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ABSTRACT

Power consumption in data centres is a growing issue as
the cost of the power for computation and cooling has be-
come dominant. An emerging challenge is the development
of “environmentally friendly” systems. In this paper we
present a novel application of FPGAs for the acceleration
of Information Retrieval algorithms, specifically, filtering
streams/collections of documents against topic profiles. Our
results show that FPGA acceleration can result in speed-ups
of up to a factor 20 for large profiles.

1. INTRODUCTION

Servicing millions of user search requests and processing
very large volumes of information requires massive amounts
of computational resources that consumes huge amounts of
energy. Energy costs for computing and cooling have be-
come the dominant cost in the operation of data centers [1].
This motivates the development of energy efficient solutions
for processing large amounts of data and information. Re-
ducing the amount of energy consumed provides a win-win
situation: service providers can significantly reduce their
costs by consuming less energy, and the impact upon the
environment is greatly reduced.

This work describes our initial steps towards evaluat-
ing the potential of FPGAs for developing environmentally
friendly Information Retrieval systems. We focus on the
task of information filtering, where given a set of informa-
tion needs (profiles), incoming documents are matched against
these profiles [2]. This task can be performed for a num-
ber of reasons in a variety of situations, for example detect-
ing spam in incoming emails, comparing patent applications
against existing patents, monitoring communications for ter-
rorist activity, news story topic detection and tracking, etc.

∗W. Vanderbauwhede acknowledges support from the EPSRC. The au-
thors thank F. Larsson of Mitrionics for technical support with the Mitrion
SDK, and the IR Facility (www.ir-facility.org) and Matrixware GmbH for
supporting this project, .

When faced with large volumes of incoming documents,
processing needs to be performed in real time, and therefore
time based efficiency is paramount. Therefore, our aim is to
filter documents efficiently in terms of both time and energy,
by implementing the most computationally intensive part of
the filtering application on FPGAs.

2. INFORMATION FILTERING

According to [3], “Information retrieval (IR) deals with the
representation, storage, organization of and access to infor-
mation items.”. The main tasks undertaken to facilitate ac-
cess to information are ad hoc retrieval, classification, clus-
tering, and filtering. Fundamentally, each task requires the
matching between between information items and informa-
tion needs. For instance, in ad hoc retrieval a query repre-
senting the users information need is matched against docu-
ments. In Information Filtering the task is as follows: given
a collection or stream of documents, matching is performed
against a topic profile that represents the user’s information
need: this profile is characterized by a weighted feature vec-
tor, where features usually are terms. In this work, we em-
ploy the model proposed by Lavrenko and Croft [4] for fil-
tering. Applied to the task of information filtering, the idea
is that the odds of an incoming document being relevant
to the topic profile is determined using a generative prob-
abilistic language model. If a document scores above a user
defined threshold then it is considered relevant to the topic
profile.

The algorithm implemented on the FPGA can be ex-
pressed as follows: a document is modelled as a “bag of
words”, i.e. a set D of pairs (t, f) where f , n(t, d) is
the number of occurrences of the term t in the document d;
t ∈ N is the term identifier . The profile M is a set of pairs
p = (t, w) where the weight w , log

(
(1−λ)P (t|M)

P (t) + λ
)

(see Appendix for details). Let T be the set of terms oc-
curring both in D and M . The score of a given document
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against a given profile is then given by:

score(D,M) =
∑
∀k∈T

fkwk (1)

This function is representative of the kernel of most filter-
ing algorithms. The main difference being the weighting of
terms in profiles.

3. SYSTEM ARCHITECTURE

3.1. Development Platform

The research was carried out using an SGI Altix 4700 ma-
chine which hosts two RC100 blades. Each blade contains
two Xilinx Virtex-4 LX200 FPGAs running at 100MHz; each
FPGA is connected to the host platform via the SGI NU-
MAlink high-speed I/O interface and has access to a lo-
cal 64 MB SRAM bank over a 128-bit data bus at a max-
imum speed of 16GB/s. The host system is an 80-core 64-
bit NUMA machine, running 64-bit Linux (OpenSuSE). The
processors are dual-core Itanium-2 running at 1.6GHz; each
processor has direct access to 4GB of memory, but can ac-
cess the complete 320-GB memory space over the NUMA-
link. It is notable that the Itanium processor consumes ap-
proximately 130 watts of power [5] whereas each Virtex-4
FPGA consumes approximately 1.25 watts of power [6].

3.2. Application Architecture

The document filtering application (Fig. 1) has a client-
server architecture consisting of a GUI-based client con-
nected over TCP/IP to a Communication Server. The Com-
munication Server acts as a proxy between the various back-
end servers and the client. A typical use case starts with
the user issuing a query to the Query Server, a conventional
search system that returns a sorted list of hits. The user then
creates a profile by selecting relevant documents from the
list of hits. The complete text of all the combined documents
is then used by the Profile Server to construct the profile (i.e.
the list of terms and weights). The Profile Server matches
the profile against the complete document collection and re-
turns a stream of scores to the client. The modular client-
server architecture facilitates benchmarking of the system as
it is very easy to add a C++ reference implementation of the
Profile Server running on the host CPU. As shown in Fig.
1, the FPGA-accelerated part of the application is limited to
the most computationally intensive task, the matching of the
documents against the profile. All other tasks are handled
by the host system (Fig. 2).

The Profile server (Fig. 1) filters a stream of documents
against a profile received from a client and returns a stream
of scores. To evaluate the performance, both a C++ refer-
ence implementation and an FPGA-accelerated implementa-
tion were created. Both implementations have the same ba-

Fig. 1. System Architecture

Fig. 2. FPGA SubSystem Architecture

sic functionality: they receive the list of documents consti-
tuting the profile over a TCP/IP interface, construct the pro-
file using a relevance model and score a memory-buffered
document stream against this profile, returning a stream of
document scores to the client over TCP/IP. The document
stream is buffered in memory as otherwise the slow disk ac-
cess would limit the performance of the application.

4. APPLICATION IMPLEMENTATION

The application is implemented in C++ using the Lemur IR
framework 1 and the SGI RASC libraries for interacting with
the FPGA. The Lemur Toolkit is a open-source toolkit for
research in IR with support for indexing and various rele-
vancy and retrieval models. The SGI RASC (Reconfigurable
Application Specific Computing) library2 is the proprietary
solution used by SGI to integrate FPGAs with host systems
over the high-performance NUMAlink interconnect fabric.
It defines a hardware abstaction API that provides control
over each hardware element in the system.

To avoid the complexities involved in low level hard-
ware implementation, the FPGA algorithm is implemented
in Mitrion-C [7]. The Mitrion SDK3 is used to convert Mitrion-

1www.lemurproject.org
2www.sgi.com
3www.mitrionics.com
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C into VHDL. The produced VHDL code at this stage can be
simply targeted to an FPGA device architecture. The Xilinx
ISE toolchain with the XST synthesis tool are employed to
create the bistream for the Virtex-4. The rest of this section
provides a description of the tools, algorithms and platform
adopted to implement the FPGA-based implementation of
the filtering task.

4.1. Mitrion-C

The Mitrion-C language is a high-level language specifi-
cally intended for developing applications on FPGAs. It is
a single-assignment dataflow language with native support
for deep (vector) and wide (pipeline) parallelism. Mitrion-
C provides a stream datatype that results in pipelined op-
eration when used in conjunction with the foreach looping
construct, a vector datatype for data-parallel operation and
a list datatype for sequential lists. In particular, the output
of a foreach loop over a stream can be filtered to produce a
smaller stream (see example below). Furthermore, powerful
datatypes can be constructed using the tuple construct. A
final feature worth noting is the support for variable-width
integer and floating-point numbers.

Algorithm 1 Example Mitrion-C code

type Word = typedef bits:128;
type Stream = typedef Word(..);
type DocId = typedef uint:64;
type Score = typedef int:48;
type DocScore = typedef tuple {DocId,Score};
type ScoreStream = typedef DocScore(..);

ScoreStream score_stream =
foreach ( Word w in Stream word_stream ) {
score = ... ; // calculate score
keep = score > limit;

} keep ? score

4.2. FPGA Implementation of Filtering Algorithm

To implement the operation described in Equation 1 effi-
ciently on the FPGA, the key issues to be addressed are effi-
cient lookup of the profile and efficient streaming I/O of the
document stream.

4.2.1. Profile Lookup Table Implementation

For every term in the document, the application needs to
look up the corresponding profile term to obtain the term
weight. As most of the lookups will fail (i.e. most terms

Fig. 3. Bin overflow probability for varying profile size and
relative performance versus bin size

in most documents will not occur in the profile), it is im-
portant to discard the negatives first. For that reason we
implemented a Bloom filter [8] in the FPGA block RAM.
The higher internal bandwith of the BRAMs leads to very
fast rejection of negatives. Because of the need for lookup,
the profile must be implemented as some type of hash func-
tion. However, as the size of the profile is not known in
advance, it is impossible to construct a perfect hash; imper-
fect hashes suffer from collisions which deteriorate the per-
formance. Our solution is to use “trivial” hashing combined
with binning. We partition the external SRAM in bins, every
bin can contain a fixed number of profile terms b. The bin
size determines the number of collisions that can be han-
dled. To assign a profile term to a bin we simply take the
lower part of the term id as the memory address, i.e. there is
no actual hashing.

Let the SRAM memory capacity be NM profile terms.
The term id is an unsigned integer with a range depending
on the vocabulary size which in our case is about 4 million
terms, requiring 24 bits. The term weight is represented as
an 8.32 fixed-point number, so the profile term takes 64 bits.
The SRAM on the RC100 consists of 4 banks of 16MB,
henceNM = 223. The number of bins nb = NM

b and the bin
address is computed from the term id t as (t & (nb − 1)).b.

The probability x of occupancy for a bin can be ex-
pressed as follows with np the number of terms in the profile
(combinations with replacement):

p(x |nb, np) =

(
nb − 1 + np − x− 1

np − x

)
(
nb + np − 1

np

) (2)

Using this equation we can compute the probability of
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Fig. 4. Diagram of FPGA implementation of filtering appli-
cation

bin overflow as a function of the bin size (and hence the
number of bins, as NM = b.nb). The results are shown in
Fig. 3, together with the relative performance of the lookup
table. The larger the bin size, the slower the lookup; how-
ever, as the SRAM bank consists of 4 independent 64-bit ad-
dressable dual-port SRAMs, we can actually look up 4 pro-
file terms in parallel. Consequently, the relative performance
decreases as 1/db/4e. From the figure it can be seen that
even for the largest profiles (16K; in our study the largest
profile was 12K, in general profiles are much smaller), the
bin overflow probability for b = 4 (best performance) is
10−9. In other words, the chance that a profile term will be
discarded is less than one in a billion. It should be noted that
this estimate is pessimistic because Eq. 2 assumes vocabu-
lary size is infinite.

4.2.2. Document Stream Format

Using a bag-of-words representation (see Section 2) for the
document, the document stream is a list of (document id,
document term pair set) pairs. Physically, the FPGA accepts
a stream 128-bit words from the NUMAlink at 1.6 GB/s.
Consequently, the document stream must be encoded onto
this word stream. The document term pair di = (ti, fi) can
be encoded in 32 bits: 24 bits for the term id (supporting
a vocabulary of 16 million terms) and 8 bits for the term
frequency. Thus we can combine four pairs into a 128-bit
word. To mark the start and end of a document we insert
header and footer words which contain the document id (64

Fig. 5. Document term scoring

bits) and a marker (64 bits).

4.2.3. Lookup and Scoring

Using the lookup table architecture and document stream
format as described above, the actual lookup and scoring
system (Fig. 4) is quite straightforward: the input stream
is scanned for header and footer words. The header word
action is to set the document score to 0; the footer word
action is to collect and output the document score. For every
4 terms in the document, first the Bloom filter is used to
discard negatives and then 4 profile terms are read from the
SRAM. The score is computed for each of these terms in
parallel and added (Fig. 5). In practice, three out of four
profile term ids will not match the document term id; only
for the fourth the actual product is computed. The score is
accumulated for all terms in the document and finally the
score stream is filtered against a limit before being output to
the host memory.

4.3. Host Interface

The host-FPGA interface transfers the document stream from
the memory buffer to the FPGA and returns a score stream
to the client. On receipt of a list of profile document ids
from the client, the parent process forks off a child process
that builds the actual profile, loads in onto the SRAM and
runs the algorithm on the FPGA. Each child process spawns
a separate output thread which buffers the scores received
from the FGPA and transmits them to the client over TCP/IP,
thus using the network for multiplexing the score streams.
Without this thread, fluctuations in the network throughput
could degrade the system performance. The main advantage
of the host interface architecture is that it can easily scale to
large numbers of FPGAs.

5. EXPERIMENTS

To evaluate the performance of the FPGA-accelerated fil-
tering application, a series of experiments were performed

420



comparing the FPGA-accelerated implementation against an
optimized reference implementation written in C++ and run
on the Altix. For the comparison, we used three IR test
collections. Table 1 shows the collections used: TREC
Aquaint, and two collection of patents from the US Patent
Office (USPTO) and the European Patent Office (EPO), re-
spectively. These collections were chosen to assess the im-
pact of different document lengths and sizes of documents
on filtering time.

Avg. Avg.
Collection # Docs Doc. Len. Uniq. Terms
Aquaint 1,033,461 437 169
USPTO 1,406,200 1718 353

EPO 989,507 3863 705

Table 1. Collection Statistics

To simulate a number of different filters, for each collec-
tion, profiles were constructed by selecting a random docu-
ment, using the title as the query, then selecting up to n top
documents returned by the query server as pseudo-relevant
documents. The returned documents, were then used to con-
struct a relevance model. The relevance model defined the
profiles which each document in the collection was matched
against (as if it were being streamed from the network). The
number of documents in the profile n was varied from 1 to
50, to determine the impact on performance as the size of
the profiles increased (both number of terms, and number
of documents). This process was repeated 30 times and the
average processing times were computed.

6. RESULTS AND DISCUSSION

The results are summarized in Table 2 and Figure 6. From
the table, it is clear that the FPGA implementation is typi-
cally an order of magnitude faster than the standard imple-
mentation. From the figure, it can be seen that as the profile
size increases (i.e. the number of terms that require match-
ing increases) the standard implementation becomes slower

Profile Processor
# # Uniq. CPU FPGA

Collection Docs Terms (secs) (secs) Gain
1 254 21.3 2.6 8.3x

Aquaint 10 1,444 27.4 2.6 10.5x
50 4,713 34.5 2.6 13.2x
1 28 64.0 7.2 8.9x

USPTO 10 148 68.3 7.1 9.6x
50 615 76.9 7.5 10.3x
1 1,327 107.3 8.4 12.7x

EPO 10 4935 153.3 8.1 19.0x
50 12,314 177.1 8.5 20.8x

Table 2. Performance Statistics

and slower, while the FPGA implementation remains rela-
tively constant. This is because the FPGA implementation
pipelines the profile scoring, resulting (in first order) in a
constant latency independent of the profile size.
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Fig. 6. Time in Secs vs. No. of Docs in Profile.

The results clearly demonstrate the potential of FPGAs
for accelerating IR tasks. The speed-ups are already quite
dramatic, especially for large profiles; nevertheless, there
is still room for improvement. Using simulations we have
verified that the FPGA algorithm scores 1 document term
per 2 clock cycles. The limiting factor is the SRAM ac-
cess speed which is 128 bit/cycle, requiring 2 cycles to read
4 profile terms. At a clock speed of 100MHz this means
that the FPGA is capable of scoring the EPO collection in
15 seconds. The current application takes about 8.5 sec-
onds on four FPGAs, so in principle it should be possible to
increase the performance with a factor of two at least. The
reason for the discrepancy lies in the streaming I/O: the doc-
ument stream is transfered from user memory space to the
NUMAlink via a host operating system device driver. The
driver transfers a buffered block of the stream. Currently,
this transfer has not been implemented optimally in terms of
the transfered block size, leading to sub-optimal throughput;
furthermore, using a separate thread for queuing the trans-
fers would eliminate the transfer time from the latency.

7. CONCLUSION

In this paper, we have presented a novel application of FPGA
hardware for accelerating one type of Information Retrieval
task. By implementing a document filtering application us-
ing FPGAs we demonstrated reductions by up to a factor
of 20 in the time taken to filter a stream of incoming docu-
ments. Furthermore, the FPGA solution delivers this speed-
up at a fraction of the power of a CPU-only solution. These
results demonstrate that the usage of FPGAs as “greener
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hardware” can deliver tremendous benefits by reducing the
power consumed, and also increasing the speed of execu-
tion. Future work will be directed towards: (i) improving the
performance of the current prototype, (ii) scaling the proto-
type up to data centre scale, and (iii) implementing more
sophisticated filtering algorithms, along with other IR tasks
such as ad-hoc retrieval and classification/clustering where
efficiency is also paramount.
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Appendix: Relevance Based Language Model
While there been have been numerous kernel functions pro-
posed for matching, one algorithm developed which pro-
vides state of the art performance is the so called “Rele-
vance Based Language Model” proposed by Lavrenko and
Croft [4]. Formally, this model can be expressed as:

P (D|R)
P (D|N)

≈
∏
t∈D

P (t|R)
P (t|N)

n(t,d)

(3)

where D is the document, and R and N denote relevance
and non-relevance to the topic profile, respectively, and the
n(t, d) is the number of times the term occurs in the doc-
ument. The odds is computed by treating the document as
set of terms which are drawn independently and identically
from the relevance model P (t|R) and non-relevance model
p(t|N). i.e. these distributions represent the probability of
seeing term t given the relevance and non-relevance to the
topic. If the probability of a term is high in the relevance

model and low in the non relevance model, a document that
contains the term will attract a higher score, and vice versa.
If the odds of a document is greater than one, then a doc-
ument is more likely to be relevant to the topic/profile. By
setting a threshold, documents can be filtered or classified
accordingly, as for example, spam, or not spam. As multi-
plication is a costly operation and the probability values can
be very small, it is standard practice to transform the com-
putation into a summation, by taking the log of both sides,
so that the log odds ratio calculated, instead. i.e.

log
P (D|R)
P (D|N)

≈ log
∏
t∈D

P (t|R)
P (t|N)

n(t,d)

=
∑
t∈D

log n(t, d)
P (t|R)
P (t|N)

(4)

The P (t|N) is assumed to be probability of the term
occurring in the background collection P (t), which is es-
timated using the maximum likelihood estimator, i.e. the
number of times the term occurs in the collection divided by
the total number of term occurrences in the entire collection.
The relevance model is estimated by :

P (t|R) = (1− λ)P (t|M) + λP (t) (5)

where, P (t|M) is the probability of the term occurring in
relevant documents (see [4] for full estimation details).

Smoothing of P (t|M) with P (t) is required because
there maybe some values of P (t|M) that are zero. This
would then result in the zero probability problem, where
a document contain such a term would be assigned a zero
probability, regardless of how many matching terms it actu-
ally contained. The impact of this smoothing on the scoring
of a document, means that the odds can be split into two
parts: the score of a document where the document terms
are non-zero in P (t|M), and the score of a document where
the document terms are zero in P (t|M):

log
P (D|R)
P (D|N)

≈
∑

t∈D∧M
(t, d) log

(1− λ)P (t|M) + λP (t)
P (t)

+
∑

t∈D∧¬M
n(t, d) log

λP (t)
P (t)

≈
∑

t∈D∧M
n(t, d) log

(
(1− λ)P (t|M)

P (t)
+ λ

)
(6)

To further reduce the complexity of the scoring algorithm,
matching is reduced to only scoring the terms that occur in
the document and in the model p(t|M). Therefore we drop
the second addend and the final score is an approximated by
Equation 6.
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