
DIRECT SIGMA-DELTA MODULATED SIGNAL PROCESSING IN FPGA

Chiu-Wa Ng, Ngai Wong, Hayden Kwok-Hay So, and Tung-Sang Ng

Department of Electrical and Electronic Engineering

University of Hong Kong

Pokfulam Road, Hong Kong

email: {cwng,nwong,hso,tsng}@eee.hku.hk

ABSTRACT

The effectiveness of implementing bit-stream signal process-

ing (BSSP) multiplier circuits in FPGAs, in terms of hard-

ware resources and clock frequency, is presented. In partic-

ular, the result of realizing BSSP multipliers on FPGA ar-

chitectures that utilize 6-input lookup tables (LUTs) is com-

pared against architectures that utilize 4-input LUTs. It is

found that architectures featuring 6-input LUTs suit well in

BSSP applications where wide combinatorial paths are com-

mon. Furthermore, the performance of a BSSP multiplier is

compared against conventional parallel multipliers in terms

of LUT resource requirements. For a given resource require-

ment, it is found that an over-sampling ratio of less than 32

is required for a BSSP multiplier to outperform its parallel

counterpart.

1. INTRODUCTION

Sigma-delta modulators (SDMs) are widely used to build

analog-to-digital (A/D) and digital-to-analog (D/A) convert-

ers due to their simple architectures and good tolerance to

analog component inaccuracy[1]. Conventional digital sig-

nal processors (DSPs) operate at the Nyquist rate while SDMs

always generate over-sampled data. Decimators and inter-

polators must therefore be inserted before and after the DSPs

for sampling rate conversion in order to interface with these

over-sampled SDMs. The inclusion of decimators and in-

terpolators inevitably introduce extra logics and routing re-

source consumptions. To allow for a resource-efficient way

of signal processing, digital circuits that directly process the

over-sampled bit-stream signal from the SDM output have

been developed[2, 3, 4, 5, 6, 7, 8]. This technique is referred

to as bit-stream signal processing (BSSP) [2]. In this pa-

per, we evaluate the performance gain in implementing bit-

stream multipliers using FPGAs with a 6-input LUT archi-

tecture over those with a 4-input LUT, in terms of resource

utilization and speed. The contributions of this work are:

1. We present the detailed architectural design of the ef-

ficient bi-level bit-stream multiplier in [6] showing

how the new 6-input LUTs FPGA architecture can

be utilized to achieve compact and high-speed imple-

mentation.

2. We compare the result of implementing BSSP multi-

pliers using a Xilinx Virtex-4 and a Xilinx Virtex-5

device to study the advantages due to FPGA architec-

tural change.

3. We compare BSSP multipliers with traditional multi-

bit multipliers to obtain conditions under which BSSP

technique becomes more efficient than traditional Ny-

quist rate approach in terms of hardware resource con-

sumption.

The rest of the paper is organized as follows: In Section

2, we describe our FPGA implementations of the bi-level

and tri-level bit-stream multipliers. In Section 3, we present

our implementation results and performance analysis. Fi-

nally, we conclude the paper in Section 4.

2. BIT-STREAM MULTIPLIERS
IMPLEMENTATION IN FPGA

2.1. Resource-efficient Bi-Level Bit-stream Multiplier

Figure 1 shows the conventional bi-level bit-stream multi-

plier [2]. An efficient FPGA implementation of the bit-

stream multiplier utilizing 4-input adder structure is recently

proposed in [6]. Here, we provide the detailed architectural

design of the bit-stream multiplier. A 4-input adder struc-

ture is shown in Figure 2. Using error feedback, it computes

the average of four input bit-stream signals through the fol-

lowing equation:

4y[n] + s[n]
= r1[n] + r2[n] + r3[n] + r4[n] + s[n − 1]

(1)

where ri[n], i = 1, 2, 3, 4, denote the input bit-stream
sequences, and s[n] = 2s1[n] + s0[n] is the 2-bit truncation
error. When implemented on the latest FPGA featuring 6-

input LUTs, the 4-input adder (denoted as Type-II adder be-

low) can be efficiently mapped onto three LUTs and two reg-

isters. Each 4-input bit-stream adder replaces three 2-input

978-1-4244-1961-6/08/$25.00 ©2008 IEEE.
475

�

��

�

��

�

��

�

��

� � �

��������	
�

�
����
	
�
���	
�

�
���������� �
��������� ���������������� ���

��� ��� ���

���

���

���

Fig. 1: A bi-level bit-stream multiplier[2]

Fig. 2: A bi-level bit-stream adder with 4 inputs.

bit-stream adders. An example is indicated by the dashed

box in Figure 1. Referring to the same figure, the use of

4-input adders results in only two layers of adders (instead

of four) with the top level being fed by the sub-products

x[i]y[j].
When used to implement a bit-streammultiplier, the spe-

cial nature of the inputs (the sub-products x[i]y[j]) to the
top layer of the 4-input bit-stream adders actually gives rise

to an efficient implementation of these adders, which is de-

scribed below.

Denote, for simplicity sake, the four inputs to the bit-

stream adder in the top layer as x[0] ⊕ y[0], x[0] ⊕ y[1],
x[1]⊕ y[0] and x[1]⊕ y[1], where ⊕ denotes the XOR logic
operation and the number in the bracket of each term de-

notes the number of unit delays. That is, instead of writing

x[n], x[n − 1], . . ., we write x[0], x[1], The right hand
side of Equation 1 therefore becomes

[
(x[0]⊕ y[0]) + (x[0]⊕ y[1])

+(x[1]⊕ y[0]) + (x[1]⊕ y[1])
]
+ s[n − 1].

(2)

Now we prove that the least significant bit (LSB) of the

2-bit truncation error s[n] is always zero if the initial value
of s[n] is zero. Assuming first the LSB of s[n − 1] is zero,

� � �

Type I

�� �� ���	
�

	
�

	��
	��
	��
	���	��

�	��

�	��

�	��

���

���

���

�	
�

	��
	�� �	�� �	��

Type I

	��
	�� �	�� �	��

Type I

	��
	�� �	�� �	��

Type I

	��
	�� �	�� �	��

Type II

Fig. 3: A resource-efficient bit-stream multiplier.

i.e. s[n−1] is even. Consider the case y[0] �= y[1]. The sum-
mation of the square-bracketed term in Equation 2 reduces

to
(
x[0] + x[0] + x[1] + x[1]

)
, which is 2. When added to

s[n− 1], which is an even number, the result is also an even
number, and hence the LSB of s[n] is zero. For the case
y[0] = y[1], either they are zero or one. If y[0] = y[1] = 0,
then Equation 2 becomes

(
x[0]+x[0]+x[1]+x[1]

)
+s[n−1] = 2

(
x[0]+x[1]

)
+s[n−1]

which is an even number. Hence, the LSB of s[n] is again
zero. The case for y[0] = y[1] = 1 is similar and leads to
the same conclusion. As it is assumed that the initial value

of s[n] (i.e., when n = 0) is zero, the LSB of s[n] is always
zero by mathematical induction.

The fact that the LSB of s[n] is always zero simplifies
the implementation of the 4-input bit-stream adder in the

top layer: it is now a function of five inputs and two out-

puts. Therefore, only two 6-LUTs and one flip-flop (FF) are

required under this special case of inputs. Furthermore, re-

ferring to Equation 2, since the sub-products are formed by

four inputs (x[0], x[1], y[0], y[1]), the XOR operation among
them can thus be merged into the LUTs of the 4-input bit-

stream adder. As a result, the overall design of the bit-stream

multiplier now consists of two types of 4-input bits-stream

adders, denoted as Types I and II, as shown in Figure 3.

Type-I adder is the merged-XOR structure in the top layer

and Type-II adder is the original structure. There are four

Type-I blocks and one Type-II block. Including the six shift

registers at the input, this structure requires a total of eleven

LUTs and twelve FFs, as is verified in Section 3

2.2. Tri-level Bit-stream Multiplier

The structure of a tri-level bit-stream multiplier, which was

detailed in [7], is replicated in Figure 4 for easy compari-

son. Comparing Figure 4 with Figure 1, it can easily be seen

that the sturcture of bi-level and tri-level bit-stream multi-

pliers are very similar. Similar to its bi-level counter part, a

476

Fig. 4: A tri-level bit-stream multiplier[7]

Fig. 5: A tri-level bit-stream adder.

tri-level bit-stream multiplier is also constructed using two

types of major components: (a) tri-level bit-stream adders;

and (b) tri-level digit multipliers, which will be briefly de-

scribed below.

A tri-level adder has the structure shown in Figure 5.

Unlike the case for the bi-level design, a tri-level 4-input

adder cannot be efficiently implemented. Since each signal

consists of two bits, a tri-level 4-input adder adds five 2-

bit signals (four 2-bit inputs plus a 2-bit feedback). Imple-

menting these logic functions requires multi-level 6-input

LUTs. The adder tree of the tri-level bit-stream multiplier

just follow the 2-input bit-stream adder tree structure shown

in Figure 1. As shown in Figure 5, the outputs of a tri-level

bit-stream adder are functions of up to five inputs. As a re-

sult, the tri-level bit-stream multiplier can benefit from the

Virtex-5 6-input LUT architecture. We just let the synthe-

sizer to optimize the wide-input combinatory logic consist-

ing of the tri-level bit-stream adder tree and the tri-level digit

multipliers.

A tri-level digit multiplier implements the following logic

Table 1: Implementation results on Xilinx Virtex-4 and Virtex-5
for logic utilization and clock frequency (MHz).

Bi-level Tri-level

Virtex-4 Virtex-5 Virtex-4 Virtex-5

No. of LUTs 26 11 84 59

No. of FFs 12 12 27 27

No. of slices 18 5 55 16

Max freq. 302 634 252 318

equations:

z0 = x0y0

z1 = x1x0y0 + x1y1y0

where z1z0 denots the 2-bit output while x1x0 and y1y0 de-
note the 2-bit inputs.

3. IMPLEMENTATION RESULTS AND
DISCUSSION

3.1. Virtex-4 vs Virtex-5

The bit-stream multipliers are implemented with Xilinx Vir-

tex-5 XC5VLX30 and Virtex-4 XC4VLX25 using the de-

sign tool ISE 9.1i. Table I presents the implementation re-

sults for the bi-level and tri-level bit-stream multipliers. We

can see that moving from the 4-input LUT architecture (Vir-

tex-4) to the 6-input LUT architecture (Virtex-5), both bit-

streammultipliers show resource savings on LUTs and higher

clock speed. This means that our multiplier designs can take

advantage of the new 6-input LUT feature.

The effect of LUT reduction and speed-up on the bi-level

bit-stream multiplier is greater than that of the tri-level one.

This is due to the use of the 4-input bit-stream adder shown

in Figure 2. As explained in Section 2.1, the 4-input bit-

stream adder (Type-I adder) and its variant, Type-II adder

can be efficiently mapped onto one level of 6-input LUTs.

This allows for the implementation of the bi-level bit-stream

multiplier using only two levels of LUTs, thus achieving a

very high speed. In contrast, on Virtex-4 platform, Type-I

and -II adders must be split among 4-input LUTs and hence

more LUTs are required and poorer speed performance is

observed.

For the tri-level bit-stream multiplier, only 2-input bit-

stream adder tree structure is implemented. This results

in a higher logic complexity and slower speed than the bi-

level design. As the multiplier consists of combinatory logic

functions of over four inputs (tri-level bit-stream adders),

the logic mapping in 6-input LUTs is more efficient than in

4-input LUTs. This is confirmed in Table 1 when the imple-

mentation results for Virtex-4 and -5 are contrasted.

3.2. Bit-stream vs Multi-bit Multiplication

We compare the FPGA resource requirements for bit-stream

andmulti-bit multipliers to investigate the condition on over-

477

5 6 7 8 9 10 11
−70

−65

−60

−55

−50

−45

−40

−35

log
2
(OSR)

N
oi

se
 p

ow
er

 in
 s

ig
na

l b
an

d
(d

B
)

bi−level

tri−level

Fig. 6: Noise power in signal band against OSR.

Table 2: Multi-bit multiplier implementation results on Xilinx
Virtex-4 and Vitex-5.

No. of LUTs

Bit-width Virtex-4 Virtex-5

4 17 17

5 33 31

6 40 38

7 62 60

8 71 69

9 101 98

sampling rate (OSR) when BSSP begins to show LUT ad-

vantage over traditional multi-bit approach. Figure 6 shows

the noise power verus OSR plot for the bi-level and tri-level

bit-stream multiplers. The graph is obtained using Matlab

simulation. The quantization noise of an n-bit multiplier is
approximated in [2] as:

Quantization Noise = −(6n + 5) dB (3)

We use Xilinx CORE generator to implement multipliers

with various bit-lengths on Virtex-4 and -5 devices. The

results are tabulated in Table 2.

Comparing the LUT results in Table 1 with Table 2, for

the case of bi-level bit-stream multiplier implemented on a

Virtex-4 device, we see that the 26 LUTs sits between the

LUT resources of a 4-bit and a 5-bit multiplier. According

to Equation 3, the quantization noise power of a 5-bit mul-

tiplier is about -35 dB. From Figure 6, this can be achieved

when the OSR is about 32. The “break-even” OSRs, i.e., the

OSR beyond which a bit-stream multiplier becomes more

efficient than a multi-bit multiplier, of the other three cases

in Table 1 can be similarly obtained. The results are sum-

marized in Table 3.

Table 3: Break-even OSRs for bi-level and tri-level bits-stream
multiplers in Virtex-4 and Virtex-5.

Bi-level Tri-level

Virtex-4 Virtex-5 Virtex-4 Virtex-5

Break-even

OSR

< 32 < 32 256 64

From Table 2, it can be found that the LUT results on

multi-bit multiplier implementation do not varies significantly

when Virtex-5 is used instead of Virtex-4. In contrast, for

bit-stream multipliers, the Virtex-5 implementation is more

efficient than the Virtex-4 implementation. Therefore, we

can see that the break-even OSR for Virtex-5 occurs early

than that for Virtex-4 and we can conclude that BSSP in

Virtex-5 performs better than in Virtex-4. Note that for bi-

level bit-stream multiplier implementations, the break-even

OSRs are below 32. In practical applications, the OSR is

almost always higher than 32.

4. CONCLUSION

We have implemented bi-level and tri-level bit-stream mul-

tipliers in Virtex-4 and Virtex-5 to study the performance

gain of BSSP arithmetic circuits in the new 6-input LUT

architecture over the 4-input LUT architecture. It has been

shown that BSSP implementation is more effective in FPGA

featuring 6-input LUTs in terms of resource utilization and

clock speed. We have also found the OSRs for the bi-level

and tri-level bit-stream multipliers above which BSSP be-

comes more resource-efficient than traditional Nyquist rate

multi-bit operations.

5. REFERENCES

[1] S. R. Norsworthy et al.,Delta-Sigma Data Converters, Theory, Design,
and Simulation. Piscataway, NJ: IEEE Press, 1997.

[2] H. Fujisaka et al., “Bit-stream signal processing circuits and their ap-
plication,” Transaction on Fundamentals of Electronics Communica-
tions and Computer Sciences, vol. 85, no. 4, pp. 853–860, 2002.

[3] ——, “Arithmetic circuits for single-bit digital signal processing,” in

Proceedings of the 6th IEEE International Conference on Electronics,
Circuits and Systems, vol. 3, 1999, pp. 1389–1392.

[4] Y. Hidaka et al., “Piecewise linear operations on sigma-delta modu-
lated signals,” in Proceedings of the 9th International Conference on
Electronics, Circuits and Systems, vol. 3, 2002, pp. 983–986.

[5] D. A. Johns and D. M. Lewis, “Design and analysis of delta-sigma

based iir filters,” IEEE Transactions on Circuits and Systems II: Analog
and Digital Signal Processing, vol. 40, no. 4, pp. 233–240, 1993.

[6] C. W. Ng et al., “Efficient fpga implementation of bit-stream multipli-
ers,” Electronics Letters, vol. 43, no. 9, pp. 496–497, 2007.

[7] ——, “Bit-stream adders and multipliers for tri-level sigma-delta mod-

ulators,” IEEE Transactions on Circuits and Systems II: Express Briefs,
vol. 54, no. 12, pp. 1082–1086, Dec 2007.

[8] P. O’Leary and F. Maloberti, “Bit stream adder for oversampling coded

data,” Electronics Letters, vol. 26, no. 20, pp. 1708–1709, 1990.

478

