
A TWO STEP HARDWARE DESIGN METHOD USING CλaSH

Rinse Wester, Christiaan Baaij, Jan Kuper

Department of Electrical Engineering, Mathematics, and Computer Science
University of Twente

Enschede, The Netherlands
email: {r.wester, c.p.r.baaij,j.kuper}@utwente.nl

ABSTRACT
In order to effectively utilize the growing number of re-
sources available on FPGAs, higher level abstraction mech-
anisms are needed to deal with increasing complexity re-
sulting from large designs. Functional hardware description
languages, like the CλaSH HDL, offer adequate abstraction
mechanisms such as polymorphism and higher-order func-
tions.

This paper describes a two step design method to im-
plement a DSP application on an FPGA, starting from a
mathematical specification, followed by an implementation
in CλaSH. A non trivial application, a particle filter, is used
to evaluate both the method and CλaSH. First, a straightfor-
ward translation is performed from the mathematical defini-
tion of a particle filtering to Haskell, a functional program-
ming language with syntax and semantics similar to CλaSH.
Secondly, minor changes are applied to the Haskell imple-
mentation so that it is accepted by the CλaSH compiler. The
resulting hardware produced by our method is evaluated and
shows that this method eases reasoning about structure and
parallelism in both the mathematical definition and the re-
sulting hardware.

1. INTRODUCTION

Traditional approaches to hardware implementations of sig-
nal processing applications require a lot of manual trans-
lations, as there is often a semantic mismatch between the
‘golden’ reference in the form of a C-program (sequential),
the original algorithm (mathematical), and hardware (par-
allel). When starting from a golden reference in the form
of a program written in Haskell [1], a functional language,
you remove at least one semantic mismatch, as the Haskell
functions can be seen as “the original mathematics equations
in ASCII format”. We use CλaSH [2], a functional Hard-
ware Description Language (HDL), with syntax and seman-
tics similar to Haskell, to create the actual hardware imple-

This research is conducted as part of the Sensor Technology Ap-
plied in Reconfigurable systems for sustainable Security (STARS) project
www.starsproject.nl

mentation. As a CλaSH description is an implicitly parallel
description, there is no mismatch with the eventual circuit.

We propose a two step design method using CλaSH ap-
plied to a signal processing application. The first step is
reformulating the mathematical definition of the signal pro-
cessing application in Haskell. This Haskell description is
then modified slightly such that it is accepted by CλaSH and
hardware can be generated. The design method is shown
graphically in Figure 1.

Functional description

Mathematics Haskell C𝛌aSH Hardware

Simulation/behavioral verification

Fig. 1. Hardware design method

The reason for splitting the design into two steps is that
fundamental changes in the mathematical definition are eas-
ier to change in the Haskell specification than in the CλaSH
specification. The haskell specification uses double preci-
sion floating point operations while the implementation in
CλaSH uses fixed point operations. Therefore, fundamental
changes are performed in the Haskell definition while the
hardware implementation details are covered by the CλaSH
implementation. The benefit these two steps is a clear di-
vision between architectural design and low level hardware
details like fixed point representation.

The application chosen for evaluation of the design method
is particle filtering as it is challenging due to excessive par-
allelism, data dependencies and feedback.

The rest of this paper is structured as follows: first, the
process of particle filtering is explained including the mathe-
matical formulation. This is followed by a short introduction
to the CλaSH HDL. In Section 3 we elaborate on our design
method applied to particle filtering, where we first transform
the mathematical definition into a Haskell reference design
which then is transformed into a valid CλaSH description by
small adaptations. Finally, we show the performance char-

978-1-4673-2256-0/12/$31.00 c©2012 IEEE 181

acteristics of our parallel implementation in Section 4, and
end with conclusions and future work in Section 5.

1.1. Related work

The use of Haskell to design hardware is not new, the work
by Gill and Farmer [3] uses Kansas Lava, a Domain Specific
Language (DSL) embedded in Haskell, to implement an ef-
ficient FPGA implementation of an LPDC decoder. While
their work focuses on applying many types of transforma-
tions on the reference Haskell specification to get an effi-
cient implementation, we focus on trying to stay as close to
the Haskell reference implementation as possible.

Much work on parallel particle filters using FPGAs has
been done at Stony Brook University [4], covering generic
architectures for different types of particle filters and tech-
niques to increase the performance of resampling. In terms
of parallelization, their approach is applying changes to the
architecture to increase the performance while the approach
taken is this paper is utilizing as much parallelism in the
mathematical description as possible.

The need for abstraction in hardware design has led to
a technique called high-level synthesis [5]. High-level syn-
thesis takes a high-level language (usually C) and translates
this to a hardware description language like VHDL or Ver-
ilog. The main difference between high-level synthesis and
the approach taken in this paper is that our method uses a
more mathematical oriented language (Haskell) instead of
the inherently sequential language C.

2. BACKGROUND

The background information is divided into two subsections.
First, Subsection 2.1 introduces (the mathematical structure
of) particle filters. The last subsection (Subsection 2.2), in-
troduces the CλaSH HDL including an example.

2.1. Particle Filtering

Particle filtering is a Bayesian filtering technique to find the
state variables of a particular system based on noisy mea-
surements [6]. For each measurement, the belief of the state
is recursively updated resulting in a posterior belief about
the state of the system. Since these measurements contain
noise, the resulting belief will be in the form of a Probabil-
ity Density Function (PDF). Several examples of these mea-
surements are frames from video streams and range-Doppler
images from radar. Analytically finding the posterior is of-
ten mathematically intractable (unable to solve the integrals)
which is why approximation methods are used. A particle
filter is a Monte Carlo approach that repeatedly generates
random samples and eliminates them partially according to
a selection function. Mathematically, the filtering problem

is to find the PDF of the state vector xk given the measure-
ment zk (k is the iteration number of the filter):

p(xk|zk) (1)

In a particle filter, this PDF is approximated by a col-
lection of particles x(i)k where i = 1 . . . N is the index of
a particle. A higher density of particles represents a higher
probability in the continuous state space. Figure 2 shows
both the continuous PDF and a particle filter approximation.

Fig. 2. Continuous PDF and particle filter approximation

A commonly used type of particle filter is the Sequential
Importance Resampling Filter (SIRF) which consists of four
steps: prediction, update, normalization and resampling [7].
Each time a measurement arrives (the sequential part), these
four steps are performed and alter the particles for the next
measurement forming the feedback loop shown in Figure 3.

Predict

Update

Normalize

Resample

Measurement

Fig. 3. Structure of particle filter

2.1.1. Prediction

During prediction, the next state is derived from the current
state using the known dynamics of the system. Mathemat-
ically this comes down to evaluating Equation 2 which can
be read as ”draw particles from the PDF enforced by the
system dynamics” (where ∼ is the sampling operator):

x
(i)
k ∼ p(xk|xk−1) (2)

Drawing particles from this distribution is performed by
evaluating the System Dynamics function f for all particles,

182

x
(i)
k = f(x

(i)
k−1, uk). uk is noise sampled from some proba-

bility distribution, not necessarily a Gaussian distribution.

2.1.2. Update

When a new prediction has been made, a measurement is
used to update this prediction during the update step. In
this step, weights ω(i)

k are assigned to all particles represent-
ing the importance of a particular particle. Mathematically
this is formulated in Equation 3. Note that determining the
weights looks like an unconditional PDF but it is actually
deterministic (expressed with =):

ω
(i)
k = p(zk|x(i)k) (3)

The generic mathematical formulation of the update step
is shown in (3). To find the actual weights, a likelihood func-
tion g is needed. This function returns, given a particle x(i)k ,
a single measurement zk and noise sample vk, a weight ω(i)

k

for each particle x(i)k :

ω
(i)
k = g(x

(i)
k , zk, vk), for i = 1 . . . N (4)

2.1.3. Normalization

The integral of any real PDF should be one, similarly this
should also hold for the sum of all the weights. This is real-
ized in the normalization step where every new weight ω̃(i)

is found by:

ω̃(i) =
ω(i)

totω
for i = 1 . . . N

where totω =

N∑

n=1

ω(n) (5)

2.1.4. Resampling

The last step performed in a particle filter iteration is the
resampling step, which is needed to prevent degeneracy of
weights [7]. Particles are replicated 0,1 or more times ac-
cording to their weight ω̃(i), while keeping the total number
of particles constant. Mathematically, the resampling pro-
cess is selecting particles as formulated in (6):

p
(
x̃
(i)
k = x

(i)
k

)
= ω̃

(i)
k for i = 1 . . . N (6)

The probability that a particle x(i)k is replicated (the par-
ticle after resampling is denoted as x̃(i)k) proportionally to its
weight ω̃(i)

k is expressed in (6). Figure 4 shows the process
of resampling, as expressed in (6), graphically.

As shown in Figure 4, particles with a low weight, those
particles have a low ω̃

(i)
k , are discarded (x) while particles

Fig. 4. Graphical representation of resampling

with a high weight are replicated (o). Resampling is highly
data dependent which is challenging for a parallel hardware
implementation [8].

There exist several techniques to implement resampling
[9], of which systematic resampling is commonly used. In
short, Systematic Resampling replicates particles according
to the amount of fixed intervals 1

N are within the range of
a single weight given a random offset 0 < u0 <

1
N . The

resampling technique used in this paper is called Residual
Systematic Resampling, a modified version of Systematic
Resampling but mathematically equivalent [8].

Residual Systematic Resampling consists of two steps:
first the replication factor is determined based on the weight
of a particle, followed by the actual replication of particles.
Equation 7 gives an expression to determine the replication
factor ri for a single weight ω(i).

ri = b(ω(i) − ui−1) ∗Nc+ 1

ui = ui−1 +
ri
N
− ω(i)

for i = 1 . . . N and u0 ∼ U(0,
1

N
) (7)

Figure 5 shows a graphical representation of RSR ex-
pressed in (7). Basically the replication factor is determined
by the amount of arrows in the range of a weight. The ran-
domization in resampling is implemented by the random off-
set u0 sampled from the uniform distribution (U).

Fig. 5. Graphical representation of Residual Systematic Re-
sampling

When all replication factors ri have been found, the ac-
tual replication of particles can be performed. During repli-
cation, every particle x(i)k is replicated ri times and the re-
sulting sets are merged into a single set of new particles x̃(i)k .

183

The mathematical formulation of replication using the con-
cat operator (‖) is shown in (8).

{x̃(1)k , x̃
(2)
k . . . x̃

(N)
k } =

N

‖
n=1

replicate(x
(i)
k , ri) (8)

Since the replication of particles is highly dependent on
the replication factor ri, the fully parallel hardware imple-
mentation of resampling is expected to be the most expen-
sive component.

2.2. CλaSH

CλaSH [2] is a functional HDL, whose descriptions are trans-
lated to synthesizable VHDL by the CλaSH compiler. The
CλaSH language has many advanced features such as poly-
morphism, higher-order functions, pattern matching and type
derivation. Polymorphism and higher-order functions (func-
tions that have functions as argument or result) allow circuit
designers to describe parameterizable circuits in a natural
way.

CλaSH is a synchronous HDL where, on the lowest level,
everything is expressed as a Mealy machine i.e. every output
and new state is therefore a function of the current state and
input. Listing 1 shows an example of a discrete integrator
expressed in CλaSH.

Listing 1 Integrator example in CλaSH.

integrator (State s) inp = (State s ′, out)
where

s ′ = s + inp
out = s ′

All hardware components described using CλaSH have
a structure as expressed in Listing 1. In order to distin-
guish between inputs for the component and data coming
from registers, a keyword State is used. Every variable pre-
ceded by State will be translated to a register by the CλaSH
compiler. In the integrator example of Listing 1, the first
occurrence of state s is the current state (the output of the
registers) while the second occurrence s′ is the new state of
the register (the input). Note that, in Haskell, arguments are
generally written without brackets.

Even though types are very important in Haskell, we
chose not to display these in the listings as this paper is about
the structural correspondence between the mathematical for-
mulation and the resulting hardware.

Every CλaSH description is also a valid Haskell pro-
gram. This means that CλaSH descriptions can be simulated
using a Haskell compiler or interpreter such as GHC [10].
Although every CλaSH design is a valid Haskell program,

the reverse relation does not hold. Concepts such as recur-
sive function definitions and recursive datatypes are for ex-
ample supported in Haskell, but not (yet) in CλaSH.

3. DESIGN METHOD

The design method consists of two steps. First, the math-
ematical definition of particle filtering is reformulated to
Haskell, while trying to preserve the original semantics of
the equations. The second step is to perform minor changes
on the Haskell description such that CλaSH can be used for
translation to VHDL.

The following two sections describe how the two step
method is applied to the simple particle filter described in
[11].

3.1. Math to Haskell

To complete the mathematical specification as given in the
background section, a state space model f and a likelihood
function g still have to be defined. The application is a sim-
ple tracking particle filter for tracking a white square on a
dark background. Since tracking the square results in a PDF
representation of the position, each particle represents a pos-
sible position of the square. A single particle can be repre-
sented using a tuple with a position x, y and weight ω as
(x, y, ω).

As a state space model, we use a uniform movement in
an area of 32 × 32 pixels (U(−16, 16)) resulting in the fol-
lowing expression for f .

f
(
x
(i)
k , uk

)
= x

(i)
k + uk

where uk = 〈δx, δy〉 → δx, δy ∼ U(−16, 16) (9)

Weight assignment is done by the likelihood function g
based only on the color of the pixel located at the position
x, y from a single particle. Particles positioned inside the
square should get a high weight while particles outside a low
weight. This is implemented by finding the color distance as
expressed in (10):

g
(
x
(i)
k , z

(i)
k

)
=

1

1 + (255− z(i)k [x, y])2

where x, y ∈ x(i)k (10)

Now that all necessary functions have been defined, the
mathematical definition of the prediction step expressed in
(9) can be translated to Haskell. The prediction step in Haskell
is generic i.e. the actual system dynamics function f is given
as argument. Listing 2 shows how to express the prediction
step in Haskell.

184

Listing 2 Prediction step in Haskell

predict f ps us = ps ′

where
ps ′ = zipWith f ps us

As can be seen in Listing 2, the prediction step accepts
a state space model function f , a set of particles ps and a
list of random offsets us. Every particle and every offset is
pairwise combined by f using zipWith.

The results of the prediction step are combined with a
measurement in the update step. Again, the update step for-
mulated in (3) is also generic by leaving the actual likelihood
function as argument. As formulated in (3), every particle is
combined with a single measurement to find the weight for
each particle. In Haskell, this is expressed using the higher
order function map (Listing 3):

Listing 3 Update step in Haskell

update g z ps = ps ′

where
ps ′ = map (g z) ps

As can be seen in Listing 3, the update step accepts three
arguments: the likelihood function g, a measurement z and
a list of particles ps. In the body, the likelihood function g
is first assigned a measurement z after which it is applied to
all particles (mapped over) ps.

Also translating the normalization step from Equation 5
is performed in a similar way as can be seen in Listing 4.

Listing 4 Normalization step in Haskell

normalize ps = ps ′

where
totω = sum (map weight ps)
ps ′ = map (λ (x , y , ω)→ (x , y , ω / totω)) ps

As shown in Listing 4, the total weight totω is deter-
mined by first selecting only the weights of all particles ps
using the weight function. The weight function is imple-
mented as weight(x, y, ω) = ω. All weights are then ac-
cumulated in totω. In the last line, a lambda expression is
applied (mapped) to all particles ps. The lambda expres-
sion accepts a particle and replaces only the weight by the
normalized weight.

The last step to formulate is the resampling step which
consists of two steps: first the replication factor is deter-
mined based on the weight of a particle, followed by the ac-
tual replication of particles. Equation 7 gives an expression
to determine the replication factor ri for weight ω(i).

The length of the recursion in Equation 7 depends only
on the length of the weight list. We use a functional lan-
guage feature called pattern matching to terminate the re-
cursion. Listing 5 shows the two phases in the recursion.
Either, not all weights have not been processed yet (line 1),
or the last weight has been processed and an empty list [] is
left (line 2). During processing, the list of weights (ω : ωs)
shrinks every time by taking the first element ω and calcu-
lating a replication factor based on that element. Calculation
continues recursively with the remainder of the weights ωs
until no weights are left [].

Listing 5 Haskell code to determine replication factors

ws2rfs u [] = []
ws2rfs u (ω : ωs) = r : (ws2rfs u ′ ωs)
where

r = floor ((ω − u) ∗N) + 1
u ′ = u + r /N − ω

Reformulating the replication of particles in Equation 7
to Haskell, comes down to translating the union operator ∪
to the Haskell variant ++. Each particle p is replicated ri
times and all those sets of particles are merged using the ++
operator (Listing 6):

Listing 6 Replication of particles

replps [] [] = []
replps (p : ps) (r : rs) = (replicate r p) ++ replps ps rs

Replication of particles is performed recursively, using
the replps function (Listing 6). This function accepts two
lists: a list of particles (p : ps) and the corresponding repli-
cation factors (r : rs). For every particle p and replication
factor r, drawn from their respective lists, p is replicated r
times. The final set of resampled particles is found by con-
catenating all replicated particles using the ++ operator.

The complete resampling step is formed by the compo-
sition of the function ws2rfs and replps . All replication fac-
tors only depend on the weights ωs; these are extracted from
the particles ps (first line in the where clause of Listing 7).
The resulting list of replication factors rs is then used for
replication by replps (third line in the where clause). Fi-
nally, the last line replaces the weight by 1

N since all parti-

185

cles are of equal importance after resampling.

Listing 7 Complete resampling step in Haskell

resample ps = ps ′

where
ωs = map weight pd
rs = ws2rfs ωs
ps r = replps ps rs

ps ′ = map (λ (x , y ,)→ (x , y , 1
N)) ps r

3.2. CλaSH implementation

After creating the Haskell reference we continue with the
CλaSH implementation by replacing only those parts that
are not directly supported by the CλaSH compiler. The re-
sulting implementation in CλaSH is fully parallel i.e. all
operations in the Haskell code result in a distinct component
on the FPGA.

The first difference between the Haskell reference and
the CλaSH implementation is that we go from lists, which
can have an arbitrary size at runtime, to vectors, which have
a fixed length encoded in their type. This restriction does
not change anything to the algorithm itself, as the number of
particles is constant. In general, this does not hold and lists
could be implemented be sequentially accessing elements
of the list from a memory. Another minor change is that
the zipWith from Listing 2 is replaced by a vzipWith. The
vzipWith results in the same structure except that it works on
vectors instead of lists. A similar replacement is used in the
update and normalization step.

The resampling step, on the other hand, is more com-
plicated to translate since it is expressed recursively. Like
the Haskell reference, resampling starts by determining the
replication factors, followed by the actual replication of par-
ticles.

As shown in the Haskell formulation of Listing 5, deter-
mining the replication factors is done using a tail recursive
function. CλaSH does not support recursion (yet). There-
fore, this recursion has to be reformulated using functions
that are supported by CλaSH. Since the length of the re-
cursion only depends on the amount of particles, it can be
replaced by a vector based function called vscanl. Although
the scanl is directly supported in CλaSH using vscanl, it is
interesting to show the structural correspondence between
the mathematical formulation and the resulting hardware.
vscanl accepts a function rf, a starting value u0, and a vector
with weights ωs. The function argument of vscanl is ap-
plied to each element in the vector while accumulating in-
termediate values and sending this to the output thus being
equivalent with the recursive definition with Listing 5. The

CλaSH implementation of Equation 7 is shown in Listing 8
while Figure 6 shows the corresponding hardware structure.

Listing 8 Determining replication factors in CλaSH

ws2rfs a ωs = vscanl rf (0, u0) ωs

rf (u, r) ω = (u ′, r ′)
where

r ′ = floor ((ω − u) ∗N) + 1
u ′ = u + r

N − ω

rf rf rf

Fig. 6. Structural view of vscanl

The actual replication of particles is performed by N
parallel multiplexers. Each multiplexer selects a single par-
ticle and puts this on the output depending on a list of multi-
plexer indices calculated from the set of replication factors.

Listing 9 Replication in CλaSH

replicate ps is = ps ′

where
ps ′ = map (ps!) is

As shown in Listing 9, the replicate functions accepts
two arguments, the list of particles ps and a list of indices is.
Given the whole list of particles ps and a single index from
is, a particle is selected using the index operator !. A shown
in the CλaSH code, map is used to perform the multiplex-
ing using each index in is. The code also shows an other
powerful abstraction mechanism called partial application.
With partial application, only a subset of the arguments are
given to a function resulting in a function having only the
remainder of arguments. This is applied in Listing 9 at the
index operator !, the list of particles is already given since it
is used for every index. The ! has only a single argument left
which is supplied using the map function since it is applied
to every index in is. Figure 7 shows the resulting hardware:

4. RESULTS

In the previous sections, the mathematical definition of a
tracking particle filter has been reformulated in a Haskell
program. Using this Haskell program, the minimum amount
of particles for this particular application has been deter-
mined to be 32 particles using simulation. The number of

186

i1

1

1

i2

2

2

iN

N

N

Fig. 7. Structural view replication

particles have been reduced until the particle filter was not
able to track the object anymore. We then transformed all
recursive function definitions to use higher-order functions
e.g. vzipWith and vscanl, so that the code could be compiled
by the CλaSH compiler. The resulting CλaSH description
was verified to have the same external behavior as the refer-
ence description, using the testbench that was used to verify
the functional correctness of the Haskell program. We de-
termined the feasibility of the parallel CλaSH implementa-
tion by synthesizing the design for a Xilinx Virtex 6 FPGA
(XC6VLX240T). An overview of the resource usage for the
different parts of the particle filter are shown in Table 1.

Table 1. Area of components
Component LUTs
Prediction 704
Update 954
Normalization 1402
Resampling 35978
Total 39038

In terms of performance, the synthesized particle filter
achieves a throughput of 24 million particles per second.
However, fully parallel resampling uses a lot of FPGA area
and is therefore the biggest bottleneck in this design. Due
to all data dependencies in the resampling step, all possi-
ble replications have to be considered, resulting in the large
area. Although the particle filter has not been implemented
in VHDL directly, similar resource consumption is expected
based on experience in [12].

5. CONCLUSIONS AND FUTURE WORK

We created a fully parallel implementation of a particle fil-
ter using our two step design method with the functional
HDL CλaSH. The use of higher-order functions and poly-
morphism allowed us to keep the mathematical definition
and the resulting hardware structurally the same. We started
with a reformulation from mathematics to Haskell, resulting
in a design that closely matches the mathematical descrip-
tion of a particle filter. Only relatively minor adaptations
had to be made to the Haskell code before the CλaSH com-

piler was able to translate the design to synthesizable VHDL
code.

Although the process of creating a fully parallel imple-
mentation of a particle filter was straightforward, we be-
lieve there is room for improvement in the CλaSH compiler.
Specifically, we think that the compiler should be able to
translate a description of the particle filter with recursive
function definitions, given that the recursion is both struc-
tural and finite in this case.

The final design of the particle filter is fully parallel, but
has a large bottleneck in the resampling step. This bottle-
neck is the result of the large number of data dependencies
present in the computation which are all solved combinato-
rially. The resampling stage also impedes scaling the design
to a larger number of particles, due to large area costs in-
herent to a fully parallel design. In the future, we will try
to pipeline the design so that we can make the design faster.
To reduce the area, we will have to make a trade off between
area and execution time based on the mathematical structure
and formulation in Haskell.

6. ACKNOWLEDGEMENT

We would like to thank Hans Driessen for all the information
on particle filtering and Koen Blom for his comments on the
mathematical formulation and the writing.

7. REFERENCES

[1] S. P. Jones, Ed., Haskell 98 Language and Libraries, ser.
Journal of Functional Programming, 2003, vol. 13, no. 1.

[2] C. P. R. Baaij, M. Kooijman, J. Kuper, W. A. Boeijink, and
M. E. T. Gerards, “CλaSH: Structural Descriptions of Syn-
chronous Hardware using Haskell,” in Proceedings of the
13th EUROMICRO Conference on Digital System Design:
Architectures, Methods and Tools, Lille, France. USA: IEEE
Computer Society, September 2010, pp. 714–721.

[3] A. Gill and A. Farmer, “Deriving an efficient FPGA imple-
mentation of a low density parity check forward error cor-
rector,” in Proceedings of the 16th ACM SIGPLAN Inter-
national Conference on Functional Programming, ser. ICFP
’11. New York, NY, USA: ACM, 2011, pp. 209–220.

[4] A. Athalye, M. Bolić, S. Hong, and P. M. Djurić, “Generic
hardware architectures for sampling and resampling in par-
ticle filters,” EURASIP J. Appl. Signal Process., pp. 2888–
2902, 2005.

[5] R. Gupta and F. Brewer, “High-level synthesis: A
retrospective,” in High-Level Synthesis, P. Coussy and
A. Morawiec, Eds. Springer Netherlands, 2008, pp.
13–28, 10.1007/978-1-4020-8588-8 2. [Online]. Available:
http://dx.doi.org/10.1007/978-1-4020-8588-8 2

[6] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for online nonlinear/non-gaussian
bayesian tracking,” Signal Processing, IEEE Transactions on,
vol. 50, no. 2, pp. 174 –188, feb 2002.

187

[7] O. Cappe, S. Godsill, and E. Moulines, “An overview of
existing methods and recent advances in sequential monte
carlo,” Proceedings of the IEEE, vol. 95, no. 5, pp. 899 –924,
may 2007.

[8] M. Bolić, P. M. Djurić, and S. Hong, “Resampling
algorithms for particle filters: a computational complexity
perspective,” EURASIP J. Appl. Signal Process., vol.
2004, pp. 2267–2277, January 2004. [Online]. Available:
http://dx.doi.org/10.1155/S1110865704405149

[9] J. D. Hol, T. B. Schon, and F. Gustafsson, “On resampling
algorithms for particle filters,” in Nonlinear Statistical Signal
Processing Workshop, 2006 IEEE, sept. 2006, pp. 79 –82.

[10] The GHC Team. The Glasgow Haskell Compiler, 2012.
[Online]. Available: http://www.haskell.org/ghc/

[11] “Particle filter, python cookbook, 2012.” [Online]. Available:
http://www.scipy.org/Cookbook/ParticleFilter

[12] A. Niedermeier, R. Wester, C. P. R. Baaij, J. Kuper, and
G. J. M. Smit, “Comparing cλash and vhdl by implement-
ing a dataflow processor,” in Proceedings of the Workshop on
PROGram for Research on Embedded Systems and Software
(PROGRESS 2010), Veldhoven, The Netherlands. Utrecht:
Technology Foundation STW, November 2010, pp. 216–221.

188

