
ON THE DIFFICULTY OF PIN-TO-WIRE ROUTING IN FPGAs

Niyati Shah and Jonathan Rose

The Edwards S. Rogers Sr. Department of Electrical and Computer Engineering,
University of Toronto,

shahniya|jayar@eecg.utoronto.ca

ABSTRACT

While FPGA programmable routing networks are designed
to connect logic block output pins to input pins, FPGA users
and architects sometimes become motivated to create con-
nections between pins and specific wires in an FPGA. We
call these pin-to-wire connections, and they are motivated
by several reasons: first, a desire to employ routing-by-abut-
ment, as commonly done in custom VLSI, to build mod-
ular, pre-laid out systems. Second, partial reconfiguration
of FPGAs often requires that circuits in the FPGA connect
by abutment. Third, pin-to-wire routing is required to make
use of resources that reside within the routing network it-
self, such as the plentiful multiplexers in the network, or
even the configuration bits themselves. In this paper we at-
tempt to understand and measure how difficult it is to form
such pin-to-wire connections. We show, for example, under
an experimental scenario close to routing-by-abutment, that
the total routed wirelength compared to a flat placement of
the complete system increases by about 6%, that the criti-
cal path delay increases by 15% and the router effort goes
up by a factor of 3.5. To achieve this result, it is important
to be careful in selecting the specific target wires. Over-
all we demonstrate that while pin-to-wire connections def-
initely impose increased stress on the routing architecture
and router, it is possible to route some reasonable number of
them, and so they can be used under some circumstances.

1. INTRODUCTION

FPGA routing architectures are large-scale interconnection
networks that are designed to efficiently connect the output
pins of logic blocks to the input pins of other logic blocks.
They must do so for a broad class of application circuits with
varying demand for interconnect quantity and flexibility [1].

Every so often, FPGA architects and CAD tool develop-
ers become motivated to use the interconnection network in
a way that it was not intended: creating connections from
output pins of logic blocks to specific wire segments in the
network, or from specific wire segments to input pins. We
will refer to this as pin-to-wire routing. One such motivation
is to enable routing by abutment, in the manner that standard

cell-based ASICs connect power rails in rows of cells [2], or
that a datapath layout generator might abut stages in a layout
[3]. In the FPGA context, this idea translates to having pre-
placed and pre-routed modules that could connect together
by abutment, presuming efficient routing to and from spe-
cific wire segments in an FPGA routing channel is possible.
In this way, each of the abutting modules can be created in-
dependently, as long as the specific wire segments that form
the abutting connections are known in advance. With this
capability, several different modules could be connected us-
ing the same wire abutment pattern, but again only as long
as pin-to-wire routing is efficient. Our underlying motiva-
tion for routing-by-abutment is to attack the compile-time
issue for FPGAs - if pre-placed and routed modules can be
placed coarsely and rapidly, and then routed by abutment, a
major portion of the compile time can be eliminated.

A second motivation for pin-to-wire routing arises in the
use of partial reconfiguration of FPGA modules [4]. Here
specific areas of the FPGA are designated to contain dif-
ferent functional modules at different times, yet these must
connect to neighbouring modules using the same wire seg-
ments. This connectivity problem has been solved by us-
ing overlapping ‘proxy’ LUTs [5] at the cost of some sig-
nificant amount of intervening logic. If the wire segments
themselves can be used to achieve abutment routing, it may
reduce this cost.

A third motivation for pin-to-wire routing arises when-
ever an architect considers making use of the circuits ele-
ments within the routing architecture itself: a classic obser-
vation in this realm is that although it is inefficient to im-
plement multiplexers in an FPGA using LUTs, it is ironic
that the FPGA itself is full of multiplexers as the key build-
ing blocks of the routing fabric. In order to make use of
those multiplexers (after architecturally modifying access to
their selection inputs) there has to be an ability to connect to
specific data inputs on the routing multiplexers from output
pins of logic blocks. For example, [6] makes use of intra-
cluster multiplexers to implement the programmable shift in
floating point operations, and shows that with careful lay-
out, the pin-to-wire routing to multiplexers within a cluster
is reasonably effective. Oldridge [7] needs a similar capa-

978-1-4673-2256-0/12/$31.00 c©2012 IEEE 83

bility to gain access to the switch block configuration bits of
an FPGA, and employ them as a user memory.

While these motivations are interesting, the requirement
for effective pin-to-wire routing conflicts with the basic pur-
pose of the FPGA interconnection network, which is pin-to-
pin routing. Good architects of those networks [8], [9], [10]
choose a quantity of routing and the total routing flexibility
to satisfy the interconnection demand of broad classes of ap-
plication circuits, but only for pin-to-pin connections. This
suggests that there may be insufficient quantity and flexi-
bility of routing if connections are made between pins and
wire segments because there will be fewer stages of the in-
terconnection network available for such connections. For
example, for pin-to-wire routing, the final connection block
and intra-cluster routing multiplexers will be missing, giv-
ing far fewer potential paths from start to finish. Similarly,
for wire-to-pin routing, the output connection block’s flex-
ibility is missing. Thus, it is clear that pin-to-wire routing
will be more difficult, for each such connection, than pin-
to-pin routing. However, most FPGAs are somewhat over-
architected in the routing to ensure that circuits with widely
varying routing demand will achieve routability. We hypoth-
esize that some of this extra routability could make up for
the loss of routability in pin-to-wire routing, and hence, we
seek to understand and measure if this is true. The goal of
this paper is to experimentally measure the impact of pin-to-
wire routing on routing wire length, critical path speed and
router effort. In doing so we seek to understand how much
pin-to-wire routing could be used in an FPGA, and perhaps
enable some of the applications discussed above.

The remainder of the paper is organized as follows. Sec-
tion 2 presents background on related work. In Section 3 we
describe our experimental methodology for measuring var-
ious instances of pin-to-wire routing, and also give the cor-
responding results and understanding generated. In Section
4 we conclude.

2. BACKGROUND

In this section we review prior related work, and provide the
basic terminology that is used in this paper.

2.1. Related work

When using the partial reconfiguration feature of an FPGA,
each reconfigurable region needs to be placed and routed
independently, yet have connections between those regions.
Researchers have previously looked at several methods of
making those connections.

Athanas et al. [4] deal with the issue of connecting be-
tween reconfigurable ‘sandbox’ regions/modules by encas-
ing them in wrapper structures before placement and rout-
ing. The wrapper structure provides anchor points for the
module’s ports, which exist at pre-fixed locations so that

compilation of different modules will overlap and therefore
connect. At run-time, module-level placement is performed
with emphasis on reducing the interconnect between neigh-
bouring modules, and attempts to make use of routing-by-
abutment. If the placement is unable to achieve abutment
of all the modules that need to connect, then routing is per-
formed using a greedy approach and is restricted to the chan-
nel segment between adjacent modules. The routing archi-
tecture is abstracted to make the routing solution fast. Both
the use of anchor points and abstracted routing implicitly
sacrifice area and routed wire length to achieve the routing
by abutment, but the paper does not quantify how much. In
this work, we’re interested in measuring that cost.

The partial reconfiguration design flow provided by Xil-
inx [5] solves the boundary crossing connection problem in
a similar way, by using a fixed placement for a one-input
LUT that must be the same for every dynamic logic mod-
ule that is placed in a reconfigurable region. The routing
to that LUT from the non-reconfigurable or static region is
determined during the configuration of the static region and
is kept untouched during the configuration of the partially
reconfigurable region. However, routing to that LUT within
the reconfigurable region can vary based on the logic and the
routing of the dynamic module being implemented in that
reconfigurable region. This LUT, one of which is required
for every signal that crosses the boundary, is called ‘proxy’
logic. A clear disadvantage of this method is the logic over-
head involved in implementing such LUTs and also, the de-
lay resulting from passing through the LUT (0.4ns on a Vir-
tex II FPGA [11]).

Koch et al. [11] solve the problem of connection be-
tween regions by pre-assigning the routes that flow between
regions, eliminating the need for proxy logic. As a result,
both the area occupied by the proxy logic LUTs and the de-
lay incurred for passing through them get eliminated. The
authors do not, however, indicate if there is any difficulty
(in terms of area, wirelength, delay and router effort) in the
routing required around these pre-assigned wires, the pur-
pose of the present paper.

Moctar et al. [6] seek to make use of the intra-cluster
routing multiplexers to implement shifters for floating point
mantissa alignment. This requires signals to be routed to the
multiplexer’s inputs in a pre-specified order which means
that there is pin-to-wire routing. The authors measure the
impact of this difficulty by measuring the increase in mini-
mum routing channel width. They show that the minimum
routing channel width increases proportionally with the num-
ber of shifters in the netlist. They do not observe an increase
in critical path delay, but it is also not clear how much stress
their example architectures are under. Also, the benchmarks
used in this work are I/O limited with relatively sparse logic
block utilization, which would result in a relatively easier
routing problem.

84

Connection

Block

Logic block pin

Programmable

Switch

Wire

Segment!

Length 1

Channel

Segment

Wire

Segment!

Length 2

Fig. 1. FPGA Architecture and Related Terminology.

2.2. BASIC TERMINOLOGY

Figure 1 introduces the architecture terminology employed
in this paper. Logic block (LB) input and output pins con-
nect to all or some of the wire segments in their neighbour-
ing channels via a connection block. The length of the rout-
ing channel spanning a single LB is called a channel seg-
ment. The fraction of wire segments in an adjacent channel
segment to which an logic block input pin can connect is
called input connection block flexibility (Fcin), and the frac-
tion of wire segments in an adjacent channel segment that an
logic block output pin can drive is called output connection
block flexibility (Fcout). Wire segments connect at channel
intersections and connect to Fs (the switch block flexibility)
other segments via switch blocks (SB).

3. EXPERIMENT DESIGN AND RESULTS

Our purpose is to measure the impact of pin-to-wire routing
on area, speed and router effort. We will do this in the con-
text of a hypothetical (but fairly standard) FPGA architec-
tural and open-source tools. The set of architecture parame-
ters for the FPGA used in these experiments are as follows:
The logic architecture is a homogeneous array of logic clus-
ters that contain four 4-input LUTs with 10 input pins per
cluster. The routing architecture employs the single-driver
approach [12] with staggered length 4 segments, a Wilton
switch block [13] with Fs = 3 and a connection block with
Fcin = 0.15 and Fcout = 0.25. Note that all length 4 wire
segments are internally switch block populated [14]. The
resulting switch block multiplexers range in size from 9-10
data inputs. The delays are based on the iFar repository de-
lays for a 45nm CMOS process [15] [16]. In the follow-
ing, we will also make use of the classical 20 largest MCNC
benchmarks [17]. Although these benchmarks are relatively

Table 1. Net and BLE Statistics
Circuit # Total Single-Sided Nets Double

BLE’s Nets Left Right Sided
alu4 1522 1019 369 370 280
apex2 1878 1408 588 517 303
apex4 1262 959 331 332 296
bigkey 1707 1036 375 454 207
clma 8383 6133 2725 2663 745
des 1591 1499 416 939 144
diffeq 1497 1179 476 489 214
dsip 1370 919 379 371 169
elliptic 3604 2449 1066 887 496
ex1010 4598 3410 1534 1420 456
ex5p 1064 859 262 273 324
frisc 3556 2279 907 873 499
misex3 1397 996 406 339 251
pdc 4575 3178 1266 1174 738
s298 1931 1011 413 397 201
s38417 6406 5045 2304 2342 399
s38584.1 6447 4704 2187 2001 516
seq 1750 1286 492 452 342
spla 3690 2539 1046 902 591
tseng 1047 827 348 318 161

small, we expect that, because there are many wires and
switches, that we will gain useful insight into the pin-to-wire
question. Nevertheless, the effect of fixed routing structures
like carry chains would remain unknown, and be a part of
the future work.

Table 1 lists the set of circuits used in the experiments,
and their characteristics - the number of logic elements, the
number of nets and several other attributes described in the
discussion below. We will now present measurements of
pin-to-wire routing in a number of different experimental
contexts. Most of these contexts are meant to be proxies for
the wiring-by-abutment motivations presented in the intro-
duction, with varying degrees of difficulty.

3.1. Experiment 1: Easy Abutment-Oriented Routing

The first experiment is as follows: we begin by taking a
benchmark circuit, and run packing using T-VPack [18] fol-
lowed by placement and routing using VPR 5.0.2 [19], which
employs the timing-driven router described in [14]. This
flow is used to determine the minimum number of tracks
per channel required to route; we then set the track count to
be 30% higher than this minimum (as is common [19]) for
all experiments with this circuit. The placement and rout-
ing step is then re-run at this track count, and we measure
the critical path delay, wire length and router effort. These
measurements form the base measurement for that circuit.

Next, to serve as a proxy for routing by abutment, we
divide the circuit in half, by drawing a vertical line down the

85

Single Sided Net Double Sided Net

Left Module Right Module
Boundary

column

Fig. 2. Partitioned Layout

middle of the circuit (creating a ‘middle’ or ‘boundary’ col-
umn of the layout) as illustrated in Figure 2. This partition
gives rise to two modules which we will call Left and Right
which we will route, in a sense, by abutment. The placement
of the Left and Right modules will remain intact from this
original placement. In our experiments, we will deal with
two kinds of nets from this placement: those whose sources
and sinks reside wholly within the Left or Right modules
(single-sided nets) and those that cross from one side to the
other (double-sided nets). We will use the double-sided nets
to model the inter-module nets in the routing-by-abutment
approach. For each circuit, Table 1 gives the number of nets
that are on the left side, right side, and the number that are
double-sided.

The first experiment was to re-run the routing of this
same placement, but with the following restrictions:

1. All single-sided nets are restricted to be routed on
their respective sides, as would be true in modules
routed by abutment. (In the base routing, these nets
could have travelled across the boundary and back).

2. Every double-sided net will be split into two nets,
called faux nets, one on the Left and one on the Right.
In addition, one of the wire segments in the base rout-
ing of the double-sided net that crosses the middle col-
umn will be chosen as the boundary wire segment for
that net, as illustrated in Figure 3. If the source of the
net is on the left side of the boundary, then the left side
faux net consists of the source, all the left side sinks,
and the boundary segment acting as a net sink. The
right side faux net consists of the boundary wire seg-
ment (acting as a source) and the remaining right side
sinks. (If the source is on the right side, then these

Left Module Right Module
Boundary

column

Fig. 3. A Multiple Crossing Double-Sided Net in the Origi-
nal Netlist

Faux Net 1 Boundary Wire Segment Faux Net 2

Left Module Right Module
Boundary

column

Fig. 4. Faux-Nets built from Net shown in Figure 3 now
with just one crossing point

constructions reverse appropriately). The constructed
faux nets for Figure 3 are illustrated in Figure 4. Note
that even though the base routing of the original net
may have crossed the middle more than once, in the
new routing scenario it will only cross once, as illus-
trated between Figures 3 and 4. This experiment de-
sign decision, made to be similar to what would hap-
pen in routing-by-abutment, has specific side-effects
discussed in the results below.

We will also consider two different orderings of the rout-
ing process: the first is called Contiguous Net Ordering (CO),
in which nets are routed in the same order as the base rout-
ing, and where the two faux nets that make up each double-
sided net are routed one after the other. We are interested

86

in this base case, as we would generally expect the results
of this approach to be the most similar to the original base
routing. The second net ordering more directly reflects what
would happen in routing-by-abutment, and is called Partition-
Wise Ordering (PWO): here all the nets in the netlist are re-
arranged such that the Left nets are routed before the Right
nets. This includes the faux nets, and so all Left faux nets
are routed together with left-sided single nets.

In all cases, the routing algorithm used is timing-driven.
For the base case, the original timing-driven VPR algorithm
is used, and the circuit is run through timing analysis as
usual to determine the critical path. In the case where the
double-sided nets are split into two faux nets, the slack as-
signed to the faux nets needs to be set carefully. The slack
assigned to the source-to-boundary connection is set to be
the worst case (smallest) slack for all of the downstream
boundary-to-sink connections on the other faux net. This
is to ensure that the most critical source-sink connections
on the other side are fed by a net that is treated as equally
critical, optimizing the speed in the most appropriate way.

3.1.1. Experiment 1 Results

Before discussing the results, it is important to note that
the selection of the boundary wire segment turned out to be
quite important - making poor choices for the set of bound-
ary segments could result in a deterministically unroutable
circuit. (We also take this as evidence that pin-to-wire rout-
ing can cause immediate problems.) This unroutable situ-
ation occurred primarily in three ways: The first set of is-
sues occurred when there were several boundary segments
in close proximity - if there are too many that are too close
together, they simply block each other from routing success.
Also, if an input or an output pin of a logic block is close
to a set of unassociated boundary segments (boundary seg-
ments assigned to nets that neither terminate nor originate
at this pin), then that pin might simply be blocked. So it is
important to make sure that the boundary segments are not
too close together. The second issue occurred if the bound-
ary segment of an unidirectional wire simply pointed in the
wrong direction, (left to right, say) when the net needed to
go the other way. A third issue occurred when both the faux
nets wanted to expand using the boundary segment and the
boundary segment had insufficient exit points; resulting in
resource contention between the nets and hence, routing fail-
ure.

For each of the cases (base, modified CO, modified PWO)
we measure the total wirelength required after routing, the
critical path delay, and the router effort. Router effort, at
a fixed channel width, is measured as the number of heap
push and pop operations performed by the VPR router. The
heap in VPR contains the priority-ordered list of wiring seg-
ments to pursue while routing. The push count measures
the number of nodes that are placed on the heap as potential

Table 2. Percentage Increase in Average Metrics for the
Easy Abutment Routing Experiment

Net Wire Critical Heap Push Heap Pop
Order Length Delay Count Count
CO -4% 5% 13% 104%

PWO -4% 5% 11% 99%

Table 3. Percentage Increase in Average Metrics for the
Harder Abutment-Oriented Routing Experiment

Net Wire Critical Heap Push Heap Pop
Order Length Delay Count Count
CO 6% 16% 67% 264%

PWO 6% 16% 66% 255%

candidates for expansion, whereas the pop count measures
the number of nodes that are actually explored to arrive at
the solution.

Finally, we note that two of the circuits, bigkey and dif-
feq, failed to route in this experiment, likely due to the re-
duced flexibility of the wire sources and sinks.

Table 2 gives the experimental results: the first column
indicates which net ordering was used, while the subsequent
columns give the percentage increase in geometric mean
(across all benchmarks, relative to the base case) for total
routed wirelength, critical path delay, heap push count, and
pop count, respectively. Interestingly, for the contiguous net
order case (CO), the total wire length is actually lower than
than the base case. While we were surprised by this, there
are two explanations: first that the router is given a good
starting point (one of the crossing points in the base case)
and so can use its effort to find better routes. The second
is that, for the double-sided nets, multiple crossings are for-
bidden in the approach described above, and so the total net
length may end up shorter, but sacrificing a better connec-
tion for the more critical path. The latter hypothesis is borne
out by the increase in critical path delay. The most telling
result is that the router effort, as measured by heap opera-
tions, has significantly increased, by a factor of two. We
conclude that the smaller number of choices available to the
pin-to-wire connections in the faux nets has increased the
effort needed to succeed in routing. It is interesting, also,
to note that the routing order of the nets has little effect on
the results, likely due to the inherently iterative nature of the
pathfinder routing algorithm [20].

3.2. Experiment 2: Harder Abutment Routing

In experiment 1, the boundary nodes chosen were set to
be the ones that the were chosen in the original routing,
base case. In experiment 2, we make one simple change
to the above. Here we explicitly choose a different segment
than the one chosen in the original routing, but in roughly

87

0

20

40

60

80

100

120

140

160

180

W
ir
e
le
n
g
th

 (
in

 t
h
o
u
sa
n
d
s)

Base Easy Hard

Fig. 5. Wirelength for Expts 1 and 2

0

1

2

3

4

5

6

7

8

9

10

C
ri
ti
ca
l
P
a
th

 D
e
la
y

(i
n

 n
s)

Base Easy Hard

Fig. 6. Critical Path Delay for Expts 1 and 2

the same row/column location of the original boundary seg-
ment. Here we are then explicitly selecting a different seg-
ment than was known to have already worked. We expect
that this is more like the typical pin-to-wire routing situa-
tion faced in abutment-style routing, where knowledge of a
previous full route is not known. Table 3 gives the same
summary results of this case, again compared to the base
case, as in Table 2. It is interesting to see that the results are
dramatically different: the average wirelength increases by
about 6% (rather than decreasing) and the critical path delay
increases by about 16%, a significantly worse change. Fur-
thermore, the router is now working almost three and a half
times harder in terms of heap pop counts, and 66% harder on
heap pushes. Clearly, there is some pain and suffering deal-
ing with these boundary routes (which represent on average
19% of all of the nets in Table 1). However, it is also inter-
esting to note that these nets did mostly successfully route
(with two exceptions, of the circuits bigkey and des, both of
which had a faux net for which no connecting path existed)
and as long as the boundary wire nodes are not too congested
among themselves, pin-to-wire routing can succeed at some
cost.

Figures 5, 6, 7 and 8, give the circuit-by-circuit results
for experiments 1 and 2 in wire length, critical path delay
heap push count and heap pop count (we give results for
partition-wise ordering of nets only, since they were similar
to the contiguous ordering case).

0

20

40

60

80

100

120

140

160

180

H
e
a
p

 P
u
sh

 C
o
u
n
t
(i
n

 M
il
li
o
n
s)

Base Easy Hard

Fig. 7. Heap Push Count for Expts 1 and 2

0

5

10

15

20

25

30

35

H
e
a
p

 P
o
p

 C
o
u
n
t
(i
n

 M
il
li
o
n
s)

Base Easy Hard

Fig. 8. Heap Pop Count for Expts 1 and 2

3.3. Experiment 3: Dispersed Pin-to-Wire Routing

The previous experiments focused on modelling the wiring-
by-abutment motivation presented first in the introduction.
Nevertheless, pin-to-wire routing is also motivated by other
applications attempting to use the plentiful multiplexers pre-
sent in the FPGA’s routing fabric [6] or to implement wide
shallow memories using switch block configuration bits [7].
Both these applications will benefit from knowing how much
pin-to-wire routing can be introduced in a netlist before the
area, delay and routability of the routed netlist are signifi-
cantly impacted. We suspect that introducing a small amount
of pin-to-wire routing in a netlist may not be significantly
detrimental to the final routing, but that it will become more
difficult as the amount is increased.

The next experiment allows the amount of pin-to-wire
routing being introduced in a netlist to vary. Once the base
measurements have been acquired as described in subsec-
tion 3.1, the routing step is re-run on the same placement
but with these modifications:

1. A fraction of nets from the netlist are selected, which
sets the amount of pin-to-wire routing in a netlist.

2. For each selected net, a wire segment lying near the
centre of the net’s bounding box in the base routing of
this net is chosen as the target wire segment for that
net. (This is similar to the boundary wire in experi-
ments 1 and 2, except that it is not constrained to be
in the middle channel.)

88

 10

 5

0

5

10

15

20

0% 20% 40% 60% 80% 100% 120%

%
 I
n
cr
e
a
se

 i
n

 W
ir
e
le
n
g
th

 a
n
d

 C
ri
ti
ca
l

P
a
th

 D
e
la
y

 C
o
m
p
a
re
d

 t
o

 B
a
se

% of Nets Split

Critical!Path!Delay Wirelength

Fig. 9. Percentage variation in total wirelength and critical
path delay as a function of amount of pin-to-wire routing

0

100

200

300

400

500

600

0% 20% 40% 60% 80% 100% 120%

%
 I
n
cr
e
a
se

 i
n

 H
e
a
p

 P
u
sh

 a
n
d

 P
o
p

 C
o
u
n
t

C
o
m
p
a
re
d

 t
o

 B
a
se

% of Nets Split

Heap Push Count Heap Pop Count

Fig. 10. Increase in Heap Push and Pop Count as a function
of amount of pin-to-wire routing

3. The selected net will then be split and replaced by two
faux nets. The sinks of the net that lie on the same
side of the target wire segment as the source of the net
form the sinks of the first faux net, with the target wire
acting as a sink. The remaining sinks form the part of
the second faux net, for which the target wire segment
acts as a source.

4. The nets are routed in the same order as in the base
routing.

The experiment was run with four cases, where the num-
ber of nets selected ranged through 20%, 30%, 50% and
100%.

Through this experiment we measured how an increas-
ing fraction of selected nets, each of which contains the pin-
to-wire and wire-to-pin connections described above, would
affect the same metrics used in experiments 1 and 2.

Figure 9 plots the percentage increase in geometric mean
(across all benchmarks, relative to the base case) for wire-
length and critical path delay against the fraction of all nets
that are split (as described above). Here we can see be-
haviour similar to Experiment 1, which shows the wirelength
decreasing (from 1% to 7%), and the critical path delay in-
creasing from 4% to 16%. The forced split again serves
to prevent extra wire from yielding a reduced critical path.
Figure 10 plots the percentage increase in heap push and pop
counts as the percentage of split nets (and hence, pin-to-wire
routing) increases. Here we also see a significant increase in
the router effort, in the worst case, the heap push count is
doubled while the heap pop count is sextupled. Clearly, the

0

5

10

15

20

25

30

35

0% 20% 40% 60% 80% 100% 120%%
 I
n
cr
e
a
se

 i
n

 W
ir
e
le
n
g
th

 a
n
d

 C
ri
ti
ca
l

P
a
th

 D
e
la
y

 C
o
m
p
a
re
d

 t
o

 B
a
se

% of Nets Split

Critical Path Delay Wirelength

Fig. 11. Percentage variation in total wirelength and critical
path delay as a function of amount of pin-to-wire routing -
Harder Dispersed Routing

0

200

400

600

800

1000

1200

1400

0% 20% 40% 60% 80% 100% 120%

%
 I
n
cr
e
a
se

 i
n

 H
e
a
p

 P
u
sh

 a
n
d

 P
o
p

 C
o
u
n
t

C
o
m
p
a
re
d

 t
o

 B
a
se

% of Nets Split

Heap Push Count Heap Pop Count

Fig. 12. Increase in Heap Push and Pop Count as a function
of amount of pin-to-wire routing - Harder Dispersed Rout-
ing

router is having to work much harder to make these pin-to-
wire connections.

It is interesting to note that only one circuit suffered an
unroute across all of experiment 3 - the circuit des when
100% of the nets were selected (the reason was that there
were too many targets in close proximity, which is a prob-
lem as described above). Also, we calculated the average
fraction of all of the used segments that were being ‘fixed’
as target segments in each experiment. When the percentage
of nets split ranges from 20%, 30%, 50% to 100%, the frac-
tion of target wire segments that make up all of the routed
segments ranges from 2.2%, 4.3%, 9.0% to 18%.

3.4. Experiment 4: Harder Dispersed Routing

In experiment 3, the target wire segment was set to be one
of the wire segments in the net’s original routing choen in
the base case, lying near the centre of the net’s bounding
box. In this experiment, we explicitly select a target wire
other than the original target wire but in roughly the same
row/column location. This is similar to the increase in dif-
ficulty faced in experiment 2, and more like the expected
routing-by-abutment situation as described there.

Figure 11 plots the percentage increase in geometric mean
(across all benchmarks, relative to the base case) for wire-
length and critical path delay against the fraction of all nets
that are split (as described above). The results are quite dif-
ferent from experiment 3 – the wirelength increases from

89

1% to 15%, and the critical path delay increasing from 8%
to 33%. Figure 12 plots the percentage increase in heap
push and pop counts as the percentage of split nets (and
hence, pin-to-wire routing) increases. There is also a sig-
nificant increase in the router effort, in the worst case, the
heap push count is quadrupled while the heap pop count in-
creases by a factor of 14. Compared to experiment 3, eight
circuits suffered unroutes when 100% of the nets were se-
lected, while three circuits suffered unroutes when 50% nets
were selected. No unroutes were observed when 20% or
30% nets were selected. This data indicated that the router
is having to work extremely hard to make these pin-to-wire
connections.

4. CONCLUSION

In this paper we have attempted to measure the difficulty
faced by a routing algorithm and a specific routing architec-
ture in the face of pin-to-wire routing. We have shown that
there is a significant increase in wire length and critical path
delay, and an occasional loss of routability. This suggests
that pin-to-wire routing can be used under some careful cir-
cumstances with this price to be paid. We would also note
that, due to the lower flexibility of wire segments as router
targets, it is important to select the set of wire segment tar-
gets carefully, as described in Section 3.1.1. We have also
shown the rate at which the difficulty increases as the quan-
tity of pin-to-wire routing increases. In the future we will to
explore the effect of routing architecture flexibility on these
results, and also attempt to use routing-by-abutment in prac-
tical ways.

5. ACKNOWLEDGMENTS

We would like to thank Huimin (Hannah) Bian from Altera
for some good suggestions in this work and Jason Luu for
great support and advice.

6. REFERENCES

[1] A. DeHon, “Balancing interconnect and computation in a re-
configurable computing array (or, why you don’t really want
100% LUT utilization),” in ACM/SIGDA FPGA, Feb. 1999,
pp. 69–78.

[2] M. Guruswamy, et al., “Cellerity: A fully automatic layout
synthesis system for standard cell libraries,” in DAC, June
1997, pp. 327–332.

[3] C.-T. Lin, et al., “Modem floorplanning with abutment and
fixed-outline constraints,” in IEEE ISCAS, vol. 6, no. 6214–
6217, May 2005.

[4] P. Athanas, et al., “Wires on demand: Run-time communi-
cation synthesis for reconfigurable computing,” in FPL, Aug.
2007, pp. 513–516.

[5] “Xilinx Partial Reconfiguration User Guide,”
Xilinx, July 2011. [Online]. Available:
http://www.xilinx.com/support/documentation/sw manuals/
xilinx13 2/ug702.pdf

[6] Y. O. M. Moctar, et al., “Reducing the cost of floating-
point mantissa alignment and normalization in FPGAs,” in
ACM/SIGDA FPGA, Feb. 2012, pp. 255–264.

[7] S. Oldridge and S. Wilton, “Placement and routing for FPGA
architectures supporting wide shallow memories,” in IEEE
FPT, Dec. 2003, pp. 154–161.

[8] “Stratix II Device Handbook,” Al-
tera, Apr. 2011. [Online]. Available:
http://www.altera.com/literature/hb/stx2/stx2 sii5v1.pdf

[9] “Stratix IV Device Handbook,” Altera, Dec. 2011. [On-
line]. Available: http://www.altera.com/literature/hb/stratix-
iv/stratix4 handbook.pdf

[10] “7 Series FPGAs Overview,” Xil-
inx, Mar. 2012. [Online]. Available:
http://www.xilinx.com/support/documentation/data sheets/
ds180 7Series Overview.pdf

[11] D. Koch, C. Beckhoff, and J. Torresen, “Zero logic overhead
integration of partially reconfigurable modules,” in SBCCI,
2010, pp. 103–108.

[12] G. Lemieux, et al., “Directional and single-driver wires in
FPGA interconnect,” in IEEE FPT, Dec. 2004, pp. 41–48.

[13] D. Paladino, “Academic clustering and placement tools for
modern field-programmable gate array architectures,” M.S.
thesis, University of Toronto, 2008. [Online]. Available:
https://tspace.library.utoronto.ca/handle/1807/11159

[14] J. Rose, V. Betz, and A. Marquardt, Architecture and CAD for
Deep-Submicron FPGAs. Norwell, Massachusetts: Kluwer
Academic Publishers, 1999.

[15] “iFAR intelligent FPGA Architecture Repos-
itory,” Feb. 2008. [Online]. Available:
http://www.eecg.utoronto.ca/vpr/architectures/

[16] I. Kuon and J. Rose, “Area and delay trade-offs in the circuit
and architecture design of FPGAs,” in ACM/SIGDA FPGA,
2008, pp. 149–158.

[17] S. Yang, Logic Synthesis and Optimization Benchmarks User
Guide Version 3.0, MCNC, Jan. 1991.

[18] A. R. Marquardt, “Cluster-based architecture, timing-driven
packing and timing-driven placement for fpgas,” M.S. thesis,
University of Toronto, 1999.

[19] J. Luu, et al., “VPR 5.0: FPGA cad and architecture explo-
ration tools with single-driver routing, heterogeneity and pro-
cess scaling,” in ACM/SIGDA FPGA, 2009, pp. 133–142.

[20] L. McMurchie and C. Ebeling, “Pathfinder: a negotiation-
based performance-driven router for fpgas,” in ACM FPGA,
1995, pp. 111–117.

90

