

Chalamalasetti, S.R., Vanderbauwhede, W., Purohit, S. and Margala, M.
(2009) A low cost reconfigurable soft processor for multimedia
applications: design synthesis and programming model. In: 2009
International Conference on Field Programmable Logic and Applications.
IEEE Computer Society, Piscataway, N.J., USA, pp. 534-538. ISBN
9781424438921

http://eprints.gla.ac.uk/40012/

Deposited on: 17 December 2010

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/view/author/12645.html

A LOW COST RECONFIGURABLE SOFT PROCESSOR FOR MULTIMEDIA

APPLICATIONS: DESIGN SYNTHESIS AND PROGRAMMING MODEL

Sai Rahul Chalamalasetti
1
, Wim Vanderbauwhede

2
, Sohan Purohit

1
, Martin Margala

1

1
Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA, USA

2
Department of Computer Science, University of Glasgow, UK

sairahul_chalamalasetti@student.uml.edu, {sohan_purohit, martin_margala}@uml.edu

wim@dcs.gla.ac.uk

ABSTRACT

This paper presents an FPGA implementation of a low cost
8bit reconfigurable processor core for media processing

applications. The core is optimized to provide all basic

arithmetic and logic functions required by the media

processing and other domains, as well as to make it easily

integrable into a 2D array. This paper presents an

investigation of the feasibility of the core as a potential soft

processing architecture for FPGA platforms. The core was

synthesized on the entire Virtex FPGA family to evaluate

its overall performance, scalability and portability. A

special feature of the proposed architecture is its simple

programming model which allows low level programming.

Throughput results for popular benchmarks coded using the
programming model and cycle accurate simulator are

presented.

1. INTRODUCTION

Adaptable architectures capable of processing large amount

of data in parallel are increasingly becoming popular as

low-cost, flexible solutions for media processing and other

applications. This has resulted in an ever increasing interest
in low cost, high throughput reconfigurable architectures, in

recent times. Architectures that provide reasonably high

throughput at extremely low cost and low power are being

seen as key players for media processing applications.

Traditionally, FPGAs have been considered ideal

contenders in this category due to their ability to deliver

high throughput at relatively lower costs than dedicated

DSP ASICs. However, FPGAs only offer bit level

granularity, resulting in a large routing overhead, thus

decreasing overall system throughput and silicon efficiency.

Coarse Grained Reconfigurable Architectures (CGRAs)

provide high speed parallel computations with lower
routing and configuration overheads. As a result several

CGRAs like MATRIX[1] MorphoSys[2], and the new

AsAp[3] were proposed to provide extremely high

throughput parallel processing performance. Although these

solutions offer exceptional performance, they come at a

high cost, employing millions of transistors, consuming

large amounts of power and using complex programming

models.

 In spite of the throughput and efficiency lost out by

FPGAs due to the routing overheads, the generic

architecture of the FPGA makes it a low cost solution with

reduced time to market. As an alternative to application

specific custom IP which increase manufacturing cost and

time to market, soft processors provide a more generic
platform to implement various design algorithms. Recently,

several soft processing cores have been introduced to map

onto the FPGAs and function as complete 8/16/32 bit RISC

processors. These soft cores allow for a more high level

programming style for the devices rather than using the

hardware description languages. This allows the

programmer to program the various algorithms in his native

programming language, rather than model them using a

hardware description language (HDL). Soft processors like

Pico Blaze, Micro Blaze, serve this category of

applications.

 However, these soft processing solutions employ a
generalized RISC architecture, not entirely optimized for

media processing needs. Media processing applications are

continuously increasing in their complexity. The current

available soft processing units are limited by a general lack

of reconfigurability which renders them somewhat non-

feasible for multimedia processing applications which

require the architecture to employ a high level of

parallelism. This inability to extract parallelism out of the

algorithm could prove to be a huge bottleneck when

implementing media processing algorithms on these

platforms. A highly parallel, easily programmable soft core
solution will therefore be viable for media processing tasks.

 We recently proposed MORA[5,6], a coarse grained

reconfigurable architecture for multimedia processing. The

MORA architecture aims to introduce resource utilization

and programming flexibility as equally important parts of

the design philosophy for reconfigurable platforms. In this

paper, we propose the architecture for a simple, yet efficient

8bit reconfigurable DSP style processor to be part of

MORA, a coarse grained reconfigurable array for media

processing applications. The reconfigurable cell (RC) was

implemented in VHDL and synthesized on the entire Virtex

family of FPGAs to demonstrate performance, cost and
portability of the proposed architecture Using the MORA

assembly language and cycle accurate simulator, the

architecture was evaluated for popular benchmark

978-1-4244-3892-1/09/$25.00 ©2009 IEEE 534

algorithms. This study also helps evaluate the feasibility of
the proposed architecture as a soft processor.

2. MORA ARCHITECTURE

The MORA architecture consists of a 2-D array of identical

Reconfigurable Cells (RC) arranged in 4X4 quadrants and

connected through a hierarchical reconfigurable

interconnection network. Storage for data is partitioned

among RCs by providing each RC with internal data
memory. Each individual RC is a tiny Processor-in-

Memory (PIM)[8]. Every RC consists of an 8bit Processing

Element, 256X8 Dual Port Data Memory, and a central

controller for overall synchronization.

2.1. Processing Element

The Processing Element is the main computational unit of

the RC. Prior work on the design of data paths, focused on

optimizing the data path design and organization for
efficient single cycle arithmetic operations [7]. Fig. 1 shows

the organization of the PE. It includes the signed arithmetic

data path [7] along with additional blocks for shifting and

comparison operations. The PE uses a logarithmic shifter to

implement bitwise shifting operations on the operands. The

shifter working in conjunction with the logic block provides

support for both round shifting and shift out operations. The

arithmetic data path is organized to provide single-cycle

addition, subtraction and multiplication operations. The PE

also provides two sets of registers at the input and output to

enable accumulation style operations, as often required for

media processing applications.

2.2. Control Unit

The control unit provides the handshaking signals between

memory and data path, and ensures that the two units work

in perfect sync with each other. The unit consists of a 16-

word instruction memory, three address generators,

instruction decoders and instruction counters. The

instruction word is 92 bits wide and encodes the operation,

base addresses for an instruction operands and output data

set and address offsets for traversing through memory, as
well as the number of times a specific operation is to be

performed. The address generator accepts four data fields:

Base address, Step, Skip and Subset. The Base address is

initially loaded into the address generator, and depending

on the values of Step, Skip and Subset, the address of the

next memory location to fetch the data is calculated. The

three fields allow the controller to move anywhere

throughout the available data memory. The address

generator thus generates the range of addresses over which

a given instruction is to be performed. The control unit

provides support for a total of 28 arithmetic, logic and
memory based instructions. Fig. 2 shows the basic

organization of the control unit.

2.3. Memory Organization

Each RC is provided with a 2568 bits data memory. This
allows each RC to work as a tiny PIM [8], i.e. operations

are performed close to memory. The approach allows each

RC to work independent of the others, and eliminates the

possibility of contention for memory resources between

RCs, thus also bypassing the need for special contention
resolving logic. The result is an optimized cell performance

in terms of power, area, memory access time, and reduction

in complexity of the interconnect switches. In addition to

individual read and write operations on the ports, an

additional MOVE instruction is provided for port-port data

Arithmetic

Block

AS0(S0)

AS1(S1)

AS2(0)

AS3(S0)

AS4(S1)

AS5(S1)

AS6(S2)

AS7(S3)

AS8(S4)

Logic_Block

Logarithmic

Shifter

 1 0

Arithmetic_

Comparator

 1 0

 1 0

 1 0

S7

S6

S5

S10

S9

S8

S11

S12

S13

S13

 1 0S11

Additional

Logic for

comparator

 1
 0

S
1

2

S12 1 0 1 0

00000000 00000000

00000000

A0[7:0]

B0[7:0]

A1[7:0]

B1[7:0]

A[7:0] B[7:0]

Result[15:0]

(YL[7:0]&YR[7:0])
Fig 1. Processing Element Architecture

Instruction Machine
Address Generator

Memory

Control

Instructio

n Decoder

Instruction

Counter

Instruction Memory

S
ig

n
a

ls

to
 A

L
U

M
e

m
o

ry

S
ig

n
a

ls

Address_in

_Left
Address_in

_Right Address_ext
Data_ready_out

Load

instruction

Data_ready_in

Data_ready_in_ack Data_ready_out_ack

Fig 2. Control Unit Design

535

transfer during matrix and vector operations. The read and
write operations are performed on opposite phases of the

clock signal. This allows the RC to perform the MOVE

operation in a single cycle. The alternately phased read and

write allow the RC, to perform the read-execute-write

sequence in a single internal clock cycle. As a result, each

of the 28 instructions takes exactly one clock cycle to

complete. This ability is particularly useful in that it allows

the MORA processors to treat each algorithm, as a

sequence of simple single cycle instructions. The

architecture thus, prevents itself from imposing restrictions

on programming style or favoring a particular algorithm,
and allows for a simple programming model, with a great

degree of freedom for the programmer.

3. PROGRAMMING MODEL

3.1. Processing model

The MORA RCs operate asynchronously, using a simple

handshake mechanism to notify downstream RCs of

availability of data. Synchronous operation of all RCs

would require that at every moment every RC would

execute the same number of clock cycles for an operation

and that the clocks would need to be synchronized over a

very large area. Having to fulfill both requirements would

be extremely unpractical and inefficient.

 The RCs can receive data via two input ports A, B and

transfer processed data via two output ports YL, YR. Each

of these output ports can be connected to up to two RCs.

The RC has two states: waiting and processing; these states
depend on the state of the RC’s local memory and the states

of the memories of the RCs connected to its output ports.

The RC memory has two states: ready and not ready. The

local memory is ready when it has received a “ready” signal

from all RCs connected to its input ports (unconnected

input ports are always ready). The RC will process data if

its local memory is ready and all of the memories of the

connected RCs are not ready (unconnected output ports are

always not ready).

3.2. Co-design of RC and Assembly Language

To ensure that MORA can be programmed efficiently, the

RC and the assembly language were co-designed from an

early stage. The design of the assembly language informed

in particular the choice of non-arithmetic instructions in the

instruction set, the address generator design and the virtual

register/ virtual memory bank system.

 The MORA “assembly” language consists of three

components: a coordination component which allows

expressing the interconnection of the RCs in a hierarchical
fashion, an expression component which corresponds to the

conventional assembly languages for microprocessors and

DSPs and a generation component which allows compile-
time generation of coordination and expression instances.

3.3. Expression language

The MORA expression language is an imperative language

with a very regular syntax similar to other assembly

languages: every line contains an instruction which consists

of an operator followed by list of operands. The main

differences are:

 Typed operators: the type indicates the wordsize on
which the operations is performed, e.g. bit, nybble, byte,
short, long (resp. B, N, C, S, L).

 Typed operands: operands are actually tuples indicating
not only the address space but also the data type, i.e. word,

row, column, or matrix and the scan direction (forward or

reverse)

 Virtual registers and address banks: MORA has no
directly accessible registers. Operations take the RAM

addresses as operands; however, “virtual” registers indicate

where the result of an operation should be directed (RAM

bank A/B, output L/R)

 All arguments are optional: the MORA assembler will
infer defaults for non-specified arguments, considerably

simplifying the most common instructions.

3.3.1. Instruction structure

An instruction is of the general form

instr ::= op nops? dest? opnd*

op ::= uop:(B|N|C|S|I|L)?

dest ::= virtreg? addrtup?

opnd ::= addrtup|const

virtreg ::= Y|YL|YR|YA|YB

addrtup ::= (ram_id:)?addr(:type)?

ram_id ::= A|B

addr ::= 0..(MEMSZ-1)

type ::= (W|C|R|M|MT|Q|QT)(R|F)?

const ::= C:num

num ::= -(MEMSZ/2-1)..(MEMSZ/2-1)

For example, the instruction for signed addition of two

bytes would be:

ADD 1 Y A:0:W A:0:W B:0:W

However, because of the “reasonable defaults” strategy, this

can simply be written as

ADD

Similarly, a multiply-accumulate of the first row of an

NN-matrix in bank A with the first column of a matrix in
bank B would in full be

MULACC 8 Y A:0:W A:0:R B:0:C

but can simply be written as

MULACC R C

536

The MORA assembler will infer defaults for all implicit
fields.

3.3.2. Address Types

As discussed in Sec. 3, the RC supports complex address

scan patterns through the use of 4 fields in the instruction

word: base_address, step, subset and skip. The MORA

assembler supports a subset of all possible values of Step,

Subset and Skip through its type system. The type

component of the address tuple (W|C|R|M|MT) indicates

the nature of the datastructure referenced by the base

address (ram_id:addr):

W: word (single byte)

C: Column (N1)

R: Row (1N)

M: NN matrix (MT: transposed matrix M)

Q: N/2N/2 matrix (QT: transposed matrix Q)
 The type suffix (F|R) indicates a forward or reverse scan

direction. Thus MORA’s simple address type system

supports the typical vector operations required for NN
matrix manipulation.

3.3.3. Operation Types

The operator of an instruction can be explicitly typed,
indicating the length of the word on which the operation

should be performed. This information is used to generate

the step and the virtual output register. As the MORA RAM

is byte-addressable, operation types B (bit) and N (nybble)

have no effect on the address generation but result in single-

byte output; operations on multiple bytes (types S and L,

resp. 2 and 4 bytes) result in a step of the number of bytes;

the assembler generates the individual byte-operations that

make up the multi-byte operation.

3.4. Coordination Language

MORA’s coordination language is a compositional,

hierarchical netlist-based language. The language consists

of primitives definitions, module definitions, module

templates and instantiations. Primitives describe a MORA

RC and are defined as prim_name { ... }, e.g. a primitive to

compute a determinant of a matrix would be:

DET2x2 {

MULT YB B:0 A:0 A:9

MULT YB B:1 A:1 A:8

ADD YR A:0 B:0 B:1

}

Instances are defined as (netout1 ,...) = name (netin1 ,...);

unconnected ports are marked with a ’_’.

 Modules are groupings of instantiations, very similar to

compositional coding in VHDL. As modules can have

variable numbers of input and output ports (but no inout

ports), the definition is module_name (inport1,inport2,...) {

... } (ouport1,outport2,...). For example, a module to

compute 16-bit addition can be built out of 8-bit addition
primitives (ADD8) as follows:

ADD16 (b1,b0,a1,a0) {

(c0,z0) = ADD8 (b0,a0)

(c1,s1) = ADD8 (b1,a1)

(_,z1) = ADD8 (c0,s1)

} (c1,z1,z0)

3.5. Generation Language

This component of the language is in itself an imperative

mini-language with a simple and clean syntax inspired

mainly by Ruby [9]. The language acts similar to the macro

mechanism in C, i.e. by string substitution, but is much
more expressive.

 The current MORA RC does not support registered

memory access and hence addressing is completely static.

While this is not an issue for run-time performance, it

would make algorithm implementation repetitive and

cumbersome. The generation language allows instructions

to be generated in loops or using conditionals. As an

example, consider matrix multiplication. Because of the

parallelism in MORA, 88 matrix multiplication can be

done very efficiently by splitting the matrices into 48 and
perform 4 partial multiplications in parallel.

The C code for such a partial multiplication is:

for (int i=0;i<4;i++) {

 for (int j=0;j<4;j++) {

 m[i][j]=0;

 for (int k=0;k<8;k++) {

 m[i][j]+=a[i][k]*b[k][j];

 }

 }

}

In MORA assembly, this becomes:

for j in 0..24 step 8

 for i in 0..3

 out=i+j

 k=i*8

 MULACC A:out:W A:j:R B:k:R

 end

end

The MORA RC performs this computation in 128 clock

cycles.

3.6. Implementation

The MORA assembly language was implemented in an

assembler combined with a cycle-accurate interpreter. The

assembler first generates the full assembly text by

537

evaluating the generation language; it then compiles the

instruction words from the expression language part of

every primitive definition; the connectivity of the RCs is

extracted from coordination language. The actual placement

and routing of the RCs is not handled by the MORA
assembler: the final output of the assembler is a VHDL

netlist which is processed using the FPGA toolchain.

4. FPGA SYNTHESIS AND PERFORMANCE

RESULTS

The RC was synthesized on the Virtex 5 XC5VL330 FPGA

from Xilinx [4]. Since MORA is array based architecture,

we targeted high end FPGA devices to allow

implementation of extra cores on the FPGAs. The synthesis
results show that the RC working at 68.29MHz occupies

only a fraction of the total FPGA resources and it is

possible to map an estimated 160 RCs, which is

approximately equivalent to mapping 3standard MORA

arrays (64 8bit RCs) on a single Virtex 5.

 Using cycle accurate simulator, we evaluated the

MORA architecture for throughput and other performance

metrics while performing popular benchmark applications.

Table 1 presents the benchmark performance evaluation of

the MORA soft cells. In each case, the algorithm has been

mapped onto the maximum number of RCs available for the
FPGA device at hand. This guarantees maximum

parallelization of the task at hand by maintaining a high

percentage of resource utilization.

5. CONCLUSION

This paper has presented the FPGA synthesis results for

MORA, a coarse grained soft processing core. The core was

synthesized on the Virtex 5 XC5VL330 FPGA from Xilinx.

Synthesis results show that the core occupies only a fraction
of the FPGA’s resources, thus making it possible to

integrate up to 3 arrays of the proposed architecture on a

single Virtex 5 device. Throughput and utilization results

for benchmark applications show that the proposed

architecture and compiler allow mapping of algorithms for

maximum throughput while at the same time ensuring near

100% utilization of all available MORA processors on

nearly all the FPGAs. This makes a strong case for the

portability of the proposed architecture and the flexibility of

its programming model. Based on these preliminary results,

MORA appears to be extremely feasible as a reconfigurable

multi-core soft processing architecture which allows high

level programming of the entire applications on FPGA.

Further research continues to build on the encouraging

primary investigation and will involve further cost and

performance optimization of MORA to make it a strong

contender in the soft processing category.

6. REFERENCES

[1] E. Mirsky and A. DeHon, “MATRIX: a reconfigurable
computing architecture with configurable instruction
distribution and deployable resources,” in Proceedings of
IEEE Symposium on FPGAs for Custom Computing

Machines, 1996., pp. 157–166, 1996.
[2] Singh H, Ming-Hau Lee, Guangming Lu, Kurdahi F.J,

Bagherzadeh N, Chaves Filho E.M, "MorphoSys: an
integrated reconfigurable system for data-parallel and
computation-intensive applications,"IEEE Transactions on
Computers, vol.49, no.5, pp.465-481, May 2000.

[3] Z. Yu, M. Meeuwsen, R. Apperson, O. Sattari, M. Lai, J.
Webb, E. Work, D. Truong, T. Mohsenin, B. Baas, "AsAP:

An Asynchronous Array of Simple Processors,"IEEE
Journal of Solid-State Circuits (JSSC), vol. 43, no. 3, pp.
695-705, March 2008.

[4] Xilinx Processor Reference Guides www.xilinx.com
[5] M. Lanuzza, S. Perri, P. Corsonello, M. Margala, “A New

Reconfigurable Coarse-Grain Architecture for Multimedia
Applications”, in Proceedings of Second NASA/ESA
Conference on Adaptive Hardware and Systems (AHS), pp.
119-126, 2007

[6] M. Lanuzza, S. Perri, P. Corsonello,” MORA- A New Coarse
Grain Reconfigurable Array for High Throughput
Multimedia Processing”, Proceedings of International
Symposium on Systems, Architecture, Modeling and
Simulation,(SAMOS), pp-159-168, 2007.

[7] S. Purohit, S. Chalamalasetti, M. Margala, P. Corsonello,
"Power-Efficient High Throughput Reconfigurable Datapath
Design for Portable Multimedia Devices," in Proceedings of

International Conference on Reconfigurable Computing and
FPGAs, pp. 217-222, December 2008.

[8] Brandon J. Jasionowski, Michelle K. Lay, Martin Margala,
“A Processor-In-Memory Architecture for Multimedia
Compression,” in Transactions on Very Large Scale

Integrated(VLSI) Systems, pp. 478-483,2007.
[9] D. Flanagan, Y.Matsumoto, “The Ruby Programming

Language”,O'Reilly,2008.

Table 1. Performance of soft-MORA processor on Virtex 5 FPGA for benchmark applications

 Benchmark

FPGA

type

Delay

(ns)

Latency

(ns)

Samples in

parallel

Throughput
(MOPS)

Utilisation

(#RCs)

88 2-D DCT, (minimum delay) V5 1,054 527 2 0.94 112

88 2-D DCT, (max. throughput) V5 3,749 3,749 20 1.17 160

44 2-D IT H.264, (1 block) V5 264 132 2 0.94 112

44 2-D IT H.264, (8 blocks) V5 469 469 20 1.17 160

3232 DWT LeGall (5,3) V5 35,613 31,864 40 1.17 160

538

http://www.xilinx.com/

	citation_temp.pdf
	http://eprints.gla.ac.uk/40012/

