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ABSTRACT
We present HeAP, an analytical placement algorithm for het-
erogeneous FPGAs comprised of LUT-based logic blocks,
multiplier/DSP blocks and block RAMs. Specifically, we
adapt a state-of-the-art ASIC-based analytical placer to tar-
get FPGAs with heterogeneous blocks located at discrete
locations throughout the fabric. Our placer also handles
macros of LUT-based blocks with specific layout require-
ments, such as carry chains. Results show that our placer
delivers a 4× speedup, on average, compared to Altera’s
non-timing driven flow, at the cost of a 5% increase in post-
routed wirelength, and an 11× speedup compared to Al-
tera’s timing-driven flow, at the cost of a 4% increase in
post-routed wirelength and a 9% reduction in maximum op-
erating frequency. We also compare with an academic sim-
ulated annealing-based placer and demonstrate a 7.4× run-
time advantage with 6% better placement quality.

1. INTRODUCTION

Since the early-to-mid 2000s, the rate of increase of unipro-
cessor performance has not kept pace with the growth rate
of integrated circuit size. A consequence of this trend is that
the computational time required to design the largest ICs has
continued to lengthen – a notion termed the design produc-
tivity gap. Placement is one of the most time-consuming
steps of the FPGA CAD flow and is the stage of the flow ad-
dressed in this work. Naturally, the main motivation for re-
ducing CAD tool run-time is to raise engineering productiv-
ity and thereby lower cost. However, a secondary motivation
lies in the context of broadening the application scope of FP-
GAs to include their use as computing devices targeted by
software engineers. Software engineers are accustomed to
gcc-length compile times – not the hours or days associated
with today’s commercial FPGA tools. While a number of
researchers have targeted placement run-time through paral-
lelizing existing algorithms (e.g. [1]), in this work, we focus
on run-time from the algorithmic perspective and present a
fast placement approach for FPGAs.

The two main commercial FPGA vendors use consid-
erably different placement algorithms. Altera uses a simu-
lated annealing (SA)-based iterative placement strategy [1],
whereas Xilinx employs analytical placement (AP)-based

techniques [2]. SA iteratively swaps objects and uses a cost
function to decide which swaps should be accepted or re-
jected. Hill climbing is permitted by way of accepting some
moves that increase cost (in the hope that such moves may
later lead to a better solution overall). AP, on the other hand,
represents the entire placement problem as systems of equa-
tions, to which standard solvers are applied. It is interesting
that in the custom ASIC domain, where placers must handle
designs with millions of cells, the SA strategy has largely
been abandoned as a viable approach in favor of analytical
techniques, owing to SA’s run-time. Despite this, SA re-
mains popular for FPGAs and besides Altera’s commercial
tools, SA is the basis for the widely-used VPR open-source
placement and routing framework [3]. This work applies AP
to heterogeneous FPGA placement and explores its potential
for run-time reduction over SA.

AP techniques use solvers that require the placer objec-
tive function be both continuous and differentiable. It is in-
deed this requirement that makes AP well-suited to ASICs,
where cells of any type can be placed anywhere on a “con-
tinuous” die. Commercial FPGAs comprise an array of het-
erogeneous blocks – each placed at discrete locations on
the die. For example, Altera and Xilinx FPGAs contain
columns of RAM blocks and DSP/multiplier blocks spaced
at intermediate points throughout an array of LUT-based
logic blocks [4, 5]. The discrete nature of FPGA placement
presents challenges for AP – challenges that we specifically
address in this work. While a limited number of works have
applied AP to FPGAs comprising solely LUT-based blocks
(e.g. [6]), to our knowledge, no published work has consid-
ered AP techniques for heterogeneous FPGAs.

In this work, we adapt a recently-published AP algo-
rithm [7] for ASICs, called SimPL, to target FPGAs with
heterogeneous blocks and groups of LUT-based logic blocks
with fixed layout patterns (for example, carry chains). Our
heterogeneous analytical placer (HeAP), uses Altera’s Quar-
tus University Interface Program (QUIP) [8] to route de-
signs on the Cyclone II 90nm FPGA family. We show that
HeAP produces a post-routed quality-of-result (QoR) close
to Quartus II, with considerably less run-time. We also com-
pare with our own SA-based placer and demonstrate a 7.4×
speedup with 6% better QoR. The remainder of this paper



Fig. 1: Toy circuit to illustrate AP formulation.

is organized as follows: Section 2 reviews background and
related work. Our AP placement algorithm is described in
Section 3. Section 4 presents an experimental study. Con-
clusions and suggestions for future work are offered in Sec-
tion 5.

2. RELATED WORK

2.1. FPGA Placement

Modern heterogeneous FPGAs have complex logic blocks,
block RAMs, multiplier/DSP blocks, and a variety of I/O
blocks. The placement stage takes a netlist of cells of dif-
ferent types and assigns each of them to a physical location
on the FPGA, while minimizing an objective function (e.g.
wirelength, timing, or routability) and maintaining legality.
While, at its simplest, legality checking ensures that no two
blocks occupy the same location, it is complicated if groups
of blocks must retain fixed relative placements. On Cyclone
II, groups of logic blocks that form a carry chain must be
placed in adjacent locations in the same column.

2.2. Analytical Placement

The most common objective function for placement is the
sum of half-perimeter wirelengths (HPWL) over all nets.
Efficient AP techniques approximate this objective function
with a function that can be minimized efficiently using a
standard solver. First, all multi-pin nets are converted into
a set of 2-pin connections. For example, in the clique net
model, a 2-pin connection is created between every block
on the net. Most prior AP approaches then minimize the
weighted sum of the squared lengths of these 2-pin connec-
tions:

Φ(~x, ~y) =
∑
i,j

wi,j [(xi − xj)2 + (yi − yj)2] (1)

where wi,j is the weight of the connection between blocks i
and j. The objective function can be separated into x and y
components and cast in matrix form. For the x dimension,
a matrix, Qx, represents connections between movable ob-
jects (i.e. objects being placed), and a vector, ~cx, represents
connections between movable and fixed objects:

Φ(~x) =
1

2
~xTQx~x+ ~cTx ~x+ const. (2)

Minimizing (2), which is a degree-2 polynomial, involves
taking the partial derivative with respect to each variable and

setting the resulting system of linear equations to zero. The
problem, Qx~x = −~cx, can be handled by a standard off-
the-shelf linear equation solver. Once solved, the ~x and ~y
vectors hold x and y locations for the movable placement
objects. To illustrate the AP formulation, consider the ex-
ample in Fig. 1, with two fixed blocks (squares) and two
moveable blocks (circles) i and j. In the x dimension, as-
suming unit connection weights, the objective function is:

Φx = (xi − 1)2 + (xi − xj)2 + (xj − 3)2 (3)

which can be minimized by taking:

δΦx

δxi
= 2(xi − 1) + 2(xi − xj) = 0 (4)

and
δΦx

δxj
= −2(xi − xj) + 2(xj − 3) = 0 (5)

where the linear system defined by (4) and (5) can be divided
by 2 and expressed in matrix form as:[

2 −1
−1 2

]
·
[
xi
xj

]
=

[
1
3

]
(6)

which is a linear system in the form Qx~x = −~cx.
Observe that (1) does not take placement constraints into

consideration and consequently, the generated solution is
not a legal placement – rather, it generally has many blocks
overlapping with one another. A number of different ap-
proaches have been proposed that use the results of mini-
mizing (2) to produce a legal placement solution – accom-
plished through iterated minimization and modification of
(2). A popular approach to overlap removal (spreading) in
recent years has been FastPlace [9], however, the state-of-
the-art approach in the ASIC domain is called SimPL [7].

SimPL [7] uses a Bound2bound net model, first pro-
posed in [10]. Each multi-pin net is again modeled as a
set of 2-pin connections, however, unlike the clique model,
it does not generate all 2-pin connections between a net’s
blocks. Rather, in the Bound2bound net model, the blocks
with the minimum and maximum locations on a net (so-
called bound blocks) are connected to each other and to each
internal block on the net. In other words, for a p-terminal
net, each internal block has two connections, one to each
bound block, and each bound block has p − 1 connections,
one to every block other than itself1. The connection weights
are set such that the objective function targets HPWL, rather
than quadratic wirelength. For example, a connection be-
tween block i and j is weighted by 1

(p−1)·|xi−xj | (the |xi −
xj | term in the denominator “linearizes” the quadratic term
(xi − xj)

2 in (1)). The Bound2bound net model leads to
higher quality solutions because it directly models HPWL.

1The bound blocks in the x dimension may not be the same as the bound
blocks in the y dimension. Hence, the internal blocks may be different in
each dimension.



Observe that in the Bound2bound model, finding the bound
blocks for a net and computing the connection weights re-
quires having an already-computed placement solution as
input (i.e. knowledge of the xi’s). To deal with this, an iter-
ated solving process is used, whereby the system is formu-
lated and solved, and the results (xi’s) are fed into the next
iteration.

After solving to minimize HPWL, SimPL legalizes the
placement by spreading the blocks across the die in a man-
ner consistent with the minimum-HPWL solution (described
in more detail in the next section). Then, an artificial pseudo
connection is created between each block and its target lo-
cation in the legalized overlap-free placement. When the
mathematical system is again formulated and solved, the
pseudo connections pull blocks towards their target loca-
tions, which tends to reduce overlaps in the placement. The
process of formulating the system, solving, and legalizing
continues until overlaps have been sufficiently removed. We
adapt SimPL to target heterogeneous FPGAs, by extending
the concept of a target location in SimPL to blocks of differ-
ent types.

The few previous published works that use analytical
techniques for FPGA placement have targeted a homoge-
neous fabric. In [6], the authors present an improvement
to FastPlace and target FPGAs. They show that compared
to VPR, which is based on SA, AP has the potential to of-
fer significant run-time improvements. In this work, we ad-
dress FPGA-specific challenges in analytical placement and
develop a fast approach to generate high-quality placements
for real FPGAs.

2.3. Reducing Placer Run-time

Placement can be accelerated through algorithmic changes,
or through parallelization. Parallelization of SA-based place-
ment has been previously addressed in a commercial flow [1],
resulting in 2.2× speedup using 4 cores with no QoR penalty,
and in an academic flow [11], achieving ∼3× speedup with
4 cores at the cost of 5-10% worse HPWL and critical path
delay. Parallelization of AP-based flows has been explored
in the ASIC domain in [7], where a ∼2× speedup was re-
ported using 4 cores, with no QoR penalty. Algorithmic ap-
proaches to reducing run-time have ranged from modifying
SA to make directed moves, as in [12], which can improve
run-time of SA-based placement by ∼5× while retaining
high QoR, to a hierarchical SA approach [13], which offers
∼3× run-time improvement with no QoR penalty. A recent
work [14] presented a placer that locates large macro blocks,
which when combined with a fast router, offers 10 − 50×
speedup to the entire CAD flow at the cost of 2− 4× higher
critical path delay. While the speedup is commendable, de-
creasing circuit performance by 2 − 4× is likely unaccept-
able for most FPGA users.

Fig. 2: Cell connecting to macro with with an offset.

3. ANALYTICAL PLACEMENT FOR FPGAS

In this section, we describe how we have adapted SimPL for
heterogeneous FPGAs.

3.1. Formulating the System of Equations

Connections between blocks are based on the Bound2bound
net model described in Section 2.2. Macros, consisting of
multiple unit-sized blocks having a fixed placement with re-
spect to one another (e.g. carry chains), are given a single
x, y location in the formulation. In order to properly model
connections to macro blocks, HeAP takes into account the
position of the unit-sized block within the macro to which
the connection is actually made. Fig. 2 shows a connection
between a unit-sized block and a macro block. The connec-
tion is actually made to the middle block within the macro,
which has a x offset of 1, relative to the macro origin (its left
block). Such offsets can be modeled by incorporating them
into ~cx in (2) (i.e. the vector representing the connections be-
tween moveable and fixed blocks), allowing the actual con-
nection’s length to be minimized, rather than a connection
to the origin of the macro.

3.2. Legalization

Our legalization phase is similar to the legalization phase in
SimPL, though it is complicated by having to place blocks in
discrete FPGA locations. Essentially, a recursive partitioning-
style placement approach is used to transform the solution
produced by the solver into a legal overlap-free placement.
The first step is to find an area of the FPGA that is over-
utilized (i.e. illegal) for which the blocks contained within
must be spread to a larger area. To obtain this overutilized
area, adjacent locations on the FPGA that are occupied by
more than one block are repeatedly clustered together, un-
til all clusters are bordered on all sides by non-overutilized
locations. Next, the area is expanded in both the x and y di-
mensions until it is large enough to accommodate all blocks
contained within. Specifically, the area is expanded until its
occupancy (OA) divided by its capacity (CA) is less than
a maximum utilization factor (β) so that OA

CA
< β, where

β <= 1 (we use β = 0.9 in our experiments).
In the second step of legalization, two cuts are gener-

ated: a source cut and a target cut. The source cut pertains
to the blocks being placed; the target cut pertains to the area
into which the blocks are placed. The source cut splits the
blocks into two partitions, while the target cut splits the area
into two sub-areas, into which the blocks in each partition



Fig. 3: Discrete cut generation problem.

are spread. Two objectives are minimized during this pro-
cess: the imbalance between the number of blocks in each
partition, and the difference in the utilization of each sub-
area. The latter is defined as the occupancy divided by the
capacity of the sub-area (Usub−area = Osub−area

Csub−area
). To gen-

erate the source cut, the cells are first sorted by their x or
y location, depending on the orientation of the desired cut.
Once the cells are sorted, source cut generation is akin to
choosing a pivot in a sorted list, where all blocks to the left
of the pivot are assigned to the left/bottom partition and all
blocks to the right of the pivot are assigned to the right/top
partition.

The target cut is an x or y cut of the area such that all
blocks in each partition fit in their respective sub-areas, and
such that |Usub−area1 −Usub−area2 | is minimized. The dis-
crete nature of FPGA placement locations makes this dif-
ficult. For example, in Fig. 3, a region of the FPGA is
drawn on the left, while blocks to be placed in this region
are shown on the right. The source cut labeled “BAD” on
the right splits the blocks between the partitions as evenly
as possible. Unfortunately, there is no way to make a cor-
responding target cut so that Usub−area <= 1. It is also
possible to make bad cuts if choosing the target cut first,
as shown by the cut labeled “BAD” on the left, which does
not leave enough room in the top partition for the tall block
on the right. We mitigate this issue by allowing the tar-
get cut generation phase to perturb the source cut by mov-
ing blocks between partitions. In Fig. 3, the source cut la-
beled “BAD” on the right would be chosen first because
it minimizes imbalance between partitions. Next, the tar-
get cut labeled “GOOD” on the left would be chosen be-
cause it minimizes |Usub−area1

−Usub−area2
|(|4/3−5/6| =

3/6). Finally, the source cut would be perturbed by moving
a block from the overutilized partition, which is closest to
the cut line, to the underutilized partition, leading to a legal
source/target cut combination.

Next, the cells in sub-areas are spread to distribute them
evenly. We use the spreading method proposed in SimPL,
which splits the sub-area into 10 equal-sized target bins, and
splits the cells into 10 equal-capacity source bins. Linear in-
terpolation is used to map cells from their original locations
in their source bins to new spread locations in their target
bins.

The cut generation and spreading process is recursively

repeated for each of the left and right sub-areas, alternating
x and y cut directions, until a single block remains in each
sub-area. If, at any point, a legal cut is not found, the recur-
sion jumps up one level and switches to a largest-first greedy
packing algorithm: we place blocks in non-increasing or-
der into positions as close as possible to those suggested by
the solver results. Further details on the packing are omit-
ted for space reasons, however, we found that our packer
was invoked in relatively few cases. In the remainder of this
section, the solved placement refers to the placement solu-
tion produced by the linear system solver (which contains
overlaps); the legalized placement refers to the overlap-free
placement solution generated by transforming the solved place-
ment using the procedure described above. We use the term
iteration to mean one pass of solving the linear system and
then legalizing the placement. Once legalized locations are
found for all movable blocks, pseudo connections are added
to the AP formulation between each movable block and its
legalized location. As with SimPL, the weight of a pseudo
connection is α× i, where i is the iteration count and α is a
scaling factor. We explore the impact of this scaling factor
further in Section 3.4.2.

3.3. Implementation

3.3.1. Stopping criteria

The solving/legalization process continues until one of two
conditions are met: the legalized placement’s HPWL has
stalled for stallmax iterations or the quality of the solved
solution is close enough to the quality of the legalized so-
lution such that further improvements are unlikely. In other
words, the solving/legalization process continues until s >
stallmax, where s is the number of stalled iterations, or
HPWL(solved) > convergeT×HPWL(legalized). We
have experimentally determined that values of stallmax =
15 and convergeT = 0.7 work well, though higher values
of either give HeAP more time to find a good solution at the
cost of increased run-time. After each iteration, the legalized
(spread) solution is saved if it is the best one encountered
thus far.

3.3.2. Iterative Refinement

We invoke a greedy iterative refinement pass after AP ter-
minates. It works as follows: a random block is chosen
as swap source, which can be of any block type (including
macros). Next, a random swap location is chosen within a
fixed sized window, which we set as 3 blocks in any direc-
tion of the swap source. The swap is greedily accepted if
it improves the sum of HPWL of the affected nets. Macros
can be swapped with unit-sized blocks, or can be relocated
to vacant locations, however, we do not permit macros to
swap locations with other macros owing to the difficulty in
handling partial overlaps.



3.3.3. Solving

Because Q is positive symmetric definite, we use a fast iter-
ative conjugate gradient solver to solve the systems of linear
equations (TAUCS v2.2[15] with GotoBLAS2 [16]).

3.4. Algorithm Tuning

3.4.1. Handling Heterogeneity

There is a complex interaction between the legalization step
and the solving step which arises due to heterogeneity. HeAP
legalizes (spreads) each type of block separately, which means
that blocks of different types may be spread to opposite sides
of the FPGA, even if they have solved x and y locations in
close proximity – this occurs as some types of blocks can
only be accommodated in a limited number of locations on
the FPGA. It can therefore be useful to solve for the place-
ment of only one block type in isolation then legalize/spread
just that type of block. This allows the generation of an
optimized placement for blocks of a given type in the con-
text of already-placed blocks of other types. HeAP supports
solving for the placement of various block types separately
by treating blocks that are not of the type being solved as
non-movable (i.e. fixed) objects. For example, it is possi-
ble to solve/legalize solely the multiplier blocks in a design,
while considering LUT-based logic blocks and block RAMs
as fixed.

The choice of when to solve and spread blocks of differ-
ent types can impact HPWL. For instance, treating all blocks
as movable at every iteration, thereby solving for all block
types, then spreading each type separately may lead the le-
galized placement to have lengthened connections between
blocks of different types (owing to the mathematical formu-
lation being unaware of the discrete set of locations available
for each type of block). Conversely, solving for each block
type separately then spreading only that type will reduce this
effect, but the lack of a global solving step (with all blocks
being movable) may be detrimental to the solved solution
quality. To investigate these issues, we tested three differ-
ent solve/legalize orders on our largest benchmark, jpeg,
which has a large number of all types of blocks – LUT-based
logic blocks, block RAMs and multipliers.

Fig. 4 shows the HPWL of the solved and legalized place-
ment solutions vs. time for three solve/legalize orders. Each
order has a corresponding line in the figure for both the
solved and legalized placement solutions. The HPWL of
the solved solutions gets worse as the algorithm progresses
because the solutions are closer to legal; conversely, the
HPWL of the legalized solutions gets better as the algorithm
progresses because the solved placement is not perturbed as
much to get a legal solution. Hence, they can be seen to
converge. For the first solve order, labeled “all”, all blocks
are solved/legalized at every iteration. For the second solve
order, labeled “rotate”, we solve/legalize block types sepa-
rately in a round-robin style. The third approach, labeled

Fig. 4: Convergence rates for different solving orders for the jpeg
benchmark.

“all + rotate”, is a hybrid, where we add solving/legalizing
for all blocks to the round-robin approach. The results show
that solving/legalizing for all blocks at every iteration leads
to long run-times and poor QoR. The two other solve orders
have comparable QoR, though upon further testing with all
benchmarks, the “all+rotate” flow delivers more consistent
results, likely because it offers a global view of the prob-
lem. Note also that solving for block types in isolation can
be very quick; for example, there are relatively few multi-
plier blocks in comparison with LUT-based logic blocks and
hence, when solving for multiplier blocks, there are few un-
knowns in the linear system. For the remainder of this work,
we use the “all + rotate” flow.

3.4.2. Convergence Rate

At every iteration, α×i increases, which leads the HPWL of
the solved and legalized solutions to converge. Slow conver-
gence will ensure that a bad spreading will not have a large
negative effect on the overall quality of the solved solution.
Conversely, fast convergence will improve run-time, which
is the main focus of this work. We swept the parameter α
(which is the amount by which the iteration count i is mul-
tiplied to compute pseudo connection weights), from 0.1 to
0.5 in increments of 0.1, and ran HeAP on the largest bench-
mark, jpeg. Fig. 5 shows the HPWL of the solved and le-
galized solutions vs. time for each value of α. Each value of
α has a corresponding line in the figure for the solved and
legalized placement solutions. Surprisingly, using a value of
α = 0.1 leads to worse QoR than a using a value of α = 0.2,
which can be seen in the figure, where the line correspond-
ing to α = 0.1 in the spread category is higher than the
line corresponding to α = 0.2 in the spread category. Un-
surprisingly, using a very high value of α (α = 0.5) leads to
fast convergence, but gives the spreading too much influence
over the solving, which hurts QoR. The value that offers the
best QoR appears to be α = 0.3, though values between 0.2
and 0.4 are also reasonable.



Fig. 5: Convergence rates for different values of α.

3.5. Parallelization

While parallelization was not a main focus of this work, we
took advantage of the obvious parallelism present in our
algorithm so that we could compare it against the multi-
threaded Quartus II without forcing the latter to use only
1 core. We parallelize HeAP in two ways: by calling the
solver for the x and y dimensions from different threads,
and by parallelizing the “move suggestion” part of our it-
erative refinement phase. Solving for the x and y dimen-
sions concurrently results in close to 2× improvement in
solving time (thread overhead and cache effects prevent per-
fect parallelism). For iterative refinement using n proces-
sors, n swaps are generated in parallel and the best one is
committed. We observe a 1.34× speedup using 2 cores and
a 1.48× speedup using 4 cores in the refinement stage, for
the same QoR. Overall, we were able to speedup HeAP by
1.3× via parallelization, though significant unexplored par-
allelism remains.

4. EXPERIMENTAL STUDY

In order to interface with Quartus II, HeAP makes use of the
Quartus University Interface Program (QUIP) [8]. Quartus
II has the ability to annotate files with a technology mapped
netlist, a packing of logic blocks, I/O and logic block place-
ment, and routing information. In order to perform an apples-
to-apples comparison of HeAP with Altera’s placer, we use
the same technology-mapped netlist, logic block packing,
and I/O placement in both HeAP and Altera back-end tools,
then compare the post-routing QoR from HeAP’s placement
vs. Altera’s placement.

For each benchmark circuit, we first pass it through the
complete Altera flow and record the resultant QoR. Next,
we extract the netlist, packing and I/O placement, and pass
this information to HeAP. HeAP then places the design and
saves its placement results, which is passed into Quartus II
for routing, after which the resultant QoR is recorded. Fig. 6
illustrates the tool flow that we used to test our placer. All
results were generated using Quartus II 11.0. As discussed
earlier, the following parameters were used for HeAP:

Fig. 6: Tool flow.

Table 1: Circuit characteristics.

benchmark LUTs FFs M4Ks DSPs LABs Carry chains device
adpcm 15233 9856 14 26 1122 98 C35

aes 15777 9240 21 0 1169 136 C35
bf 8806 6104 0 0 693 49 C20

dfdiv 10142 9359 3 19 1010 74 C20
dfsin 22178 15054 3 35 1925 112 C35
gsm 10525 5541 0 10 897 64 C20
jpeg 37655 17034 32 27 2751 19 C50

oc des 11695 5906 4 0 1552 0 C35
oc video 10698 3670 21 0 856 189 C20

sha 11366 7431 16 2 1095 112 C20

β = 0.9, convergeT = 0.7, stallmax = 15, and α = 0.3.
We compare HeAP against two flows. The first flow is

our own implementation of the SA-based placement found
in VPR, using a bounding-box objective function and the
same SA schedule found in the VPR 5.0 source code2. We
compare against this flow using HPWL and placement run-
time metrics. The second tool we compare against is the
Quartus II fitter, using post-routed wirelength, maximum
circuit frequency (Fmax) and run-time. All experiments were
run on an Intel Core i5-750 based system with 4 cores. We
ran our tool in single-threaded mode when comparing against
our own SA implementation, since the latter is not paral-
lelized, and ran our tool in multi-threaded mode when com-
paring against Quartus II, which uses all 4 cores. Our tool
supports the Cyclone II FPGA family; Cyclone II devices
contain multiplier/DSP blocks (DSPs), block RAMs (M4Ks),
and logic clusters (LABs). The benchmark circuits are the
largest available in the QUIP benchmark suite, and the largest
from the CHStone [17] suite. The CHStone circuits were
synthesized to hardware using LegUp [18] – an open-source
high-level synthesis tool. Circuit details along with the de-
vice to which each circuit was targeted are shown in Table 1.
Each benchmark circuit is targeted to the smallest Cyclone
II FPGA device able to accommodate it.

4.1. Results Versus VPR-like SA

Figs. 7 and 8 show the circuit-by-circuit HPWL and run-
time results for both HeAP and our SA implementation. HeAP
offers a geomean HPWL across all circuits that is 6% bet-
ter than SA. Note that we had to make modifications to SA
to enable swapping macros. Since multiple blocks must be
swapped with each macro, swapping that macro has a large
impact on the overall placement – a large placement pertur-

2We implemented the VPR “fast” annealing schedule, and also imple-
mented incremental bounding box updates in our SA-based placer.
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Fig. 8: Placement run-time of HeAP vs. SA-based placement.

bation. SA may perform better when placement perturba-
tions are very small. The run-time results show that HeAP
offers a geomean speedup of 7.4×.

4.2. Results Versus Quartus II

In order to thoroughly explore the trade-off between QoR
and run-time, we compare HeAP with Quartus II run in both
the timing-driven and non-timing-driven modes, with sev-
eral fitter and placer effort levels for each of these modes.
We included a very high effort Quartus run, a very low ef-
fort Quartus run, and some in between. Specifically, we
ran fitter effort level “FAST” with placer effort levels 0.1,
0.5, 1.0, and 2.0, and fitter effort level “STANDARD” with
placer effort level 2.0. The “FAST” fitter effort with a placer
effort of 0.1 is the low effort Quartus run, while the “STAN-
DARD” fitter effort with a placer effort of 2.0 is the high ef-
fort Quartus run. Together, the results from these runs form a
Quartus II QoR/run-time landscape. Figs. 9 and 10 show the
QoR/run-time trade-offs offered by both HeAP and by Quar-
tus II, indicating the geomean post-routed wirelength (re-
ported by Quartus II) and geomean maximum frequency, re-
spectively, of circuits vs. the geomean combined placement
and routing run-times. The data points labeled “Quartus II
- TD” and “Quartus II - NTD” represent the geomean of all
circuits run through placement and routing in Quartus II in
timing-driven or non-timing driven mode, respectively, with
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Fig. 9: Geomean wirelength vs. P&R run-time varying Quartus II
effort levels.
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Fig. 10: Geomean Fmax vs. P&R run-time varying Quartus II ef-
fort levels.

a range of different effort levels. The data points labeled
“HeAP - TD” and “HeAP - NTD” were generated by mea-
suring the run-time of placing the designs with HeAP and
routing those HeAP-placed designs with Quartus II, again
with a range of effort levels (i.e. effort levels in Quartus II).

Comparing the squares (timing-driven Quartus II) to the
circles (timing-driven HeAP) in Fig. 9, we observe qualita-
tively that the geomean wirelengths provided by HeAP are
not far different than those produced by Quartus II – the
two sets of datapoints are vertically aligned, with the excep-
tion of the high effort Quartus II run, for which considerably
lower wirelength was achieved (see the rightmost square in
Fig. 9). However, all of the HeAP datapoints (circles) lie
to the left of the Quartus II datapoints (squares), indicat-
ing a significant run-time advantage for HeAP. The same
trends are seen for the non-timing-driven runs (compare the
diamond to the dash datapoints). Fig. 10 gives the analo-
gous results for circuit speed, and exhibits the same trends
as those seen with the wirelength results – HeAP provides
reasonably good Fmax results at much less run-time cost.

Tables 2 and 3 show detailed circuit-by-circuit results
comparing HeAP with Quartus II’s non-timing-driven and



Table 2: Results for the non-timing driven flow.

Quartus II HeAP Ratios
WL MHz RT WL MHz RT WL MHz RT

adpcm 145 24.8 21.0 180 23.3 1.8 0.80 1.06 11.7x
aes 133 24.6 8.0 138 22.9 2.5 0.96 1.07 3.2x
bf 96 34.7 3.0 99 36.2 1.2 0.96 0.96 2.5x

dfdiv 109 36.1 7.0 121 37.3 1.6 0.90 0.97 4.3x
dfsin 242 11.9 18.0 271 11.8 3.6 0.89 1.01 5.0x
gsm 110 14.5 4.0 110 15.9 1.9 1.00 0.92 2.1x
jpeg 321 9.1 25.0 366 8.4 3.4 0.88 1.08 7.4x

oc des 111 110.0 4.0 110 114.6 1.4 1.01 0.96 2.9x
oc video 85 71.3 3.0 75 73.2 0.7 1.14 0.97 4.4x

sha 110 53.4 6.0 114 49.7 2.0 0.96 1.08 3.1x
geomean 133 29.5 18.1 141 29.4 1.8 0.95 1.01 4.1x

timing-driven flows, respectively. These results were gen-
erated using the “FAST” fitter effort with the default placer
effort of 1.0. In these tables, the “WL” columns report post-
routed wirelength (divided by 1000 for easier readability);
the “MHz” columns give the circuit speed in MHz; and, the
“RT” columns report placement run-time in seconds. In both
tables, the last three columns give the ratios of Quartus II to
HeAP for wirelength and Fmax, and the speedup achieved
by HeAP over Quartus II. The last row of the tables gives
the geometric mean across all circuits. From Table 2, we
see that HeAP offers a 4.1× speedup vs. Quartus II’s non-
timing-driven flow, at a 5% cost to wirelength and roughly
flat Fmax. For timing-driven (Table 3), HeAP provides a
10.8× speedup, at the cost of 4% wirelength and 9% worse
critical path delay.

It is interesting to note that when run with very high ef-
fort, The Quartus II placer can produce very high quality
results - significantly better than those produced by HeAP
or Quartus II run with low/medium effort levels. Specifi-
cally, the right-most diamond in Fig. 9 shows a 26% lower
wirelength vs. the equivalent HeAP run, albeit at the cost of
an 18× placer slowdown. This indicates that an SA-based
approach may be capable of delivering higher-quality results
than an AP-based approach. However, Tte low effort Quar-
tus II run (the left-most diamond in Fig. 9) produces wire-
length that is 7% worse than the equivalent HeAP run and
has 2× higher placer run-time, which indicates that AP may
be a better choice than SA when tool run-time is important.
Overall, we find the results for HeAP to be quite encourag-
ing, considering that Quartus II is a highly-optimized com-
mercial tool. We believe that HeAP will be of value in rais-
ing engineering productivity by shortening the design cycle,
at a modest cost to layout quality.

5. CONCLUSIONS

The scalability of FPGA CAD tools is a crucial issue for
engineering design productivity and for making FPGAs vi-
able as computing devices, targetable by software engineers
who expect software-like compile times. In this paper, we
presented HeAP, a run-time-optimized AP-based placer that
supports FPGAs with heterogeneous block types. On the

Table 3: Results for the timing-driven flow.

Quartus II HeAP Ratios
WL MHz RT WL MHz RT WL MHz RT

adpcm 154 41.1 60 183 36.9 1.8 0.85 1.11 33.6x
aes 132 57.7 19 136 50.6 2.2 0.96 1.14 8.6x
bf 97 68.0 7 98 63.1 1.1 0.99 1.08 6.3x

dfdiv 116 67.6 19 120 58.3 1.9 0.96 1.16 9.9x
dfsin 240 28.0 40 273 25.0 3.6 0.88 1.12 11.2x
gsm 116 28.4 11 112 27.0 1.3 1.04 1.05 8.2x
jpeg 324 20.0 55 351 18.4 3.5 0.92 1.09 15.8x

oc des 113 152.1 11 112 147.7 1.3 1.01 1.03 8.7x
oc video 88 90.6 10 82 90.2 0.7 1.07 1.00 13.8x

sha 116 87.8 13 118 80.4 1.9 0.98 1.09 7.0x
geomean 137 54.0 1.4 142 49.7 1.7 0.96 1.09 10.8x

largest benchmark considered, jpeg, HeAP generates a routable
placement in less than 4 seconds, with 8% higher wirelength
and 9% worse Fmax than Altera’s Quartus II placer in timing-
driven mode, which uses 55 seconds. On average, HeAP
offers a 4.1-10.8× run-time advantage, at 4-5% wirelength
cost and a 1-9% speed performance reduction. HeAP’s value
proposition lies in reducing the time needed for design it-
erations, and in applications for which the highest-possible
circuit speed is not required. Future work involves further
parallelization of our approach, improving the iterative re-
finement phase (for example, using directed moves [12]), as
well as enhancing HeAP to be fully timing-driven.
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