basic science and in drug discovery. As PIPER gets
integrated into the popular online ClusPRO system [2],
the impact of this work should increase further.
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