
CRUSH: Cognitive Radio Universal Software Hardware

A Thesis Presented

by

George Fredric Eichinger III

to

The Department of Electrical and Computer Engineering

in partial fulfillment of the requirements
for the degree of

Master of Science

in

Electrical Engineering

in the field of

Communications and Digital Signal Processing

Northeastern University
Boston, Massachusetts

April, 2012

This work is sponsored by the Department of the Air Force under Air Force Contract FA8721-05-
C-0002. The opinions, interpretations, conclusions, and recommendations are those of the authors
and are not necessarily endorsed by the United States Government.

c© Copyright 2012 by George Fredric Eichinger III
All Rights Reserved

Acknowledgments

I would like to thank my advisor Professor Miriam Leeser for her support and dedica-

tion throughout my time at Northeastern. Without her encouragement and guidance

this thesis would not have been possible. I would also like to thank Professor Kaushik

Chowdhury whose class introduced me to the concept of Cognitive Radio and fostered

many of the ideas in this thesis.

I’d also like to thank MIT Lincoln Laboratory for their support of my Master’s

degree through the Lincoln Scholars Program. Additionally I would like to thank my

colleagues at Lincoln and the Reconfigurable Computing Laboratory for their advice

and encouragement. Specifically, I could not have done this without the help, advice

and support of my Lincoln advisor, Scott Bailie.

I would like to thank my parents George and Donetta for always believing in me

and supporting me throughout my college education.

Last, and most importantly, I would like to thank my wife Lindsey and our cat

Bailey. Without their love and support I would not have made it through the many

late nights and countless hours of work.

iii

Abstract

The FPGA is an integral component of a software defined radio (SDR) that pro-

vides the needed reconfigurability for dynamically adapting its transceiver and data

processing functions. Because of the desire to process data faster and with less la-

tency, researchers are looking at FPGA-based SDR. Our architecture, called CRUSH

(Cognitive Radio Universal Software Hardware), is composed of a Xilinx ML605 con-

nected to an Ettus USRP through a custom interface board, allowing flexible data

transfer between them. In addition, we provide a framework that supports ease of

use, independent programming on both devices, and integration with software run-

ning on the host. To demonstrate our platform we implemented spectrum sensing,

a key step in determining channel availability before transmission in dynamic spec-

trum access networks. Spectrum sensing is implemented on CRUSH using FFTs

for a 100x speedup; the complete sensing cycles is 10x faster than the same design

without CRUSH. By reducing the load on the host and allowing a powerful FPGA

extension for off-the-shelf devices, CRUSH enables advances in both protocol design

and reconfigurable hardware targeting radio applications.

iv

Contents

1 Introduction 1

2 Background 4
2.1 Software Defined Radio Platforms . 5

2.1.1 USRP . 5
USRP N2x0 . 6
Other USRPs . 7
Daughterboards . 7
Software . 8

2.1.2 WARP . 8
2.2 Cognitive Radio . 10
2.3 Spectrum Sensing . 12
2.4 Conclusions . 14

3 CRUSH Platform Overview 15
3.1 Hardware Overview . 16

3.1.1 Ettus Research USRP N210 16
3.1.2 Xilinx ML605 Development Board 17
3.1.3 Custom Interface Board . 18

FMC . 19
MICTOR Connectors . 20
MIMO Connector . 21
Impact on USRP Functionality 22

3.2 HDL Overview . 22
3.2.1 USRP HDL Framework . 22
3.2.2 Interface between USRP and ML605 26

DDR I/Q Bus . 26
Control Bus . 27

3.2.3 ML605 HDL Framework . 28
3.2.4 Interface between ML605 and Host 31

3.3 Software Overview . 33
3.3.1 Host Software . 33

v

MATLAB . 34
Serial Port . 35
UHD . 36

3.3.2 ML605 Software . 37
3.4 Conclusions . 37

4 Spectrum Sensing 39
4.1 Related Work in Software Spectrum Sensing 40

4.1.1 Spectrum Sensing Surveys . 40
4.1.2 Spectrum Sensing in Software 41

4.2 Spectrum Sensing Algorithm in Software 41
4.3 Related Work on Hardware Spectrum Sensing 42

4.3.1 Spectrum Sensing on COTS Hardware 43
4.3.2 Spectrum Sensing on Custom Hardware 43

4.4 Spectrum Sensing on CRUSH . 44
4.4.1 FFT . 45
4.4.2 I and Q Magnitude . 46
4.4.3 Thresholding . 47
4.4.4 Fixed point Conversion . 47
4.4.5 Verification . 48
4.4.6 Configurability . 49

4.5 Conclusions . 50

5 Experimental Setup and Results 51
5.1 Functional Verification . 52

5.1.1 USRP Master Reference . 52
5.1.2 CRUSH FFT Verification . 53

5.2 Raw FFT Timing . 56
5.2.1 Testing Setup . 56
5.2.2 Detailed look at 256 point FFT on CRUSH 58
5.2.3 Overall Timing Results . 59

5.3 End to End Timing . 62
5.3.1 Testing Method . 63

Test Setup . 63
Precision Program Timing . 64
UDP Packet Control . 65

5.3.2 Results . 66
5.4 Available FPGA Resources . 67
5.5 Conclusions . 69

vi

6 Conclusions and Future Work 70
6.1 Conclusions . 70
6.2 Future Work . 71

A List of Acronyms 72

vii

List of Figures

2.1 Ettus Research USRP N210 . 6

2.2 WARP MIMO Kit and Accessory Boards 9

2.3 Spectrum Holes Diagram . 10

2.4 Cognitive Cycle . 12

2.5 Spectrum Sensing Algorithm . 13

3.1 CRUSH Platform . 16

3.2 Xilinx ML605 Development Board . 18

3.3 Custom Interface Board . 19

3.4 USRP HDL Framework . 23

3.5 Relative Timing Diagram for one Control Bus Transfer 28

3.6 ML605 HDL Framework . 28

3.7 CRUSH Demo: 70 MHz Center, 73 MHz CW tone, 256 point FFT . . 34

3.8 CRUSH Serial Interface . 36

4.1 Spectrum Sensing Algorithm in Software 41

4.2 Spectrum Sensing Algorithm on CRUSH 45

viii

4.3 User Block for Spectrum Sensing Algorithm on CRUSH 45

5.1 USRP Test FFT Data . 55

5.2 CRUSH FFT Data . 55

5.3 Modified Design for Timing Tests . 57

5.4 Chipscope of 256 point FFT . 58

5.5 Host versus FPGA Runtime . 60

5.6 Roundtrip CRUSH Time . 67

5.7 Overall Timing Comparison . 68

ix

List of Tables

3.1 Control Bus Addresses . 25

3.2 Control Bus Modes . 25

3.3 Host to ML605 Packet Structure . 32

3.4 Modes for ML605 Packet . 33

5.1 Timing Analysis of 256 point FFT . 59

5.2 Summary of FFT Timing Results . 62

x

Chapter 1

Introduction

There is an increasing interest in using Software Defined Radios (SDRs) for real-

time processing and for more and more sophisticated algorithms. The Universal

Software Radio Peripheral (USRP) [1] is a widely proliferated SDR platform used

for implementing radio schemes. There is a wide variety of research using these

devices with both software and hardware implementations [2][3][4]. However, real-

time processing is not possible for software implementations with the USRP due to

the latency of transmitting data between the host and the USRP over Ethernet.

The solution is to accelerate algorithms in reconfigurable hardware that is connected

directly to the USRP platform.

The USRP has an on-board FPGA, but it is small and has very little space for

user functions as it already contains the logic needed to implement existing radio

features. Additionally, it is written in such a way that it is difficult for a novice user

to modify the code. An external FPGA board allows for more processing close to

the radio front end without the constraints of using the existing FPGA. There are

1

CHAPTER 1. INTRODUCTION 2

several different radio front ends, including the USRP, as well as different FPGA

boards. New FPGA boards tend to be introduced at a faster rate than radio front

ends, but both are rapidly changing over time.

This project decouples high end FPGA processing from the agile radio frequency

(RF) front end so that either device can be upgraded independently. Cognitive

Radio Universal Software Hardware (CRUSH) is a platform consisting of a USRP,

Xilinx FPGA board and Custom Interface Board (CIB) as well as FPGA designs and

software support to allow the easy integration and use of the platform. While CRUSH

is demonstrated with an Ettus N210 and a Xilinx ML605 board, the framework is

designed to easily connect to other radio front ends and FPGA cards. This means

that a university could pair their USRP 2’s purchased in 2008 with a brand new Xilinx

KC705 FPGA development board using our Custom Interface Board (CIB) and the

CRUSH concept to perform leading edge FPGA SDR research without significant

cost increases.

The main contribution of this thesis are:

• The CRUSH platform, which enables FPGA acceleration of cognitive radio

applications using standard parts that are inexpensive, widely available, and

widely used,

• A framework of hardware and software on the USRP, FPGA and host so that

CRUSH is easy to use, and

• The use of CRUSH to implement spectrum sensing.

CHAPTER 1. INTRODUCTION 3

Dynamic reconfiguration of the transmission and processing parameters is a defin-

ing aspect for SDRs. Our platform allows a real-time evolution of both the processing

algorithm and the software defined components, by independently altering the code

for the component blocks of the system. CRUSH has the ability to integrate up to

three off-the-shelf radio front ends with a single FPGA board, thereby creating a

super radio with significantly increased bandwidth and processing capabilities. This

provides an unprecedented level of flexibility at very low cost and allows new insights

on the tradeoffs between operational overhead and performance gain when using

multiple co-located radios.

The remainder of this thesis is organized as follows: Chapter 2 covers the back-

ground required for CRUSH. This includes current software defined radio platforms,

an overview of Cognitive Radio and the basics of spectrum sensing. Chapter 3 de-

tails the CRUSH platform hardware, HDL and software. Chapter 4 explains how

our particular spectrum sensing algorithm is coded in software and then how we

implemented it in hardware on CRUSH. Next, in Chapter 5, we see the results of

the testing performed on CRUSH. We performed three different levels of testing on

CRUSH including functional verification, FFT timing and end to end system timing.

Finally, in Chapter 6, we conclude the thesis and include directions for future work.

A list of acronyms is included as an appendix to help the reader.

Chapter 2

Background

This chapter contains background information necessary for the understanding of

this thesis. Specifically, we discuss state of the art hardware platforms for research

in Software Defined Radio (SDR) and Cognitive Radio (CR) followed by a short

introduction into the area of Cognitive Radio and how the work presented fits into

the larger picture. Finally, we discuss the specifics of the spectrum sensing algorithm

implemented in this thesis.

4

CHAPTER 2. BACKGROUND 5

2.1 Software Defined Radio Platforms

There are a number of SDR platforms currently on the market for use by researchers.

In this section we describe the most popular current SDR platforms and the features

that make them unique. Specifically, we discuss the two most popular SDR plat-

forms, the Universal Software Radio Peripheral (USRP) by Ettus Research [1] and

the Wireless Open Access Research Platform (WARP) by Rice University [5]. There

are additional SDRs that have been used in research that we do not discuss such

as the Berkeley Emulation Engine (BEE) [6] line of products and Networking over

White Spaces (KNOWS) by Microsoft Research [7]. Additionally, there are several

commercial products that are advertised as capable of SDR such as FPGA boards

from Pentek, Lyratech, 4DSP, Acromag and Innovative Integration. However, these

do not include a framework supporting existing SDR research.

2.1.1 USRP

The USRP is a line of products from Ettus Research that is used to implement various

SDR schemes. The device has several different versions depending on the intended

usage. A picture of the USRP N210 is shown in Figure 2.1 and is representative of

the size and appearance of the whole line. The USRP N210 is the SDR used in our

research.

CHAPTER 2. BACKGROUND 6

Figure 2.1: Ettus Research USRP N210

USRP N2x0

The N2x0 series is the flagship USRP product and the device used for CRUSH. It

interfaces with a host computer via a gigabit Ethernet link (GbE) that is connected

to a soft core on an FPGA. The device contains a Xilinx Spartan 3A-DSP series

FPGA. Depending in the model this can either be the 3A-DSP1800 (N200) or the

3A-DSP3400 (N210). All of the logic and control of the system is programmed on the

FPGA. The baseboard contains two 100 Mega Sample Per Second (MSPS) Analog to

Digital Converters (ADCs) and two 400 MSPS Digital to Analog Converters (DACs).

CHAPTER 2. BACKGROUND 7

The device has a transmit and receive daughterboard connector that is compatible

with any of the USRPs Daughterboards (Sec. 2.1.1). The N2x0 device supports up

to 25 MHz of 16 bit In Phase (I) and Quadrature Phase (Q) data to the host over the

GbE connection. There is also a Multiple Input Multiple Output (MIMO) port that

allows multiple USRPs to be connected together. This device is an upgrade from the

older USRP2 which utilized a smaller FPGA with fewer features.

Other USRPs

The current Ettus Research product line includes two other USRPs, the E1x0 series

and the B1x0 series. The E1x0 series is one of the latest to be released by Ettus

Research and it combines an onboard embedded processor with the radio frequency

(RF) features and design of the standard USRP. It has slightly reduced bandwidth

capabilities but the advantage of this device is that no other computer is required to

perform radio functions. The B1x0 series devices are designed as a legacy support

product replacing the USRP 1. The distinguishing feature of the B1x0 series is the

USB2 host interface, which limits the bandwidth to 16 MHz. The original USRP 1

device was USB based with similar features and this product provides that legacy

capability and price point but with a modern FPGA and updated software support.

Daughterboards

The USRP has a variety of daughterboards that are available for the end user. The

USRP contains the software and HDL required to implement an SDR as well as

the ADCs and DACs to receive and transmit. However, the designers of the USRP

CHAPTER 2. BACKGROUND 8

have moved the RF front end of the device to daughterboards. This design choice

allows one device to support many different use cases through application specific

daughterboards. Also, since all of the source files and schematics are published, it is

possible for users to create custom daughterboards. USRP daughterbords can either

be receive only or transceivers (transmit and receive). In both groups, they range

from narrowly tuned for specific applications to wideband for general use.

Software

An open source driver platform called USRP Hardware Driver (UHD) [8] is used to

communicate with the USRP. UHD is a robust, multi-platform driver that utilizes

the BOOST open source libraries [9]. For analyzing the USRP data and controlling

the device, there are three main options. The first is GNUradio, an open source

SDR platform that provides signal processing blocks for implementing SDRs [10].

It is not specifically linked to USRP but it does fully support the USRP platform.

Additionally, The Mathworks MATLAB supports the USRP through its Simulink

package [11]. Finally, applications can be written in C++ directly based on the

UHD framework.

2.1.2 WARP

Wireless Open Access Research Platform (WARP) is the SDR platform developed

and maintained by Rice University for prototyping advanced wireless networks [5].

The WARP system is comprised of three different parts, the hardware, the platform

CHAPTER 2. BACKGROUND 9

Figure 2.2: WARP MIMO Kit and Accessory Boards

support packages and the specific research applications.

In terms of the hardware, the system is broken up into the FPGA main board

and various daughterboards that plug into the main board. The latest model utilizes

a Xilinx Virtex 4 FX100 FPGA which includes an embedded Power PC (PPC) Core.

The base board supports four daughterboard slots as well as GbE, SATA and various

other computer protocols. Unlike the USRP, the ADCs and DACs are on the WARP

CHAPTER 2. BACKGROUND 10

daughterboards instead of on the main board. This means that their daughterboard

connectors are more general and can support a greater variety of boards than just

RF.

Compared to the USRP, the WARP platform has more flexibility in terms of the

number of daughterboards and the space for HDL. However, the WARP platform

is several times more expensive than the USRP. Additionally, it is based on the FX

series Xilinx FPGAs that include an embedded Power PC core. This type of FPGA

has been discontinued by Xilinx and could be the reason why the platform is still

using Virtex 4 level devices. Currently, Xilinx has already released boards utilizing

Virtex 7 chips, three generations past the Virtex 4.

2.2 Cognitive Radio

Figure 2.3: Spectrum Holes Diagram

CHAPTER 2. BACKGROUND 11

Cognitive Radio (CR) is the concept that a SDR can opportunistically utilize

available RF spectrum when the primary user is not present. To better understand

this idea we can imagine a scenario of several towers transmitting and view their

spectrum representation (Fig. 2.3). Each tower is color coded and represents one

primary user (PU). A PU is someone who is licensed to use a particular band. The

graph in the center shows the utilization of various PUs with the horizontal axis

representing time and the vertical access representing frequency space. Some PUs

use their spectrum for all time as represented by the red transmitter. An example of

such a transmitter would be a TV station that is always broadcasting. However, if

we look at the teal colored station we can see that it transmits for a time, stops, then

transmits again. This gap between transmissions is referred to as a spectrum hole.

CRs take advantage of these holes to operate in unused portions of the RF spectrum.

CRs operate on a principle known as the Cognitive Cycle (Fig. 2.4). The process

starts by observing at the RF stimuli in the radio environment. The first step in the

cycle is spectrum sensing where the radio determines which portions of spectrum are

empty. This is synonymous with determining the spectrum holes from Figure 2.3

and is crucial to the functionality of a CR because it locates possible spectrum for

operation. After spectrum sensing the system is aware of the location of current PUs

as well as spectrum holes. The spectrum decision block aggregates all of the sensing

parameters and decides where in spectrum space the radio will operate. It may take

into account spectrum sensing data, databases, previous observations and even data

CHAPTER 2. BACKGROUND 12

Figure 2.4: Cognitive Cycle

from other CRs. Finally, the CR transmits its signal into the radio environment and

the cycle starts again.

2.3 Spectrum Sensing

As discussed in Section 2.2, spectrum sensing is part of the critical path of the

cognitive radio cycle. The basic premise of the spectrum sensing algorithm is to

analyze RF data and report what sections of spectrum are occupied and what portions

are empty. There are different ways to implement spectrum sensing and for the

purpose of this thesis we implemented the algorithm as shown in Figure 2.5. The

CHAPTER 2. BACKGROUND 13

Figure 2.5: Spectrum Sensing Algorithm

first step receives the RF data and digitizes it via an ADC. The resulting data are

the time domain representation of the RF input. The next step is a Fast Fourier

Transform (FFT) to convert from the time domain to the frequency domain. FFTs

are referred to by their point size where the point number represents how many output

bins the FFT will produce. If a 256-point FFT is performed, it produces 256 bins,

where each bin represents the energy present in a fraction of the total bandwidth.

At this point the data are thresholded. If the value of the bin exceeds the threshold,

the channel is considered occupied and assigned a value of 1. If the value is below

the threshold, the channel is considered unoccupied and assigned the value 0. Once

all of the FFT output values have been thresholded and assigned a value of 1 or 0,

the thresholded results are aggregated and reported back to the user.

CHAPTER 2. BACKGROUND 14

2.4 Conclusions

In this chapter we introduced the required background information for understanding

this thesis. Specifically, we gave an overview of the existing SDR platforms including

the USRP N210 which is used in this project. Next, we introduced the concept of

Cognitive Radio and discussed how a CR can opportunistically utilize unoccupied

spectrum space. Finally, we introduced spectrum sensing, the application imple-

mented by the CRUSH platform to find free spectrum space.

Chapter 3

CRUSH Platform Overview

In this chapter we will introduce the Cognitive Radio Universal Software Hardware

(CRUSH) platform. This platform serves as a high performance signal processing

system allowing hardware level cognitive radio research. The CRUSH platform con-

sists of hardware, HDL and software. In this chapter we outline the components and

features of CRUSH.

15

CHAPTER 3. CRUSH PLATFORM OVERVIEW 16

3.1 Hardware Overview

Figure 3.1: CRUSH Platform

The CRUSH system (Fig. 3.1) is comprised of three components (1) an Ettus

Research USRP N210 software defined radio, (2) a Xilinx ML605 Development Board

and (3) a custom interface board (CIB) to route signals between the USRP and the

ML605. The interconnects between the boards are commercial off the shelf (COTS)

cables.

3.1.1 Ettus Research USRP N210

The USRP N210 (Fig. 2.1) implements the front end for several radio schemes that

can be implemented with a mix of hardware and host software. The device has a 100

MSPS ADC and a 400 MSPS DAC. A daughterboard implements the RF portion

of the device and there are different daughterboards that can be utilized depending

CHAPTER 3. CRUSH PLATFORM OVERVIEW 17

on the radio requirements. The logic and control of the system is programmed on a

Xilinx Spartan 3A-DSP3400 FPGA. All base system and RF daughterboard controls

and data are transmitted over a gigabit Ethernet link to the host. The daughterboard

used in this project, the WBX, transmits and receives anywhere between 50 MHz

and 2.2 GHz with 25 MHz of instantaneous bandwidth.

The USRP is very capable but its one weakness is the FPGA. The Xilinx Spartan

series is a low-end FPGA that is not designed to function at high speeds and lacks

advanced FPGA features compared to the Virtex series. It has less RAM and DSP

blocks; features that are essential to many DSP algorithms such as FFTs. Because

of the complex design required to support USRP functionality, it is difficult for a

user to make simple changes to this FPGA without first understanding the rest of

the system. Additionally, minor changes can cause the design to not meet timing

closure. Timing closure is an FPGA concept indicating whether the logic can operate

at the clock rate desired by the user. Modification of the existing HDL is possible

but the design complexity makes this difficult.

3.1.2 Xilinx ML605 Development Board

To overcome the shortcomings of the USRP we added a second FPGA board. The

board, an ML605, has a Xilinx V6 LX240T FPGA which has 6.6x more Block RAM,

4.49x more LUTs and the baseline logic blocks can run ∼2.5x faster when compared

to the FPGA on the USRP. The ML605 board serves as a blank slate for the hardware

developer because it is not cluttered with an existing complex design like the USRP.

CHAPTER 3. CRUSH PLATFORM OVERVIEW 18

Figure 3.2: Xilinx ML605 Development Board

3.1.3 Custom Interface Board

The custom interface board (CIB) was designed as a way to connect the ML605 and

the USRP platform, however it can be paired with many existing boards because

it implements standard interfaces. We use a commercial off the shelf (COTS) cable

designed to handle high data rates. We designed the CIB schematic using Mentor

Graphics DxDesigner and routed it with Mentor Graphics Expedition. Once the

board was routed, it was fabricated by Sunstone Circuits and assembled by Screaming

Circuits. All parts are standard and can be purchased from an online electronic parts

CHAPTER 3. CRUSH PLATFORM OVERVIEW 19

Figure 3.3: Custom Interface Board

company such as Digi-key. The final assembled board is shown in Figure 3.3. The

following sections describe the design and functions of the CIB.

FMC

The CIB is an FPGA Mezzanine Card (FMC) which is quickly becoming an industry

standard for custom FPGA interface boards [12]. The FMC standard allows for

two different types of boards, low pin count (LPC) and high pin count (HPC). The

LPC provides 160 IO to the FMC site while the HPC provides 400 IO. To remain

as flexible as possible, the CIB is designed to function with either version of FMC

CHAPTER 3. CRUSH PLATFORM OVERVIEW 20

by implementing USRP connections on both the HPC and LPC pins. This way the

board can be used with other FPGA development boards besides the ML605, such

as the SP605, which is a less expensive Spartan 6 series FPGA development board

containing only a single LPC FMC connector. The ML605 has two FMC sites, one

LPC and one HPC. As a result, the ML605 is physically wired to hold two CIBs.

With one CIB on the ML605’s LPC FMC and another on its HPC FMC, one ML605

could support three simultaneous USRPs. Special care was taken to conform to the

physical design specifications of FMC so the CIB could function with other board

and chassis manufacturers.

MICTOR Connectors

The primary connection between the CRUSH platform and the USRP is the MICTOR

connector. MICTOR is a brand of cable and connector that is designed for matched

impedance, high data rate applications [13]. This variant of MICTOR has 34 data

lines and 4 ground lines. The USRP’s MICTOR connector was designed by Ettus

as a debug port to connect a digital logic analyzer to view internal FPGA signals.

Because the MICTOR cable is designed as a debugging interface, the default pinout

defines two clocks with a bank of 16 data lines per clock. However, since we are using

this as an FPGA to FPGA link, we can assign any signals to the 34 pins1. The CIB

has four MICTOR connectors in total; two are designed to communicate with USRPs

and the remaining two break out spare FMC IO pins. Of the two USRP MICTORs,

one is connected to the pins present on the LPC FMC and the second to the pins

CHAPTER 3. CRUSH PLATFORM OVERVIEW 21

on the HPC FMC. This allows the board to work with either LPC or HPC capable

FPGA boards.

MIMO Connector

The second board to board interface supported by the USRP is the Multiple In-

put Multiple Output (MIMO) connector. Ettus Research intends this connector to

transport I and Q data, clocks, and alignment signals to a second USRP so that

they can perform MIMO operations. Much like the MICTOR cable, this interface

can be used for any signal inside the FPGA and is not limited to MIMO signals.

The physical interface for the MIMO connection is a commercial miniSAS port. The

Spartan 3A-DSP series does not have any gigabit transceivers so in order to add a

Serializer/Deserializer (SERDES) Ettus utilized a TI TLK2701 Transceiver chip [14].

This chip accepts parallel signals with a clock and creates a serial data link. On the

CIB board we placed two miniSAS connectors. The Xilinx Virtex 6 series has built

in gigabit transceivers. On the CIB we implemented the MIMO interface with two

separate SERDES connection methods. On the LPC FMC the MIMO port is directly

connected to the ML605 FPGA. On the HPC FMC we copied the exact design from

the USRP schematics using the TLK2701. As of publication, the MIMO port on the

CIB has not been tested but is available for future users.

1While all 34 lines can be assigned to any IO, adjacent IO drivers on the Xilinx Spartan 3A-DSP
FPGA share a clock. The USRP Debug pins share adjacent IO drivers with other functions so not
all of the 34 pins can be assigned in certain clocking situations.

CHAPTER 3. CRUSH PLATFORM OVERVIEW 22

Impact on USRP Functionality

Minimizing the impact of CRUSH on the existing USRP functionality was a goal

of this project. We designed the modified USRP HDL to function identically with

or without the presence of CRUSH. To accomplish this, pullup resistors were imple-

mented on the data lines between the ML605 and the USRP. If the ML605 is not

present, all of the control lines are pulled high and the USRP functions as a stan-

dalone unit. The USRP HDL has been modified so that the data from the ADC are

forked and sent over the interface between the USRP and the ML605. The original

path is still intact so it can be used as a standard radio in parallel with the FPGA

board.

3.2 HDL Overview

In this section we discuss the hardware description language (HDL code), the pro-

gramming language of FPGAs, that was written to allow the various elements of

the CRUSH platform to communicate. The next two sections describe the interfaces

between the USRP, ML605 and the host.

3.2.1 USRP HDL Framework

As part of the CRUSH platform, the USRP HDL was modified to allow communica-

tion with the ML605. An overview diagram of the additional modules is shown in Fig-

ure 3.4. All of the modules for the USRP reside in a Verilog file called u2plus_core.v.

In theory, the USRP receives raw data from the ADC and ships it to the host over

CHAPTER 3. CRUSH PLATFORM OVERVIEW 23

Figure 3.4: USRP HDL Framework

Ethernet. In practice, there are several complex DSP steps that occur inside the

FPGA between the ADC and the host. The data from the ADC enters the FPGA

as a signed 14 bit number consisting of 100 MSPS samples of I and Q. Inside the

USRP FPGA, the raw ADC data enters the rx_frontend block, where a DC offset

correction is performed that removes the DC offset from the analog front end and

centers both I and Q around zero volts. The rx_frontend block also contains a mag-

nitude and phase correlator designed to equalize the signals across multiple USRPs

in a MIMO formation. After the rx_frontend block, the data are represented as

signed 24 bit I and Q values. This module also contains calibration steps that can be

dynamically set via the host for the specific RF daughterboard and the resulting data

is less noisy than the original stream. Internal to the USRP, after the rx_frontend,

CHAPTER 3. CRUSH PLATFORM OVERVIEW 24

the data goes into the dsp_core_rx block that filters and decimates the data per the

settings in software on the host. After the dsp_core_rx block are FIFOs that store

the data before it is sent over Ethernet to the host. This signal processing chain

is not modified by the CRUSH platform and functions independently from CRUSH

operation.

The blue modules in Figure 3.4 all reside inside crush.v and represent the ad-

ditions necessary for CRUSH. The first additional module is the Control Bus Slave

module which receives a parallel address (ADDR) and control data (CDATA) stream

over the MICTOR cable from the ML605. Table 3.1 lists all of the currently con-

figured addresses defined for this bus. The mode word tells the MUX which signal

to forward over the MICTOR cable to the ML605. There are currently 10 different

options as defined in Table 3.2. Most of the modes are for debugging such as all

1’s, all 0’s, echo, etc. The default mode is 8 which forwards data to the ML605

after it has left the rx_frontend block. In addition to mode, the ML605 can send

a remote frequency and an echo. The remote frequency is sent to the NCO block in

Figure 3.4 and is useful for testing algorithms for accuracy. The NCO allows a user

to simulate incoming tones anywhere in the 100 MHz of available bandwidth. The

final feature of the control bus is an echo word. The user can set an echo word, for

example 0xDEADBEEF and it will be transmitted in place of I and Q. This serves

as an additional debugging feature.

Once the user has selected the mode, the corresponding I and Q values will be

CHAPTER 3. CRUSH PLATFORM OVERVIEW 25

Table 3.1: Control Bus Addresses

Address Name Description

0 Mode Sets the mode

1 Remote Freq1 Sets the remote frequency

2 Remote Freq2 Required 2 words

3 Echo1 Sets the echo

4 Echo2 Echo requires 4 words

5 Echo3 . . .

6 Echo4 . . .

Table 3.2: Control Bus Modes

Mode Name Description

0 Raw ADC Forwards the raw I and Q

1 NCO Outputs user specified Sine wave

2 Timer Test Outputs a special packet to test timing

3 Counter Outputs a constantly running up counter

4 All 0 Outputs all 0’s

5 All 1 Outputs all 1’s

6 0/1 Outputs all 0’s on I, all 1’s on Q

7 Echo Echos a user specified value over the bus

8 Post frontend High I/Q from after rx frontend, upper bits

9 Post frontend Low I/Q from after rx frontend, lower bits

10 Post DSP I/Q from after dsp rx core

routed through the MUX and sent to the DDR Out module. This module sends the

data over the MICTOR cable. The functionality of this module will be covered in

the next section.

CHAPTER 3. CRUSH PLATFORM OVERVIEW 26

3.2.2 Interface between USRP and ML605

The physical connection between the USRP and the ML605 is the MICTOR cable,

a COTS cable that was designed for high speed data transmission. With the 34 pins

available on the MICTOR connector, we have to accomplish two goals on the CRUSH

platform. The first is to transmit the raw ADC data from the USRP to the ML605.

The second requirement is to create a control bus so that the ML605 and USRP can

share configuration data. To accomplish this, we split the bus into two portions, one

for the DDR I/Q data and the second for the Control Bus signals.

DDR I/Q Bus

As discussed in the last section, the user selects the mode via the control bus which

tells the MUX which data path to use for I and Q. For this project we are using the

output of the rx_frontend block. This block outputs 24 bits each of I and Q data,

48 bits total, which is more data than can be accommodated over the MICTOR’s 34

wires. As a result we use the topmost 15 bits of the stream which is a safe choice

because the input data from the ADC is only 14 bits. We user a DDR interface which

provides double the throughput by transmitting data on both the rising and falling

clock edges. This allows I and Q to be transmitted on rising and falling edges of the

clock creating an effective transmission rate of 200 MHz. Note that the clock rate for

this system is 100 MHz which results in a 10 ns clock period. This clock rate is the

same as the ADC clock on the USRP which simplifies the design flow. The DDR is

source synchronous so the USRP generates the clock and forwards it to the ML605

CHAPTER 3. CRUSH PLATFORM OVERVIEW 27

in parallel with the data. This half of the MICTOR cable utilizes 17 total lines, 15

for I and Q, one for clock and one that is unusable because of USRP routing issues.

Control Bus

The remaining 17 lines of the MICTOR connector are used for the control interface.

With this many lines available we chose to implement a parallel interface to achieve

low latency. Additionally, we wanted it to be expandable for future users of the

system so we chose a master/slave parallel interface with control data, address and

handshaking lines. We allocate eight bits to control data, six to address, two to

handshaking and one to clock. Table 3.1 shows the current address space of the

control bus, of which we are only using 7 of the total 64 available addresses. The

master (ML605) provides a 100 MHz clock which is forwarded to the slave (USRP).

On the USRP this clock feeds into a Digital Clock Manager (DCM) to create a

source synchronous clock for sending data back to the ML605. A diagram showing

a transfer on the bus is shown in Figure 3.5. Data transmission begins when the

master (ML605) asserts a ’0’ on the REQ line. In response, the slave (USRP) asserts

a ’0’ on ACK line. Following this the master retrieves the data it is going to send

from a FIFO and then sends the data to the slave. The master then sets its REQ flag

high and waits for the slave to assert its ACK flag to ’1’ at which point the process

is ready to start over. This is a common four phase handshake protocol. Although

it is shown here for a one directional link, the protocol was designed to support

bidirectional communication and the Addr and Data buses are capable of working

CHAPTER 3. CRUSH PLATFORM OVERVIEW 28

CLOCK

REQ

ACK

ADDR addr

CDATA data

STATE start req ack get set dat release done

Figure 3.5: Relative Timing Diagram for one Control Bus Transfer

in both directions. All of the internal clocking and FIFOs have been designed to

support bidirectional operation.

3.2.3 ML605 HDL Framework

Figure 3.6: ML605 HDL Framework

CHAPTER 3. CRUSH PLATFORM OVERVIEW 29

The bulk of the CRUSH development lies in the ML605 HDL Framework (Fig. 3.6).

The core of the ML605 HDL Framework is the User Block where the CR or SDR

application resides. In addition to the external interfaces, the top module contains

the clocks, resits and glue logic. The goal of this design is to make it as easy as

possible for a new user to insert their code into the project. A program such as

MATLAB HDL coder could be used to synthesize a module and insert it into the

User Block. The current framework uses 3 % of the FPGA and leaves 97 % free for

the User Block. The ML605 has three different external interfaces, the MICTOR

connector to the USRP, an Ethernet connection to the host and a serial connection

to the host.

The MICTOR connection serves two purposes. First, it transmits data over a

control bus to the USRP. Second, it receives 100 MSPS I and Q samples over a 200

MHz DDR interface. The ML605 is the control bus master and provides the clock,

address and control data signals. The functionality of this interface is the same as

described in Section 3.2.2 except the ML605 is the master. All commands transmitted

over the control bus originate from the host via either the Ethernet or Serial port.

The DDR signals from the MICTOR connector are demuxed into 15 bits each of I

and Q in a special block on the ML605. At this point, the data are still synchronized

to the USRP clock domain so an additional block puts the signals through a dual

clock FIFO to synchronize with the ML605 clock. Now I and Q are routed to the

User Block where a CR or SDR algorithm can be implemented on CRUSH.

CHAPTER 3. CRUSH PLATFORM OVERVIEW 30

The Ethernet interface is based on the Xilinx Embedded Trimode Ethernet Media

Access Control or TEMAC [15]. This is a module provided by Xilinx for use with

their Virtex 6 line of FPGAs and it provides a transmit and receive FIFO controlled

by start and end frame flags. The user provides a frame of data including properly

formed headers and the TEMAC module transmits the data over Ethernet. Receiving

operates on a similar principle where data is constantly streaming into the FPGA

with start and stop flags indicating the beginning and end of a frame. In order to

use the TEMAC core, we wrapped it with glue logic that would feed frames to the

transmit module and screen the headers of the receiver module for our packets. For

the packets, CRUSH uses UDP, User Datagram Protocol, as the method of transport

because of its low overhead and ease of use. During typical operation, the host sends

the ML605 a UDP packet that contains the required configuration bits and operation

mode of the CRUSH system. The ML605 receives this packet and dissects it in a

state machine. Depending on the mode indicated by the packet, the ML605 performs

the required action. If the host requests a spectrum sensing session, the ML605

will perform the analysis and transmit the result back to the host. Throughout

this process great care has been taken to reduce the latency added by the ML605.

Ethernet packets are complex to form because they require a MAC header, an IP

header and a UDP header in addition to the actual data [16]. The headers require

information such as header length, packet length, source MAC address, destination

MAC address and checksum. To form these headers each time a packet is sent

CHAPTER 3. CRUSH PLATFORM OVERVIEW 31

would be prohibitively time consuming. Instead, an embedded Microblaze processor

calculates the header once and stores it to a dual ported Block RAM. When a packet

is ready for transmission by the ML605, it reads the header out of the Block RAM

and into the transmit FIFO. Once the header is loaded into the FIFO, a state machine

starts loading the payload. Our algorithm stores all of the possible payload lengths

and corresponding checksum values so that no matter the packet length, it can load

the proper checksum without recalculating. The header is calculated in software on

the Microblaze so that it be easily modified. This is preferable over recompiling the

entire FPGA design.

The serial port connection performs the same functions as the Ethernet interface

but via an interactive console application rather than a packet based byte interface.

The serial port connection interfaces directly to the embedded Microblaze processor

and can also be reprogrammed without changing the FPGA configuration.

3.2.4 Interface between ML605 and Host

The primary interface between the ML605 and the host is UDP over Gigabit Ethernet.

UDP is a low overhead packet type which is easy to implement on the host side. The

first step on the host when communicating with CRUSH is to form a packet of the

proper structure (Table 3.3). When forming this packet, the general information

section and the channel 1 section are required. Channels 2 and 3 are optional and

are not currently implemented in CRUSH. In order to allow for easy expansion, we

added placeholders for these future channels so the hardware and software would not

CHAPTER 3. CRUSH PLATFORM OVERVIEW 32

need to be rewritten.

Table 3.3: Host to ML605 Packet Structure

Name Length Description

General Information [Required]

identWord 4 Packet identification word

numChannels 1 Number of channels this packet contains [1-4]

spare 3 spare

Channel 1 Information [Required]

Threshold 4 Spectrum sensing threshold value [0,232 − 1]

fftSize 1 Size of the FFT in log; 2x where x is fftSize [3,15]

Mode 1 Sets the mode of this channel

frequency 4 USRP Frequency [optional]

spare 2 Spare

Channel 2 Information [Optional]

Threshold 4 Spectrum sensing threshold value [0,232 − 1]

fftSize 1 Size of the FFT in log; 2x where x is fftSize [3,15]

Mode 1 Sets the mode of this channel

frequency 4 USRP Frequency [optional]

spare 2 Spare

Channel 3 Information [Optional]

Threshold 4 Spectrum sensing threshold value [0,232 − 1]

fftSize 1 Size of the FFT in log; 2x where x is fftSize [3,15]

Mode 1 Sets the mode of this channel

frequency 4 USRP Frequency [optional]

spare 2 Spare

The first section of the packet contains general information and tells the ML605

how many channels the packet contains. At this time the CRUSH HDL is only con-

figured for one channel but we built expandability for more into the packet structure.

The second section is the channel specific configuration. This has been setup for

our specific spectrum sensing application. The first word in this section is the user

CHAPTER 3. CRUSH PLATFORM OVERVIEW 33

supplied threshold. Next is the size of the FFT, followed by the mode. A list of

possible modes are shown in Table 3.4. Only modes 2, 4, and 5 are implemented, the

rest of the modes are placeholders for future functionality. The description of these

modes will follow in a later chapter after we have introduced the spectrum sensing

algorithm. These are the only fields required at this time. Spare bytes have been

added to each channel’s allocation to allow for additional variables to be added to

the system.

Table 3.4: Modes for ML605 Packet

Value Impl? Name Description

0 no status ML605 responds with current settings

1 no set Just set ML605 settings

2 yes man Run FFT, threshold and report results

3 no auto Run FFT using autothreshold algorithm, report results

4 yes raw Run FFT, report FFT values

5 yes raw+man Run FFT, threshold, report FFT and threshold results

3.3 Software Overview

The third and final part of the CRUSH platform is the software that interconnects

the hardware and HDL. Software is present in two different locations in the platform,

the host and the Microblaze embedded microprocessor on the ML605.

3.3.1 Host Software

We implemented three different host software platforms: (1) a custom MATLAB

GUI demo, an interactive serial port command line interface, and a speed optimized

CHAPTER 3. CRUSH PLATFORM OVERVIEW 34

interface in C++. Each of these interfaces accomplishes a specific goal and are useful

for the platform.

MATLAB

Figure 3.7: CRUSH Demo: 70 MHz Center, 73 MHz CW tone, 256 point FFT

On the host, we have developed a simple GUI demo using The Mathworks GUIDE

to show the functionality of the CRUSH system. A picture of the GUI is shown in

Figure 3.7. The demo consists of the same data plotted on both linear and log scales.

The graph on the left shows a magnitude plot with the x axis representing 100 MHz

of frequency and the y axis representing the magnitude of the FFT bin. The green

line shows the current threshold value. The blue plot is the output of the FFT

CHAPTER 3. CRUSH PLATFORM OVERVIEW 35

from the ML605 and in this plot we were injecting a 73 MHz CW tone. The red

plot is a binary representation of the thresholding results from the spectrum sensing

algorithm. The plot on the right uses a log scale for the y axis plotted in decibels

relative to the carrier (dBc) where the peak has been set to 0 dB and the rest of

the values are relative to this point. Again, the green line is shown to indicate the

threshold value. The bottom of the GUI has text boxes where all of the parameters

of the CRUSH system can be set. The user has the option to run the demo manually

with a button push or to update the plots automatically.

The backend of the GUI contains a MATLAB function that processes the param-

eters on the bottom of the GUI and creates a packet as defined in Table 3.3. It then

opens a UDP port to CRUSH and sends the packet. Finally, it waits until it receives

the requested data and then creates the plots in Figure 3.7.

Serial Port

Although not strictly software, the second host interface is the serial port connection.

This serves as a debug port and allows a user to type commands instead of forming

UDP packets. It is useful for testing basic functionality and follows a standard com-

mand line interface. All of the functions available over the Ethernet UDP interface

are available over the serial port. There are also additional debugging options that

are not available elsewhere. For requests over the debug port that generate data,

it will print the data values to the screen in hexadecimal format. We have written

a separate Matlab program that processes the values copied from the screen and

CHAPTER 3. CRUSH PLATFORM OVERVIEW 36

Figure 3.8: CRUSH Serial Interface

generates plots. The serial port is controlled on the FPGA by the Microblaze. This

yields an advantage over the Ethernet interface because the Microblaze software is

coded in C and can be modified without re-synthesizing the entire design.

UHD

The USRP Hardware Driver (UHD) is the last and highest speed interface designed

for CRUSH. The code is written in C++ and is based on the UHD code from Ettus

Research for communicating with the USRP over Ethernet. The code is based on

CHAPTER 3. CRUSH PLATFORM OVERVIEW 37

the rx samples to file.c example that comes with a standard distribution of the UHD

software. This example was picked as the basis for our interface because it can control

both the USRP and CRUSH at the same time. UHD is based on the Boost libraries [9]

so we used the UDP primitives native to Boost to implement our Ethernet interface.

Using this program allows for fair speed comparison tests between CRUSH and the

USRP since they are running identical versions of the Boost library.

3.3.2 ML605 Software

The only C code on the ML605 runs on the Xilinx Microblaze embedded processor.

This onboard device serves two purposes within the CRUSH framework. First, it

implements the header for the Ethernet packet. This is done in software so that it

can easily be changed without reprogramming the entire FPGA. If something like a

MAC address or the number of bytes in the packet changes, the C code can be easily

modified. The second purpose of the Microblaze software is to implement the serial

command line interface shown in Figure 3.8.

3.4 Conclusions

In this chapter we described the CRUSH platform in terms of the hardware, HDL

and software. The CRUSH hardware is based on the Ettus Research USRP N210, the

Xilinx ML605 FPGA Development board and the custom interface board. The CIB is

the major hardware contribution of this thesis because it allows CRUSH to combine

the powerful FPGA backend of the ML605 with the versatile RF front end of the

CHAPTER 3. CRUSH PLATFORM OVERVIEW 38

USRP. HDL was written for both the USRP and the ML605. For the USRP, a small

number of non-intrusive HDL modules were added to allow communication with the

ML605. The major contribution in this area was the CRUSH HDL Framework on

the ML605. This allows CRUSH to communicate with the USRP as well as the host.

Additionally, it creates the User Block which allows for algorithms to process RF data

without significant effort by the developer. Several different software contributions

were made including Matlab code, C++ code and a serial debug interface. All three

of these software modules contribute different features to CRUSH. The Matlab code

serves as a visual demo to demonstrate the system and verify functionality. The

C++ code allows for high speed testing and would be the preferred implementation

method for using CRUSH in a complete CR system. Finally the serial debug module

allows developers to quickly asses what is happening in the platform and modify

parameters without resynthesizing the FPGA design. One of the main contribution

of the CRUSH platform is the decoupling of the high performance FPGA hardware

from the RF front end processing. This, combined with the rest of the platform

development, creates a versatile, upgradeable platform for Cognitive Radio and SDR

Research.

Chapter 4

Spectrum Sensing

The previous chapter introduced the CRUSH platform and its hardware, software

and HDL. Spectrum sensing is the algorithm that we implemented on CRUSH to

accelerate Cognitive Radio functionality. This chapter first describes a software only

version of spectrum sensing using C++ and the UHD framework, followed by the

details of the hardware implementation of the same algorithm on CRUSH.

39

CHAPTER 4. SPECTRUM SENSING 40

4.1 Related Work in Software Spectrum Sensing

Spectrum sensing is not a new concept and has been implemented with a variety

of different algorithms and platforms as described in the literature. In presenting

the prior work on spectrum sensing we reference some general surveys followed by a

division of existing work into several broad categories. First we will discuss algorithms

created for software. In these algorithms, data are obtained from some source, e.g.

the USRP, and analyzed in either MATLAB or a custom software program. These

generally contain new and unique spectrum sensing ideas but are limited to the

research setting and have not progressed to implementation on a real-time SDR.

4.1.1 Spectrum Sensing Surveys

There are several different surveys on spectrum sensing. One such survey is from

Yücek and Arslan (2007) where they overview a broad category of sensing algorithms

and look at spectrum sensing from the top down [3]. This paper also discusses current

wireless standards and how they deal with the spectrum sensing issue such as how

Bluetooth uses sensing to determine other industrial, scientific and medical (ISM)

band transmitters to avoid. Akyildiz et al. presents a survey of available spectrum

sensing techniques and further breaks down the problem into three categories: (1)

detecting the transmitter, (2) detecting the receiver, and (3) interference temperature

management [2]. The authors identify many of the existing spectrum sensing tech-

niques including energy detection, feature detection and the matched filter technique.

CHAPTER 4. SPECTRUM SENSING 41

CRUSH utilizes the energy detection technique combining FFTs and thresholds.

4.1.2 Spectrum Sensing in Software

Software techniques for spectrum sensing show diverse and innovative solutions. The

long term goal is that these techniques could one day be implemented in hardware

but most of these algorithms have not been attempted on an FPGA. MacKenzie et al.

discuss their approach to spectrum sensing in their survey on CR research performed

at Virginia Tech [4]. In this paper they advocate a distributed cyclic feature-based

automatic modulation classification (AMC) where each radio extracts features from

the spectrum and all the radio observations are fused together. Extensive work and

research has been put into cyclostationary detection by Haykin et al. [17]. In this

work they detail how this method can be used both theoretically and experimentally

to extract features from the data to recognize primary users (PUs).

4.2 Spectrum Sensing Algorithm in Software

Figure 4.1: Spectrum Sensing Algorithm in Software

CHAPTER 4. SPECTRUM SENSING 42

In a software implementation, the USRP downconverts, digitizes and transports

the RF data to the host where it is received inside a UHD program. Once inside the

computer, the data is processed by an FFT and the output values are compared to

a threshold (Fig. 4.1). The results of this computation are reported to the cognitive

radio system as part of the cognitive radio cycle (Fig. 2.4). This method is slow and

does not allow for real-time operation. In this sense real-time refers to algorithms on

the µs scale. The FFT is performed via the highly optimized package FFTW [18].

However, it is not the speed of the software on the host that is the issue, rather the

fact that the data needs to be forwarded over an Ethernet interface in order to be

analyzed. The packet and buffer overhead for transmitting the raw RF data over

Ethernet is high. Additionally, the data, composed of 16 bits of I and Q, are sent

over the link at 25 MSPS. This results in 100 Mega Bytes per second (MBps) which

is very close to the peak theoretical value of GbE at 125 MBps. A faster way to do

this is to move the signal processing closer to the source of the data and perform this

analysis in hardware. The next section describes implementing this same algorithm

on CRUSH.

4.3 Related Work on Hardware Spectrum Sensing

Spectrum sensing has also been implemented in hardware on various SDR platforms

such as those discussed in Section 2.1. Some spectrum sensing algorithms are im-

plemented in real-time and others are implemented simply as a proof of concept.

CHAPTER 4. SPECTRUM SENSING 43

The final category of spectrum sensing research involves building a custom hardware

platform. These are algorithms that either are implemented in an ASIC or other

custom FPGA board that is not commercially available.

4.3.1 Spectrum Sensing on COTS Hardware

Spectrum sensing has been implemented in hardware before and one example is

an energy detection algorithm with double thresholding on the WARP platform by

Hänninen [19]. This work is similar to CRUSH, however their algorithm is not pa-

rameterized and has a fixed FFT size. As a result, they could only process data if

the input matched a specific form.

4.3.2 Spectrum Sensing on Custom Hardware

There is a section of work that focuses on implementing spectrum sensing in hard-

ware. If CR enters the mainstream consumer market, there will likely be application-

specific integrated circuits (ASICs) performing spectrum sensing. One of the most

likely areas of spectrum to see hardware CR is in white space (allocated but unused

frequencies for broadcast services). As a result of an FCC ruling, users are allowed to

utilize unoccupied TV channels [20]. One example of spectrum sensing in hardware

is Rahman et al. who built a hardware prototype to operate in white space in Sin-

gapore [21]. In this paper the authors describe a technique called correlation based

method (CBM) where they store time domain samples of recorded TV signals and

correlate the incoming RF signal to check channel occupancy. This is a technique

CHAPTER 4. SPECTRUM SENSING 44

specific to TV transmissions that would not transfer to a more general Cognitive

Radio.

There is one similar set of work to CRUSH by Shishkin et al. where they create an

adapter for existing RF boards designed for WARP to interface with an ML605 [22].

In this work they utilize commercial RF boards from either WARP or a COTS

FMC board from 4DSP. Unlike CRUSH, they are putting the entire SDR HDL on

the ML605. The advantage to CRUSH is that the ML605 is almost entirely empty

with a simple Verilog or VHDL User Block for the algorithm. In Shiskin’s work,

they are aiming to create a new SDR platform from scratch utilizing existing RF

downconverter boards. At the time of publication their work is in the advanced

planning stages with hardware currently being built.

4.4 Spectrum Sensing on CRUSH

In the CRUSH version of spectrum sensing the ML605 serves as an accelerator. A

block diagram of the system is shown in Figure 4.2. The data from the USRP

ADC are forked and sent to both the ML605 and the host; the rest of the software

defined radio functionality can continue in parallel with the CRUSH platform. On

the CRUSH platform an FFT is applied to the data and the results are thresholded

and then reported back to the host over Ethernet. A more detailed description of

the functionality is below.

CHAPTER 4. SPECTRUM SENSING 45

Figure 4.2: Spectrum Sensing Algorithm on CRUSH

Figure 4.3: User Block for Spectrum Sensing Algorithm on CRUSH

4.4.1 FFT

Section 3.2 discussed the HDL and how the User Block is the location where algo-

rithms can be placed with minimal effort. Figure 4.3 shows the details of the User

Block for the spectrum sensing algorithm. The data entering the User Block has al-

ready gone through a clock crossing FIFO to align itself to the FPGA clock domain.

CHAPTER 4. SPECTRUM SENSING 46

After the buffering stage, the I and Q data are fed into the User Block. The first

step of the spectrum sensing algorithm is the Xilinx Streaming FFT. With this FFT,

samples are constantly entering and exiting at a rate of one to one; we can take one I

and Q sample every clock cycle and output one result every clock cycle. In contrast,

most software FFTs input all of the data, process it, and then output the results

many clocks later. The Xilinx FFT core has a runtime configurable FFT size and

our spectrum sensing algorithm supports point sizes between 8 and 32768. The core

supports up to 64k point sizes but this is very large and takes up almost all of the

Block RAM on the device. We expect the required point size to be between 64 and

256 points.

4.4.2 I and Q Magnitude

The streaming FFT produces both I and Q values which are both signed. These data

are converted to unsigned squared magnitude value by taking I2 + Q2. Unsigned

squared magnitude is much easier to threshold than signed I and Q because there is

no possibility of a negative value. Additionally, the sign bit is removed which saves

space. Typically one would use magnitude which is
√
I2 +Q2. However, the square

root operation is expensive on the FPGA, both in terms of the number of gates and

latency to perform the operation. It is not a problem to make this simplification

because we can just move this calculation to the host and take the original threshold

and square it before passing it to the ML605. The output of the IQMagnitude signal

is forked and sent to two different places. First, we store these values in an indexed

CHAPTER 4. SPECTRUM SENSING 47

Block RAM where they can be recalled. If the mode is set to raw in the UDP packet

(Table 3.4), it will read the FFT values out of this Block RAM and report them

to the user. It should be noted that this may require more than one UDP packet

depending on the FFT size.

4.4.3 Thresholding

For thresholding, the IQMagnitude signal is compared to a threshold value and each

bin is determined to either be above a threshold, 1, or below a threshold, 0. These

data are then combined into 32 bit words and stored in a second Block RAM. If you

set the mode to man, for manual thresholding, in the UDP packet (see Table 3.4)

it will read the values out of this memory and send them over Ethernet to the user.

These packets are much smaller than the raw packets because of the data compression

when reducing a 32 bit value to a 1 or a 0. Additionally, we specifically designed

the Ethernet controller to output variable sized packets so that a 256 point FFT

threshold packet will be drastically smaller (faster) than the packet for a 32k point

FFT.

4.4.4 Fixed point Conversion

One of the hardest parts of converting an algorithm from a software to hardware

is converting from floating point to fixed point. By default, the UHD framework

performs all math in floating point. For this algorithm, we had two main design

parameters. The input to the system is 15 bit signed I and Q values. The threshold

CHAPTER 4. SPECTRUM SENSING 48

is a 32 bit unsigned integer and we would like our output FFT values to fit within 32

bits. Other fixed operations within the system are the adder and the squarer. The

adder results in a one bit growth and the square module doubles the number of bits

less one for the lack of a sign bit. It would be exactly double the number of bits

but after the square operation the data are unsigned. Based on these constraints

we chose to sign extend the input by one and have the FFT inputs be signed 16 bit

integers. We then used a scaled FFT so that the output is also 16 bit integers of I

and Q. These values get squared to 30 bits. Then when they are added we have 31

bits which is within our 32 bit limit. For the FFT, since it is 16 bits in and 16 bits

out, there will be rounding and scaling occurring. For the streaming FFT the core

utilizes a Radix-2 butterfly arrangement with a possibility of scaling after each Radix

block [23]. We have chosen a conservative scaling schedule that will not overflow no

matter the input. This is sufficient because we are looking for relatively large signals

in this analysis so we are biasing our rounding to cut the low end. If a user of this

platform has a priori knowledge of their input signal, this scaling schedule could be

modified to be more aggressive. For example, if the user’s average signal is -50 dBm

and there is a limiter on the input set to -30, then the scaling could be adjusted so

that signals near the -30 dBm range output maximum FFT bin sizes.

4.4.5 Verification

An important part of the design of any system is the ability to verify that an algorithm

is functioning properly. In order to make this easier, when a raw+man packet is

CHAPTER 4. SPECTRUM SENSING 49

requested, CRUSH will store both the raw and thresholded values in Block RAM

and send them over Ethernet. The thresholded values will be from the same FFT

values as the ones sent over Ethernet. Therefore, one can verify the functionality of

the system by comparing the raw and thresholded data through post-processing.

4.4.6 Configurability

All of the variables in the spectrum sensing block are configurable including the FFT

size and the threshold. Additionally, using the debug serial interface other variables

can be modified such as the scaling factors for the FFT. Also, hooks have been

placed into the HDL for additional features such as more than one USRP connected

to the CRUSH system and more advanced algorithms that incorporate automatic

thresholding. These will be discussed more in Chapter 6 under future work.

When integrated into the full system, the host computer sets all of the desired

parameters before starting a spectrum sensing run. It commands the USRP to a

specific frequency. It then tells the ML605 the threshold value for that frequency

range. The ML605 immediately starts performing the spectrum sensing algorithm

with the parameters given. Once done, it responds to the host with one or more bytes

with each bit representing whether a PU was found in that region. The host can then

change the frequency to perform more sensing or move on to another portion of the

cognitive cycle.

CHAPTER 4. SPECTRUM SENSING 50

4.5 Conclusions

While much work has been published on spectrum sensing, the main focus has been

from the top down, focusing on theoretical methods and models for sensing spectrum.

When algorithms are implemented, they are normally in software and using recorded

data. The CRUSH platform was developed to create real-time algorithms that can

be implemented in an online CR. We have focused on speed and parameterization to

make this possible. It is the goal of this project that CRUSH be used as a platform to

quickly test out other spectrum sensing algorithms while trying to keep the processing

chain fast and efficient.

Also in this chapter we introduced the specifics of the spectrum sensing algorithm

implemented on CRUSH. We described both the software implementation that we use

as a timing reference and the HDL version that we created specifically for CRUSH.

The major contribution is the creation of HDL to perform an FFT, threshold, and

report the unoccupied portions of the RF spectrum to the user. The HDL has been

designed to be as versatile as possible with its parameters fully configurable via its

interfaces with the host.

Chapter 5

Experimental Setup and Results

The previous chapters introduces the CRUSH platform and describes the spectrum

sensing algorithm. This chapter details the results of the tests we performed on the

spectrum sensing algorithm. The first section details the functional verification where

we prove that the link between the USRP and the ML605 is functional and that the

device performs as expected. The second section proves that performing spectrum

sensing on an FPGA is faster than performing the analysis in software. Finally, we

show a round trip timing comparison of the spectrum sensing application between a

software approach and CRUSH.

51

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 52

5.1 Functional Verification

To verify the functionality of CRUSH we tested over a range of frequencies and power

levels. In this section we are reporting on one example frequency where we injected a

signal into the USRP at 73 MHz with an amplitude of -16 dBm (decibels referenced to

one milliwatt). This frequency was chosen because it is within the 25 MHz bandwidth

of the USRP and within the 80 MHz range of the waveform generator used for testing.

Additionally, -16 dBm is 100 mVp−p which is the standard output for the device. In

order to look at the functionality of the system, we wanted to look at the data in

two different forms. The first is directly recorded by the USRP using the standard

software included with the device. We will compare this with the output of the FFT

inside the User Block.

5.1.1 USRP Master Reference

To look at the data flowing through the standard USRP path, we used the program

rx samples to file which comes with the UHD software. We configured it to record

10,000 samples to a file at a rate of 25 MHz and a center frequency of 70 MHz. In

this mode, the USRP will provide signed 16 bit I and Q data consisting of 25 MHz

RF bandwidth centered around 70 MHz. After the data was recorded, we plotted

it in MATLAB as shown in Figure 5.1. We performed a 256 point FFT in order to

compare the results to CRUSH. As shown in Figure 5.1, there is a peak at 73 MHz.

The y-axis of this graph is presented in dBc. DBc stands for decibels relative to the

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 53

carrier and it means that the carrier signal was set to 0 dBc and the rest of the graph

is in decibels relative to that measurement. This allows us to compare relative results

even if the powers represented are not identical. This measurement will serve as our

gold standard for this test. This is what a current software only radio would see and

we will compare this to CRUSH.

Note that a peak is visible in Figures 5.1 and 5.2 at 67 MHz. This is the result

of an I and Q mismatch on the analog front end of the USRP that creates a mirror

image of the input around the center frequency. In this particular example the 73

MHz input signal is mirrored around 70 MHz and appears as an artifact at 67 MHz.

The peak is less prominent in Figure 5.1 because the USRP framework decimates and

filters the original data stream and only looks at 25 MHz whereas CRUSH views the

stream closer to the ADC before digital filtering and sees 100 MHz. Ettus Research

is aware of the issue and is working on a solution.

5.1.2 CRUSH FFT Verification

The figure from the previous section showed us what the RF spectrum should look

like according to the USRP. The next step was to verify that the data was properly

transmitted to the CRUSH platform. As discussed in Chapter 3, the data that flows

into CRUSH comes from the output of the rx frontend block which performs a DC

offset correction and a phase alignment. This data is inherently different from the

data the USRP records through rx samples to file. The data through the UHD goes

through additional decimation and filtering steps in dsp core rx. The data presented

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 54

to CRUSH is actually closer to the real RF spectrum than the USRP data because

it is less processed and we are looking at 100 MHz of bandwidth instead of 25 MHz.

On top of processing in HDL, the CRUSH data stream goes through a DDR out and

DDR in process before it arrives at the User Block.

The last step in the verification process is to look at the data after the FFT has

been performed in hardware on CRUSH. For this test we instructed the CRUSH

platform to perform a 1024 point FFT on the incoming data and to send the raw

results to the host over Ethernet. Note that the data traveling into the ML605

represents 100 MHz of data as opposed to the 25 MHz that is available to the USRP.

To make the graphs more clear, Figure 5.2 has been cropped to just show 25 MHz.

This is why we performed a 256 point FFT on the USRP data and a 1024 point FFT

on CRUSH, so that both plots show the same resolution. As with the USRP, a sharp

peak is visible at 73 MHz. The peak is not exactly at 73 MHz because a 1024 point

FFT will quantize the frequency bins and each will represent approximately 100 KHz

of bandwidth so the boundaries do not fall on every frequency value. This proves

that our system worked correctly and the same RF energy that went into the front

end of the USRP was correctly sent to the User Block and then reported properly

by our FFT on the ML605.

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 55

60M 65M 70M 75M 80M
−60

−50

−40

−30

−20

−10

0
X: 7.309e+007
Y: 0

256−point FFT on USRP

Frequency (MHz)

A
m

pl
itu

de
 in

 d
B

c

Figure 5.1: USRP Test FFT Data

60M 65M 70M 75M 80M
−60

−50

−40

−30

−20

−10

0
X: 7.308e+007
Y: 0

1024−point FFT (1/4 BW Shown) on CRUSH

Frequency (MHz)

A
m

pl
itu

de
 in

 d
B

c

Figure 5.2: CRUSH FFT Data

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 56

5.2 Raw FFT Timing

CRUSH provides faster data manipulation by moving the signal processing closer

to the receiver which results in decreased latency. Showing the exact transport and

processing time for the CRUSH platform is difficult because the system consists of

three asynchronous systems: the USRP, the ML605 and the host. In the following

subsections we describe the process of setting up the system for testing the timing

as well as the results.

5.2.1 Testing Setup

It is difficult to measure the exact amount of time that a process takes when you are

dealing with three asynchronous systems with no time synchronization. Additionally,

Ethernet packet systems are full of buffers and hard to time. As a result of these

variables, we made the ML605 in the CRUSH system the basis for the timing analysis

because of the hard real-time nature of FPGAs. To perform these tests we took the

system from the original design in Figure 4.2 and added timing specific modifications

(Fig. 5.3).

Two additions were made to the system to perform this analysis. The first was

the timer module inside the ML605. To perform this test, we modified the system so

that various components send flags to this special timer module. The timer results

are stored and can later be read out by the user. The second addition was a state

machine inside the USRP that allowed the data stream to be rerouted and for test

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 57

Figure 5.3: Modified Design for Timing Tests

packets to be injected. When in test mode, the system replaces the incoming ADC

data with all zeros. Then, when it receives the signal to start a test, it sends out a

patterned signal of size 2FFTSize and then back to zeros. This length is chosen so a

complete FFT can be calculated on the test pattern. The arrival and completion of

these special packets is what yields the timing results. The test follows these steps:

1. Host tells ML605 to start test

2. ML605 resets all timers

3. ML605 tells the USRP to send the special packet

4. USRP hijacks the ADC data stream and sends the special packet, it goes to

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 58

both the host and the ML605

5. ML605 stops a timer when it completes its FFT

6. Host tells the ML605 that it has completed its FFT

7. ML605 stops the host timer

8. Host calibrates communication time

5.2.2 Detailed look at 256 point FFT on CRUSH

To get a feel for what contributes to an average time for running the CRUSH spectrum

sensing algorithm, we will thoroughly examine the 256 point FFT case. To visually

see the time it takes to run the algorithm, we have placed a Xilinx Chipscope core

inside the ML605 FPGA. Chipscope is a debugging tool that can trigger off of any

logic signal in the FPGA and then store the values of various signals in a Block RAM.

It reads these values out of the Block RAM over a debug cable called JTAG. A screen

capture of the timing of the 256 point FFT from Chipscope is shown in Figure 5.4.

Figure 5.4: Chipscope of 256 point FFT

Time zero is when the ML605 tells the USRP to start the test, and consequently

send the special packet. It takes 27 clocks from the beginning of the test for the data

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 59

to enter the User Block section of the FPGA code where processing begins. The

reason for this time is various clock crossing FIFOs, registration steps, and several

clocks in state machines to get the system setup. As soon as the data is inside the

User Block on the ML605, the FFT starts. Since this example is a 256 point FFT

it takes exactly 256 clocks to receive the packet. The majority of the time for this

process is waiting for the streaming FFT to complete which in this case is 9.14 µs.

It should be noted that the clock rate for this system is 100 MHz which results in a

10 ns clock period. This clock rate is the same as the data coming off of the ADC

on the USRP which simplifies the design flow. The timing of this particular CRUSH

run is summarized in Table 5.1.

Table 5.1: Timing Analysis of 256 point FFT

Action Cycles Time (µs)

Start Test 0 0.0

Data enters FPGA Clock Domain 27 0.27

FFT Starts 27 0.27

All Data inside FPGA 256 2.56

FFT Complete 941 9.41

5.2.3 Overall Timing Results

After looking at one particular run through the FFT chain, we now look at all FFT

sizes possible from 8 to 4k. For each FFT size, we ran the test 500 times and averaged

the results. We performed the analysis on both the CRUSH and on the host. This

information is shown in Figure 5.5. The blue dashed line represents the time the

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 60

host takes to complete the given FFT size and the red line represents CRUSH. Both

the x and y axes are in log scale; the FFT size is on the x-axis and time in µs is on

the y-axis. The gray filled portion represents ± one standard deviation. There is a

standard deviation plotted for the CRUSH platform but the FPGA timing does not

vary so it is not visible.

8 32 128 512 2k 4k
1

10

100

1,000

FFT Size

T
im

e
(

µs
)

Host vs ML605 FFT Runtime

CRUSH
Host
± Standard Deviation

Figure 5.5: Host versus FPGA Runtime

There are several interesting things to note from these results. First, the host takes

almost the same amount of time regardless of FFT size. The driving factor for the

completion time for the host is not the FFT, but rather the latency of transmitting

the data over Ethernet. The data for these FFTs is transmitted in one block as

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 61

defined by the USRP structure and therefore the system never needs to wait for two

or more blocks. For the host side FFT, we are using FFTW; this is a very efficient

implementation for FFTs of these sizes on a standard computer [18]. Great care was

taken to optimize the host processing so that it would be a fair comparison. The

standard host code provided by Ettus performed far worse and we determined that

the USRP inherently keeps stale data in its buffers. While it does indeed stream

data at a high speed, 100 MB/s on a 125 MB/s link (GbE), the data path has a high

latency. After speaking with Ettus, we determined a way to flush the buffers before

the start of each test. Even then, it takes approximately 6 to 7 blocks of empty data

from the USRP to the host before we see the special packet that we are requesting.

An additional issue occurs with larger FFT sizes. They may take more than one

block of packets to transfer all of the data needed for a given FFT. This is not shown

in this small subset but we did perform tests up to 32k; for 8k or larger FFTs, it

takes several blocks to transmit one FFT of data and the latency increases. To our

knowledge this is the first time the latency of the USRP has been explored in this

much detail because it requires a complex setup of FPGA modifications and external

timing circuitry that CRUSH provides.

The processing time for CRUSH scales linearly in a log plot because of the way

the algorithm is designed for the FPGA. There is almost no variation at each test

point because the FPGA is a hard real-time device and no other processing is going

on. Table 5.1 shows that the longest task when using CRUSH is the FFT algorithm.

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 62

Table 5.2: Summary of FFT Timing Results

FFT Size FPGA (µs) Host (µs) Speed up

8 1.17 907.72 774

16 1.91 915.89 479

32 2.38 920.07 386

64 3.56 925.47 259

128 5.47 916.54 167

256 9.56 1198.19 125

512 17.23 1003.83 58

1024 32.84 955.3 29

2048 63.55 995.26 15

4096 125.24 1071.79 8

Table 5.2 shows the actual timing numbers in µs as well as the speedup between

CRUSH and software. CRUSH is faster than the host because of its close proximity

to the data source. Typical required FFT sizes for spectrum sensing range from

64 point to 256 point because fine resolution is not needed to determine if a PU is

present [19]. For 64 and 256 point sizes we see a 259x and 125x speed up respectively.

This moves the timing for this application from ms to µs levels which allows CRUSH

to implement near real time radio operations. In [19] the authors implement a method

called localization algorithm based on doublethresholding (LAD) and utilize a 64

point FFT taking 6 µs as compared to 3.56 µs for CRUSH.

5.3 End to End Timing

The final step in the timing analysis of CRUSH is a complete, end to end timing

test. This simulates the scenario where a user requests a spectrum sensing cycle and

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 63

CRUSH reports back the results, exactly as it would be used in an SDR implementing

the cognitive cycle.

5.3.1 Testing Method

In the previous section we focused on precise timing of the CRUSH algorithm on the

FPGA. For these next tests, we will instead look at timing from the perspective of

the host computer.

Test Setup

All of the tests were performed on a Lenovo T400 with an Intel Core 2 Duo T9600

dual core processor with 8 GB of RAM and a solid state hard drive. Several extra

steps were taken to ensure that the timing results were consistent. This is necessary

because real-time performance characteristics of modern laptops vary depending on

their present environment. A modern laptop can vary its CPU voltage and frequency

depending on the current workload, temperature and software. To minimize these

effects we changed the power mode to maximum performance and ran all tests when

connected to an external power adapter. This forces the computer into the same

high performance, high frequency mode for all tests. Additionally, the computer was

restarted into safe mode with networking to make sure no extra tasks or services

were running. We made sure to disable antivirus during the tests as these tools can

eat up to 50 % of the processor time and will scan any files created by the program.

Lastly, in Windows, it is possible to assign a program to a specific processor and

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 64

also to define a priority level for that program to operate under. For these tests, the

timing program was assigned to the second processor with high priority. This was

accomplished via the following command:

>> start /AFFINITY 0x2 /HIGH rx_samples_to_file.exe

As a result, the standard deviation of the tests decreased and our results are as

consistent as possible on the Windows testing environment.

Precision Program Timing

The next part of the test setup is finding a precision source to use for timing mea-

surements. On the FPGA we had a 100 MHz clock that could measure time to 10

ns precision. Even though modern computers run at extremely high clock rates,

they lack precise time functions. After much research, the best we found is an Intel

Assembly command called rdtsc() that returns the number of cycles since reset [24].

This is as precise as one can get on a computer but it still takes some time to read

these counters. An outline of example code using the rdtsc() function is below:

unsigned __int64 start;

unsigned __int64 stop;

unsigned __int64 procFreq=2.8E9;

start = __rdtsc();

packetValid = a.send(endp_a, sstr.str()); //this thread is mutex locked

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 65

stop = __rdtsc();

printf("%f\n",(double(stop-start)/double(procFreq))*1e6);

During implementation we tested rdtsc versus many other timing modules available

in Windows and this method was superior, being able to measure as precisely as

50 ns compared to as much as 1000 ns with traditional Windows timers. It is very

important that we measure as small of a delta as possible since our algorithm run

time is on the order of 10’s of µs.

UDP Packet Control

The last part of the setup for the timing results is the actual UDP sender and receiver

code in C++ on the host computer. In order to better compare results to the USRP

system, we utilized the same software library present on the USRP, Boost [9]. Boost

has built-in support for UDP packets. We created an asynchronous receiver thread

and functions to send a packet.

When running timing tests we use the following procedure. First we start the

rdtsc timer. Then we send a UDP packet to CRUSH requesting spectrum sensing

results. At this point we set a mutex lock on the main thread. This mutex is then

unlocked inside the asynchronous receive thread when the packet is received. The

receive thread also checks to make sure the packet is properly formed. Once the

mutex is unlocked, the main thread continues. The next section of code stops the

rdtsc timer and appends the results to a file on the hard drive. The above process is

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 66

repeated over many repetitions and also across many possible FFT sizes.

5.3.2 Results

Following the above described test plan, we ran a series of tests to measure the

roundtrip time of a complete spectrum sensing cycle. For this test, all timing results

represent the host time from rdtsc using the C++ program described previously,

built on top of UHD and Boost.

The test examined FFT sizes from 8 to 4096 and averaged over 400 packets per

point size (Fig. 5.6). The black line on the figure represents the average and the gray

zone shows ± one standard deviation. The trend of the line shows a slow increase in

time up until 512 points. From 512 to 4096 points there is a much steeper curve. An

explanation can be found by examining Table 5.2. FFT run times below 512 take

less than 10 µs. This is within the standard deviation of the roundtrip time and as a

result is indistinguishable on the graph. Also, the difference in packet size for smaller

FFTs is very minimal. So it is not until we reach larger FFT sizes that the runtime

of the FFT impacts the roundtrip time. Again looking at Table 5.2, FFT size 4096

takes 125 µs which is almost exactly 125 µs more than FFT size 8.

Finally, we compare these roundtrip measurements to the Raw FFT timing to

see the total speedup of CRUSH over a software only approach using the USRP

(Fig. 5.7). In this plot, the FFT sizes are shown on the x axis just like the plot

above. However, the y axis is now shown on a log scale. The CRUSH roundtrip time

comes from Figure 5.6 and the other two lines come from Figure 5.5. Analyzing this

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 67

8 16 32 64 128 256 512 1k 2k 4k
0

50

100

150

200

250

Roundtrip Time for CRUSH FFT Completion

FFT Size

T
im

e
[u

s]

Standard Deviation
Average Time

Figure 5.6: Roundtrip CRUSH Time

graph, we can see that CRUSH is approximately 10x faster than a host only version

of the same algorithm. This proves that for the given FFT sizes, CRUSH is faster

than software.

5.4 Available FPGA Resources

After the implementation of the CRUSH framework and the spectrum sensing ap-

plication that uses a simple threshold based energy detection, the ML605 still has

ample space to implement additional algorithms. The CRUSH framework uses 1.2%

Slice Registers, 7.8% Block RAM and 0.4% DSP48 blocks. Spectrum sensing adds

2.6% Slice registers, 26% Block RAM and 8.3% DSP48 blocks. The majority of the

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 68

8 32 128 256 2k 4k
1

10

100

1000

Roundtrip Time for CRUSH FFT Completion

FFT Size

T
im

e
[u

s]

CRUSH FFT
CRUSH Roundtrip
Host
± Standard Deviation

Figure 5.7: Overall Timing Comparison

spectrum sensing hardware is Block RAM used for calculating the FFT. Overall with

both the framework and spectrum sensing implemented, the system still has 96.1%

Slice Registers, 66.3% Block RAM and 91.2% DSP48 blocks free. One candidate

for using this space is to implement additional MAC functionality in reconfigurable

hardware. This could lead to novel split-MAC designs, with time critical functions

of the MAC performed on the FPGA, and policy decisions undertaken by the host.

CHAPTER 5. EXPERIMENTAL SETUP AND RESULTS 69

5.5 Conclusions

This chapter showed the performance of the CRUSH platform in terms of real, mea-

surable numbers. First, we examined the data entering the CRUSH platform over

the CIB. We confirmed that the data traveling over the MICTOR cable is error free

and functions as expected. We also verified the functionality of the Xilinx FFT core.

Next, we looked at the timing of the CRUSH platform versus software for just the

completion of an FFT. In this case, CRUSH beat software by over 100x in FFT sizes

of interest to CR, namely 64 and 256 point. Finally, we looked at the complete,

roundtip time as measured by the host for the CRUSH system to complete a thresh-

olding operation. CRUSH outperformed the software solution by 10x. This chapter

proves that CRUSH is an effective tool for spectrum sensing and that moving the

processing closer to the host can dramatically improve the time required to complete

CR tasks.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

We have introduced a versatile computing platform using advanced FPGA technol-

ogy. CRUSH combines a powerful FPGA with a versatile RF front end. To enable

this, we created a custom interface board (CIB) that allows high speed data transfer

between two widely used COTS platforms. The signal processing is now closer to

the receiver allowing for implementation of high speed, real-time algorithms. This

also decouples the FPGA computing resources from the SDR allowing for either to

be updated independently. We implemented spectrum sensing as the first applica-

tion on CRUSH. CRUSH can implement FFTs at 100x the rate of software and can

perform a complete sensing cycle 10x faster than software for FFT sizes of interest

to cognitive radios. We have reduced the load on the host computer by running this

algorithm in hardware and we have kept the system fully configurable.

70

CHAPTER 6. CONCLUSIONS AND FUTURE WORK 71

6.2 Future Work

The next stage for the CRUSH platform is integration into existing research on cog-

nitive radio at Northeastern University. We plan to look into other approaches to

perform spectrum sensing. Future iterations will dynamically threshold the FFT

values instead of using precalibrated data provided by the host. Further steps might

include advanced feature detection which looks at who and what is transmitting in-

stead of just whether energy is present in a given band. These advanced methods

might include wavelet analysis or cyclostationary feature detection [25][26]. Addi-

tional MAC functionality of a CR could be integrated in hardware, leading to novel

split-MAC designs, with time critical functions of the MAC performed on the FPGA,

and policy decisions undertaken by the host. Finally, one could use this platform for

research outside of the realm of software defined radio. The combination of an ADC,

DAC and a powerful FPGA backend could be used in other signal processing research

fields such as radar.

Appendix A

List of Acronyms

ACK Acknowledge

ADC Analog to Digital Converter

AMC Automatic Modulation Classification

ASIC Application-Specific Integrated Circuits

BEE Berkeley Emulation Engine

CBM Correlation Based Method

CIB Custom Interface Board

COTS Commercial Off the Shelf

CR Cognitive Radio

CRUSH Cognitive Radio Universal Software Hardware

DAC Digital to Analog Converter

dBc Decibels relative to the Carrier

dBm Decibels relative to 1 mW

DCM Digital Clock Manager

DDR Double Data Rate

DSP Digital Signal Processing

FIFO First In First Out

FFT Fast Fourier Transform
72

APPENDIX A. LIST OF ACRONYMS 73

FMC FPGA Mezzanine Card

FPGA Field-Programmable Gate Array

GbE Gigabit Ethernet

GUI Graphical User Interface

GUIDE GUI Design Environment

HDL Hardware Description Language

HPC High Pin Count

ISM Industrial Scientific and Medical

JTAG Joint Test Action Group

KNOWS Networking Over White Spaces

LPC Low Pin Count

MAC Media Access Control

MICTOR Matched Impedance Connector

MIMO Multiple Input Multiple Output

MBps Megabytes per second

MSPS Mega-Samples Per Second

MUX Multiplexer

PPC PowerPC

PU Primary User

REQ Request

SATA Serial Advanced Technology Attachment

SDR Software Defined Radio

SERDES Serializer / Deserializer

TEMAC Trimode Ethernet Media Access Control

USRP Universal Software Radio Peripheral

UHD Universal Hardware Driver

WARP Wireless Open Access Research Platform

Bibliography

[1] Ettus Research. USRP - Ettus Research. [Online]. Available: http:
//www.ettus.com/.

[2] I. F. Akyildiz, W.-Y. Lee, and K. R. Chowdhury, “CRAHNs: Cognitive Radio
Ad Hoc Networks,” Ad Hoc Networks, vol. 7, no. 5, pp. 810 – 836, 2009.

[3] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive
radio applications,” Communications Surveys Tutorials, IEEE, vol. 11, no. 1,
pp. 116 –130, 2009.

[4] A. MacKenzie, J. Reed, P. Athanas, C. Bostian, R. Buehrer, L. DaSilva,
S. Ellingson, Y. Hou, M. Hsiao, J.-M. Park, C. Patterson, S. Raman, and
C. da Silva, “Cognitive radio and networking research at virginia tech,” Pro-
ceedings of the IEEE, vol. 97, no. 4, pp. 660 –688, April 2009.

[5] K. Amiri, Y. Sun, P. Murphy, C. Hunter, J. Cavallaro, and A. Sabharwal, “Warp,
a unified wireless network testbed for education and research,” in Microelectronic
Systems Education, 2007. MSE ’07. IEEE International Conference on, june
2007, pp. 53 –54.

[6] BEEcube. Berkeley emulation engine. [Online]. Available: http://beecube.com/.

[7] P. Bahl, R. Chandra, T. Moscibroda, R. Murty, and M. Welsh, “White space
networking with wi-fi like connectivity,” SIGCOMM Comput. Commun. Rev.,
vol. 39, pp. 27–38, Aug. 2009.

[8] Ettus Research. Usrp hardware driver (uhd). [Online]. Available: http:
//code.ettus.com/redmine/ettus/projects/uhd/wiki/.

[9] Boost. Boost. [Online]. Available: http://www.boost.org/.

[10] GNURadio. Gnuradio. [Online]. Available: http://gnuradio.org/redmine/
projects/gnuradio/wiki.

[11] Mathworks. Matlab and simulink support package for usrp hardware. [Online].
Available: http://www.mathworks.com/discovery/sdr/usrp.html.

75

http://www.ettus.com/.
http://www.ettus.com/.
http://beecube.com/.
http://code.ettus.com/redmine/ettus/projects/uhd/wiki/.
http://code.ettus.com/redmine/ettus/projects/uhd/wiki/.
http://www.boost.org/.
http://gnuradio.org/redmine/projects/gnuradio/wiki.
http://gnuradio.org/redmine/projects/gnuradio/wiki.
http://www.mathworks.com/discovery/sdr/usrp.html.

[12] ANSI. (2010) FPGA Mezzanine Card (FMC) standard. [Online]. Available:
http://www.vita.com/fmc.html.

[13] TE Connectivity. Matched impedance connector (mictor). [Online]. Available:
http://www.te.com/catalog/minf/en/428/.

[14] Texas Instruments. Tlk2701 transceiver. [Online]. Available: http://www.ti.
com/product/tlk2701.

[15] XILINX. (2011) Virtex-6 FPGA TEMAC. [Online]. Available: www.xilinx.
com/products/intellectual-property/TEMAC.htm.

[16] Network Sorcery. (2011) UDP. [Online]. Available: http://www.networksorcery.
com/enp/protocol/udp.htm.

[17] S. Haykin, D. Thomson, and J. Reed, “Spectrum sensing for cognitive radio,”
Proceedings of the IEEE, vol. 97, no. 5, pp. 849 –877, may 2009.

[18] M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,”
Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, 2005.

[19] T. Hanninen, J. Vartiainen, M. Juntti, and M. Raustia, “Implementation of spec-
trum sensing on wireless open-access research platform,” in Applied Sciences in
Biomedical and Communication Technologies (ISABEL), 2010 3rd International
Symposium on, nov. 2010, pp. 1 –5.

[20] FCC. White Space. [Online]. Available: http://www.fcc.gov/topic/white-space/
.

[21] M. Rahman, C. Song, and H. Harada, “Development of a TV white space cogni-
tive radio prototype and its spectrum sensing performance,” in Cognitive Radio
Oriented Wireless Networks and Communications (CROWNCOM), 2011 Sixth
International ICST Conference on, june 2011, pp. 231 –235.

[22] B. Shishkin, D. Pfeil, D. Nguyen, K. Wanuga, J. Chacko, J. Johnson, N. Kan-
dasamy, T. Kurzweg, and K. Dandekar, “SDC testbed: Software defined com-
munications testbed for wireless radio and optical networking,” in Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), 2011 Inter-
national Symposium on, may 2011, pp. 300 –306.

[23] XILINX INC. (2011) Ds260: Fast fourier transform v7.1. [Online]. Available:
www.xilinx.com/support/documentation/ip documentation/xfft ds260.pdf.

[24] Intel. Architecture Manual. [Online]. Available: download.intel.com/design/
processor/manuals/253669.pdf.

http://www.vita.com/fmc.html.
http://www.te.com/catalog/minf/en/428/.
http://www.ti.com/product/tlk2701.
http://www.ti.com/product/tlk2701.
www.xilinx.com/products/intellectual-property/TEMAC.htm.
www.xilinx.com/products/intellectual-property/TEMAC.htm.
http://www.networksorcery.com/enp/protocol/udp.htm.
http://www.networksorcery.com/enp/protocol/udp.htm.
http://www.fcc.gov/topic/white-space/.
http://www.fcc.gov/topic/white-space/.
www.xilinx.com/support/documentation/ip_documentation/xfft_ds260.pdf.
download.intel.com/design/processor/manuals/253669.pdf.
download.intel.com/design/processor/manuals/253669.pdf.

[25] Z. Tian and G. B. Giannakis, “A wavelet approach to wideband spectrum sens-
ing for cognitive radios,” in Cognitive Radio Oriented Wireless Networks and
Communications, 2006. 1st International Conference on, june 2006, pp. 1 –5.

[26] A. Fehske, J. Gaeddert, and J. Reed, “A new approach to signal classification
using spectral correlation and neural networks,” in New Frontiers in Dynamic
Spectrum Access Networks, 2005. DySPAN 2005. 2005 First IEEE International
Symposium on, nov. 2005, pp. 144 –150.

	Northeastern University
	January 01, 2012
	CRUSH: Cognitive Radio Universal Software Hardware
	George Fredric Eichinger III
	Recommended Citation

	Introduction
	Background
	Software Defined Radio Platforms
	USRP
	USRP N2x0
	Other USRPs
	Daughterboards
	Software

	WARP

	Cognitive Radio
	Spectrum Sensing
	Conclusions

	CRUSH Platform Overview
	Hardware Overview
	Ettus Research USRP N210
	Xilinx ML605 Development Board
	Custom Interface Board
	FMC
	MICTOR Connectors
	MIMO Connector
	Impact on USRP Functionality

	HDL Overview
	USRP HDL Framework
	Interface between USRP and ML605
	DDR I/Q Bus
	Control Bus

	ML605 HDL Framework
	Interface between ML605 and Host

	Software Overview
	Host Software
	MATLAB
	Serial Port
	UHD

	ML605 Software

	Conclusions

	Spectrum Sensing
	Related Work in Software Spectrum Sensing
	Spectrum Sensing Surveys
	Spectrum Sensing in Software

	Spectrum Sensing Algorithm in Software
	Related Work on Hardware Spectrum Sensing
	Spectrum Sensing on COTS Hardware
	Spectrum Sensing on Custom Hardware

	Spectrum Sensing on CRUSH
	FFT
	I and Q Magnitude
	Thresholding
	Fixed point Conversion
	Verification
	Configurability

	Conclusions

	Experimental Setup and Results
	Functional Verification
	USRP Master Reference
	CRUSH FFT Verification

	Raw FFT Timing
	Testing Setup
	Detailed look at 256 point FFT on CRUSH
	Overall Timing Results

	End to End Timing
	Testing Method
	Test Setup
	Precision Program Timing
	UDP Packet Control

	Results

	Available FPGA Resources
	Conclusions

	Conclusions and Future Work
	Conclusions
	Future Work

	List of Acronyms

