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ABSTRACT 

This paper presents an FPGA implementation of a low cost 
8bit reconfigurable processor core for media processing 

applications. The core is optimized to provide all basic 

arithmetic and logic functions required by the media 

processing and other domains, as well as to make it easily 

integrable into a 2D array. This paper presents an 

investigation of the feasibility of the core as a potential soft 

processing architecture for FPGA platforms. The core was 

synthesized on the entire Virtex FPGA family to evaluate 

its overall performance, scalability and portability. A 

special feature of the proposed architecture is its simple 

programming model which allows low level programming. 

Throughput results for popular benchmarks coded using the 
programming model and cycle accurate simulator are 

presented. 

1. INTRODUCTION 

Adaptable architectures capable of processing large amount 

of data in parallel are increasingly becoming popular as 

low-cost, flexible solutions for media processing and other 

applications. This has resulted in an ever increasing interest 
in low cost, high throughput reconfigurable architectures, in 

recent times. Architectures that provide reasonably high 

throughput at extremely low cost and low power are being 

seen as key players for media processing applications. 

Traditionally, FPGAs have been considered ideal 

contenders in this category due to their ability to deliver 

high throughput at relatively lower costs than dedicated 

DSP ASICs. However, FPGAs only offer bit level 

granularity, resulting in a large routing overhead, thus 

decreasing overall system throughput and silicon efficiency. 

Coarse Grained Reconfigurable Architectures (CGRAs) 

provide high speed parallel computations with lower 
routing and configuration overheads. As a result several 

CGRAs like MATRIX[1] MorphoSys[2], and the new 

AsAp[3] were proposed to provide extremely high 

throughput parallel processing performance. Although these 

solutions offer exceptional performance, they come at a 

high cost, employing millions of transistors, consuming  

large amounts of power and using complex programming 

models.  

 In spite of the throughput and efficiency lost out by 

FPGAs due to the routing overheads, the generic 

architecture of the FPGA makes it a low cost solution with 

reduced time to market. As an alternative to application 

specific custom IP which increase manufacturing cost and 

time to market, soft processors provide a more generic 
platform to implement various design algorithms. Recently, 

several soft processing cores have been introduced to map 

onto the FPGAs and function as complete 8/16/32 bit RISC 

processors. These soft cores allow for a more high level 

programming style for the devices rather than using the 

hardware description languages. This allows the 

programmer to program the various algorithms in his native 

programming language, rather than model them using a 

hardware description language (HDL). Soft processors like 

Pico Blaze, Micro Blaze, serve this category of 

applications.  

 However, these soft processing solutions employ a 
generalized RISC architecture, not entirely optimized for 

media processing needs. Media processing applications are 

continuously increasing in their complexity.  The current 

available soft processing units are limited by a general lack 

of reconfigurability which renders them somewhat non-

feasible for multimedia processing applications which 

require the architecture to employ a high level of 

parallelism. This inability to extract parallelism out of the 

algorithm could prove to be a huge bottleneck when 

implementing media processing algorithms on these 

platforms. A highly parallel, easily programmable soft core 
solution will therefore be viable for media processing tasks.  

 We recently proposed MORA[5,6], a coarse grained 

reconfigurable architecture for multimedia processing. The 

MORA architecture aims to introduce resource utilization 

and programming flexibility as equally important parts of 

the design philosophy for reconfigurable platforms. In this 

paper, we propose the architecture for a simple, yet efficient 

8bit reconfigurable DSP style processor to be part of 

MORA, a coarse grained reconfigurable array for media 

processing applications. The reconfigurable cell (RC) was 

implemented in VHDL and synthesized on the entire Virtex 

family of FPGAs to demonstrate performance, cost and 
portability of the proposed architecture Using the MORA 

assembly language and cycle accurate simulator, the 

architecture was evaluated for popular benchmark 
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algorithms. This study also helps evaluate the feasibility of 
the proposed architecture as a soft processor.  

2. MORA ARCHITECTURE 

The MORA architecture consists of a 2-D array of identical 

Reconfigurable Cells (RC) arranged in 4X4 quadrants and 

connected through a hierarchical reconfigurable 

interconnection network. Storage for data is partitioned 

among RCs by providing each RC with internal data 
memory. Each individual RC is a tiny Processor-in-

Memory (PIM)[8]. Every RC consists of an 8bit Processing 

Element, 256X8 Dual Port Data Memory, and a central 

controller for overall synchronization.  

2.1. Processing Element 

The Processing Element is the main computational unit of 

the RC. Prior work on the design of data paths, focused on 

optimizing the data path design and organization for 
efficient single cycle arithmetic operations [7]. Fig. 1 shows 

the organization of the PE. It includes the signed arithmetic 

data path [7] along with additional blocks for shifting and 

comparison operations. The PE uses a logarithmic shifter to 

implement bitwise shifting operations on the operands. The 

shifter working in conjunction with the logic block provides 

support for both round shifting and shift out operations. The 

arithmetic data path is organized to provide single-cycle 

addition, subtraction and multiplication operations. The PE 

also provides two sets of registers at the input and output to 

enable accumulation style operations, as often required for 

media processing applications. 

2.2. Control Unit 

The control unit provides the handshaking signals between 

memory and data path, and ensures that the two units work 

in perfect sync with each other. The unit consists of a 16-

word instruction memory, three address generators, 

instruction decoders and instruction counters. The 

instruction word is 92 bits wide and encodes the operation, 

base addresses for an instruction operands and output data 

set and address offsets for traversing through memory, as 
well as the number of times a specific operation is to be 

performed. The address generator accepts four data fields: 

Base address, Step, Skip and Subset. The Base address is 

initially loaded into the address generator, and depending 

on the values of Step, Skip and Subset, the address of the 

next memory location to fetch the data is calculated. The 

three fields allow the controller to move anywhere 

throughout the available data memory. The address 

generator thus generates the range of addresses over which 

a given instruction is to be performed. The control unit 

provides support for a total of 28 arithmetic, logic and 
memory based instructions. Fig. 2 shows the basic 

organization of the control unit. 

2.3. Memory Organization 

Each RC is provided with a 2568 bits data memory. This 
allows each RC to work as a tiny PIM [8], i.e. operations 

are performed close to memory. The approach allows each 

RC to work independent of the others, and eliminates the 

possibility of contention for memory resources between 

RCs, thus also bypassing the need for special contention 
resolving logic. The result is an optimized cell performance 

in terms of power, area, memory access time, and reduction 

in complexity of the interconnect switches. In addition to 

individual read and write operations on the ports, an 

additional MOVE instruction is provided for port-port data 
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transfer during matrix and vector operations.  The read and 
write operations are performed on opposite phases of the 

clock signal. This allows the RC to perform the MOVE 

operation in a single cycle. The alternately phased read and 

write allow the RC, to perform the read-execute-write 

sequence in a single internal clock cycle. As a result, each 

of the 28 instructions takes exactly one clock cycle to 

complete. This ability is particularly useful in that it allows 

the MORA processors to treat each algorithm, as a 

sequence of simple single cycle instructions. The 

architecture thus, prevents itself from imposing restrictions 

on programming style or favoring a particular algorithm, 
and allows for a simple programming model, with a great 

degree of freedom for the programmer. 

3. PROGRAMMING MODEL 

3.1. Processing model  

The MORA RCs operate asynchronously, using a simple 

handshake mechanism to notify downstream RCs of 

availability of data. Synchronous operation of all RCs 

would require that at every moment every RC would 

execute the same number of clock cycles for an operation 

and that the clocks would need to be synchronized over a 

very large area. Having to fulfill both requirements would 

be extremely unpractical and inefficient.  

 The RCs can receive data via two input ports A, B and 

transfer processed data via two output ports YL, YR. Each 

of these output ports can be connected to up to two RCs. 

The RC has two states: waiting and processing; these states 
depend on the state of the RC’s local memory and the states 

of the memories of the RCs connected to its output ports. 

The RC memory has two states: ready and not ready. The 

local memory is ready when it has received a “ready” signal 

from all RCs connected to its input ports (unconnected 

input ports are always ready). The RC will process data if 

its local memory is ready and all of the memories of the 

connected RCs are not ready (unconnected output ports are 

always not ready).  

3.2. Co-design of RC and Assembly Language 

To ensure that MORA can be programmed efficiently, the 

RC and the assembly language were co-designed from an 

early stage. The design of the assembly language informed 

in particular the choice of non-arithmetic instructions in the 

instruction set, the address generator design and the virtual 

register/ virtual memory bank system.  

 The MORA “assembly” language consists of three 

components: a coordination component which allows 

expressing the interconnection of the RCs in a hierarchical 
fashion, an expression component which corresponds to the 

conventional assembly languages for microprocessors and 

DSPs and a generation component which allows compile-
time generation of coordination and expression instances.  

3.3. Expression language 

The MORA expression language is an imperative language 

with a very regular syntax similar to other assembly 

languages: every line contains an instruction which consists 

of an operator followed by list of operands. The main 

differences are:  

 Typed operators: the type indicates the wordsize on 
which the operations is performed, e.g. bit, nybble, byte, 
short, long (resp. B, N, C, S, L). 

 Typed operands: operands are actually tuples indicating 
not only the address space but also the data type, i.e. word, 

row, column, or matrix and the scan direction (forward or 

reverse)  

 Virtual registers and address banks: MORA has no 
directly accessible registers. Operations take the RAM 

addresses as operands; however, “virtual” registers indicate 

where the result of an operation should be directed (RAM 

bank A/B, output L/R)  

 All arguments are optional: the MORA assembler will 
infer defaults for non-specified arguments, considerably 

simplifying the most common instructions. 

3.3.1. Instruction structure 

An instruction is of the general form  
 

instr ::= op nops? dest? opnd*  

op ::= uop:(B|N|C|S|I|L)?  

dest ::= virtreg? addrtup?  

opnd ::= addrtup|const   

virtreg ::= Y|YL|YR|YA|YB  

addrtup ::= (ram_id:)?addr(:type)?  

ram_id ::= A|B  

addr ::= 0..(MEMSZ-1)  

type ::= (W|C|R|M|MT|Q|QT)(R|F)?  

const ::= C:num  

num ::= -(MEMSZ/2-1)..(MEMSZ/2-1)  

 

For example, the instruction for signed addition of two 

bytes would be:  

ADD 1 Y A:0:W A:0:W B:0:W 

However, because of the “reasonable defaults” strategy, this 

can simply be written as  

ADD 

Similarly, a multiply-accumulate of the first row of an 

NN-matrix in bank A with the first column of a matrix in 
bank B would in full be  

MULACC 8 Y A:0:W A:0:R B:0:C 

but can simply be written as  

MULACC R C 

536



The MORA assembler will infer defaults for all implicit 
fields.  

3.3.2. Address Types 

As discussed in Sec. 3, the RC supports complex address 

scan patterns through the use of 4 fields in the instruction 

word: base_address, step, subset and skip. The MORA 

assembler supports a subset of all possible values of Step, 

Subset and Skip through its type system. The type 

component of the address tuple (W|C|R|M|MT) indicates 

the nature of the datastructure referenced by the base 

address (ram_id:addr):  

W: word (single byte)  

C: Column (N1)  

R: Row (1N)  

M: NN matrix (MT: transposed matrix M)  

Q: N/2N/2 matrix (QT: transposed matrix Q)  
 The type suffix (F|R) indicates a forward or reverse scan 

direction. Thus MORA’s simple address type system 

supports the typical vector operations required for NN  
matrix manipulation.  

3.3.3. Operation Types 

The operator of an instruction can be explicitly typed, 
indicating the length of the word on which the operation 

should be performed. This information is used to generate 

the step and the virtual output register. As the MORA RAM 

is byte-addressable, operation types B (bit) and N (nybble) 

have no effect on the address generation but result in single-

byte output; operations on multiple bytes (types S and L, 

resp. 2 and 4 bytes) result in a step of the number of bytes; 

the assembler generates the individual byte-operations that 

make up the multi-byte operation. 

3.4. Coordination Language  

MORA’s coordination language is a compositional, 

hierarchical netlist-based language. The language consists 

of primitives definitions, module definitions, module 

templates and instantiations. Primitives describe a MORA 

RC and are defined as prim_name { ... }, e.g. a primitive to 

compute a determinant of a   matrix would be:  

DET2x2 {  

MULT YB B:0 A:0 A:9  

MULT YB B:1 A:1 A:8  

ADD YR A:0 B:0 B:1  

}  

Instances are defined as (netout1 ,...) = name (netin1 ,...); 

unconnected ports are marked with a ’_’.  

 Modules are groupings of instantiations, very similar to 

compositional coding in VHDL. As modules can have 

variable numbers of input and output ports (but no inout 

ports), the definition is module_name (inport1,inport2,...) { 

... } (ouport1,outport2,...). For example, a module to 

compute 16-bit addition can be built out of 8-bit addition 
primitives (ADD8) as follows:  

 

ADD16 (b1,b0,a1,a0) {  

(c0,z0) = ADD8 (b0,a0)  

(c1,s1) = ADD8 (b1,a1)  

(_,z1) = ADD8 (c0,s1)  

} (c1,z1,z0)  

3.5. Generation Language 

This component of the language is in itself an imperative 

mini-language with a simple and clean syntax inspired 

mainly by Ruby [9]. The language acts similar to the macro 

mechanism in C, i.e. by string substitution, but is much 
more expressive. 

 The current MORA RC does not support registered 

memory access and hence addressing is completely static. 

While this is not an issue for run-time performance, it 

would make algorithm implementation repetitive and 

cumbersome. The generation language allows instructions 

to be generated in loops or using conditionals. As an 

example, consider matrix multiplication. Because of the 

parallelism in MORA, 88 matrix multiplication can be 

done very efficiently by splitting the matrices into 48 and 
perform 4 partial multiplications in parallel. 

The C code for such a partial multiplication is: 

 

for (int i=0;i<4;i++) { 

 for (int j=0;j<4;j++) { 

  m[i][j]=0; 

  for (int k=0;k<8;k++) { 

   m[i][j]+=a[i][k]*b[k][j]; 

  }  

 } 

} 

 
In MORA assembly, this becomes: 

for j in 0..24 step 8 

    for i in 0..3 

        out=i+j 

        k=i*8 

        MULACC A:out:W A:j:R B:k:R 

    end 

end 

The MORA RC performs this computation in 128 clock 

cycles.  

3.6. Implementation  

The MORA assembly language was implemented in an 

assembler combined with a cycle-accurate interpreter. The 

assembler first generates the full assembly text by 
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evaluating the generation language; it then compiles the 

instruction words from the expression language part of 

every primitive definition; the connectivity of the RCs is 

extracted from coordination language. The actual placement 

and routing of the RCs is not handled by the MORA 
assembler: the final output of the assembler is a VHDL 

netlist which is processed using the FPGA toolchain.  

4. FPGA SYNTHESIS AND PERFORMANCE 

RESULTS 

The RC was synthesized on the Virtex 5 XC5VL330 FPGA 

from Xilinx [4]. Since MORA is array based architecture, 

we targeted high end FPGA devices to allow 

implementation of extra cores on the FPGAs. The synthesis 
results show that the RC working at 68.29MHz occupies 

only a fraction of the total FPGA resources and it is 

possible to map an estimated 160 RCs, which is 

approximately equivalent to mapping 3standard MORA 

arrays (64 8bit RCs) on a single Virtex 5.  

 Using cycle accurate simulator, we evaluated the 

MORA architecture for throughput and other performance 

metrics while performing popular benchmark applications. 

Table 1 presents the benchmark performance evaluation of 

the MORA soft cells. In each case, the algorithm has been 

mapped onto the maximum number of RCs available for the 
FPGA device at hand. This guarantees maximum 

parallelization of the task at hand by maintaining a high 

percentage of resource utilization. 

5. CONCLUSION 

This paper has presented the FPGA synthesis results for 

MORA, a coarse grained soft processing core. The core was 

synthesized on the Virtex 5 XC5VL330 FPGA from Xilinx. 

Synthesis results show that the core occupies only a fraction 
of the FPGA’s resources, thus making it possible to 

integrate up to 3 arrays of the proposed architecture on a 

single Virtex 5 device. Throughput and utilization results 

for benchmark applications show that the proposed 

architecture and compiler allow mapping of algorithms for 

maximum throughput while at the same time ensuring near 

100% utilization of all available MORA processors on 

nearly all the FPGAs. This makes a strong case for the 

portability of the proposed architecture and the flexibility of 

its programming model. Based on these preliminary results, 

MORA appears to be extremely feasible as a reconfigurable 

multi-core soft processing architecture which allows high 

level programming of the entire applications on FPGA. 

Further research continues to build on the encouraging 

primary investigation and will involve further cost and 

performance optimization of MORA to make it a strong 

contender in the soft processing category. 
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Table 1. Performance of soft-MORA processor on Virtex 5 FPGA for benchmark applications 

 Benchmark 

 

FPGA  

type 

Delay  

(ns) 

Latency  

(ns) 

# Samples in 

parallel 

Throughput 
(MOPS) 

Utilisation 

(#RCs) 

88 2-D DCT, (minimum delay) V5 1,054 527 2 0.94 112 

88 2-D DCT, (max. throughput) V5 3,749 3,749 20 1.17 160 

44 2-D IT H.264, (1 block) V5 264 132 2 0.94 112 

44 2-D IT H.264, (8 blocks ) V5 469 469 20 1.17 160 

3232 DWT LeGall (5,3) V5 35,613 31,864 40 1.17 160 

 

538

http://www.xilinx.com/

	citation_temp.pdf
	http://eprints.gla.ac.uk/40012/




