
IMPLEMENTATION TECHNIQUES FOR EVOLVABLE HW SYSTEMS: 
VIRTUAL VS. DYNAMIC RECONFIGURATION 

Ruben Salvador, Andres Otero, Javier Mora Lukds Sekanina 
Eduardo de la Torre, Teresa Riesgo 

ABSTRACT 
Adaptive hardware requires some reconfiguration capa­
bilities. FPGAs with native dynamic partial reconfigura­
tion (DPR) support pose a dilemma for system designers: 
whether to use native DPR or to build a virtual reconfig-
urable circuit (VRC) on top of the FPGA which allows se­
lecting alternative functions by a multiplexing scheme. This 
solution allows much faster reconfiguration, but with higher 
resource overhead. This paper discusses the advantages of 
both implementations for a 2D image processing matrix. 
Results show how higher operating frequency is obtained 
for the matrix using DPR. However, this is compensated 
in the VRC during evolution due to the comparatively 
negligible reconfiguration time. Regarding area, the DPR 
implementation consumes slightly more resources due to the 
reconfiguration engine, but adds further more capabilities to 
the system. 

1. INTRODUCTION 

In the field of evolvable hardware systems, evolutionary 
algorithms (EA) are combined with reconfigurable devices 
to either automatically design or adapt hardware. Since all 
candidate circuits are evaluated in a reconfigurable device, 
the reconfiguration time and a suitable granularity of re­
configuration are the key factors that determine the overall 
performance of evolvable systems. 

Initial works in evolvable hardware directly evolved the 
reconfiguration bitstream. However, this is not possible with 
current devices since random modifications of the bitstream 
may damage the device. After some initial attempts, like 
Xilinx JBits, two lines of research seem to be consolidating 
regarding reconfiguration techniques for evolvable systems 
in FPGAs. One of them makes use of the dynamic partial 
reconfiguration (DPR) capabilities of modern FPGAs; the 
other, known as Virtual Reconfigurable Circuit (VRC) [1], 

builds a virtual reconfiguration layer on top of the recon­
figurable fabric using multiplexers, enabling the designer 
to create an application-specific reconfigurable platform 
consisting of application-specific processing elements (PEs). 

Regarding DPR, it utilizes the Internal Configuration 
Access Port (ICAP) of modern Xilinx FPGAs that allows 
the FPGA to be reconfigured internally. Upegui and Sanchez 
evolved the LUT contents (in one dimension) while keeping 
a fixed routing [2]. This concept has been extended to two 
dimensions exploring thus the capabilities of recent Virtex 4 
devices [3]. In [4] a data classification system able to change 
the number of functional units from a pre-synthesized set 
is proposed. Probably the most sophisticated ICAP-based 
(implemented in HW) evolvable platform for the Virtex 5 
family has been introduced by the authors of this paper 
[5]. Its detailed description follows in Section 2. Its main 
advantage is the bitstream relocation capability into any 
compatible position of the FPGA. 

In the case of VRCs, although reconfiguration is very fast, 
since it only involves writing a big register (the configuration 
memory) which controls a set of multiplexers, this approach 
suffers from a huge area overhead since it involves the 
implementation of every possible function in every virtual 
reconfigurable element. Besides, the multiplexers, used to 
select the desired functionality in each PE, increase circuit 
delay. This approach has been utilized by several research 
groups to solve different tasks [6], [7], [8]. 

Because of the radically different approach, various pros 
and cons can be observed in each method. So, what this 
paper tries to address is a comparison between both for 
a given reconfigurable processing architecture. In previous 
works, the authors proposed an FPGA-based self-adaptive 
platform based on a library of simple, dynamically re­
configurable, processing elements (PE) and an enhanced 
HWICAP reconfiguration engine [9], [5]. These PEs, which 
are arranged in a 2D processing array, are defined by 
their partial reconfiguration bitstream, which requires a 
somehow complex and very specific design process to be 
created. Besides, resource usage increases due to the extra 



Fig. 1. System architecture holding the evolvable platform. 

logic needed to perform DPR. For this work a VRC-based 
implementation of the processing array using VHDL has 
been accomplished so that a fair comparison in terms of 
performance and implementation area between both could 
be obtained for modern FPGAs. The reference application 
is image filtering since an EA is expected to efficiently deal 
with uncertainty coming from the unknown types of noise 
that might appear at the input signal. 

The following section gives a brief overview of the sys­
tem architecture before describing its computational core, 
an evolvable processing array, using both reconfiguration 
options, DPR and VRC. Finally, the results for both im­
plementations are presented in section 3 in order to provide 
data for discussion. Paper is concluded in section 4. 

2. EVOLVABLE PLATFORM DESCRIPTION 

The proposed self-adaptive, evolvable, platform, built into a 
Virtex-5 FPGA device, is defined by a set of components 
(IP blocks) connected through a common bus interface. 
An adaptation engine acts upon the measured component 
performance trying to fulfil the adaptation requirements 
within a changing operating environment. An EA based on 
Cartesian genetic programming (CGP) was chosen for the 
task. Besides, since some kind of reconfiguration capability 
is required, two versions of the component's processing 
matrix featuring the two reconfiguration options mentioned 
previously have been implemented and evaluated. 

Fig. 1 shows the proposed architecture, deeply analysed 
in [9], [5]. An embedded MicroBlaze microprocessor runs 
the system software that includes the control of the adaptive 
component, both at run and adaptation time. Hence, this 
microprocessor, among various other different tasks, runs 
the EA which proposes new candidate solutions of the com­
ponent and issues the required commands to evaluate the 
population of candidate solutions. This process involves the 
reconfiguration of the array with these candidate solutions. 
A peripheral for HW fitness evaluation can also be observed, 
as well as a tightly coupled RAM memory, both of which 
serve in accelerating this task. 

Fig. 2. Reconfigurable architecture of the processing array. 

The processing architecture of the evolvable component 
is a highly regular and parallel two dimensional mesh-type 
array of A x B processing elements (PEs) organized as a 
systolic structure where inter-node connectivity is fixed and 
restricted to the four closest neighbours (North, South, East, 
West), as shown in Fig. 2. The input to the array is the 
same as in typical image convolution filters, a moving square 
window, sized 3 x 3 . However, there is not a predefined 
routing from the window to the input PEs. By the contrary, 
each input PE has an associated 9-to-l multiplexer so that 
circuit inputs may be chosen by the EA. The output of the 
array is obtained from any of the eastern (right-side) PEs, by 
using a 4 inputs multiplexer controlled by evolution. Each 
PE consists of a functional block (FB), some routing logic 
in the input and a register (R) in the output, which is the 
same for both East and South ports. The FB of each PE 
can be dynamically configured to perform one of the 16 
functions shown in [9], such as maximum, minimum, adding, 
etc. operating over 8 bits. 

The architecture proposed is a generic evolvable process­
ing framework, and its suitability for different processing 
tasks depends on the chosen library. Adaptation is achieved 
by directly configuring the required PE in each position of 
the array. This can be seen as placing pieces in a puzzle. 
For each piece, or PE to (re-)configure, a reconfiguration 
engine (RE) places the required element as commanded by 
the processor in the assigned position of the matrix. This RE 
will act as the interface hiding the reconfiguration details as 
much as possible to the designer; therefore, the version of 
the component using DPR shall contain a Xilinx HWICAP 
which is not needed in the VRC. 

The chromosome which encodes the candidate solutions, 
and therefore serves as the interface with the RE, is com­
posed of a set of integer numbers representing connection 
genes for the input and output multiplexers and functionality 
genes as index pointing to the library for each PE. Based 
on preliminary simulations (see [9]), an array size of 4 x 4 
PEs was selected, which yields a chromosome of 25 integer 
genes (1 output MUX, 8 input MUXs and 16 PEs). 

2.1. Reconfigurable Array (RA) 

The component based on DPR uses an enhanced HWICAP, 
which, unlike the standard Xilinx module, allows read-
back and re-allocation, reducing this way external memory 



(a) (b) 

Fig. 3. (a) shows a PE in the DPR case (register not shown 
for simplicity) and (b) its abstraction in the VRC 

accesses when moving/copying one PE from one position 
to another within the array. Besides, the ICAP was over-
clocked at up to 200 MHz and attached to an external DDR2 
memory through a fast Xilinx NPI to accelerate the memory 
access process. Each FB is pre-synthesized and stored as 
an independent module in the library of reconfigurable 
PEs defined by their partial bitstreams. Unlike VRCs, fixed 
connections and a single function are implemented in each 
PE. Fig. 3a shows a PE from the reconfiguration point of 
view. There is one Bus Macro per port of the PE (N,S,E,W) 
so that all PEs share a common connection interface. 

2.2. Virtual Reconfigurable Circuit 

To mimic the behaviour of the reconfigurable library in the 
RA version, a kind of virtual reconfiguration library is syn­
thesized locally into each PE by using a simple VDHL c a s e 
statement containing the 16 functions mentioned previously, 
as shown in Fig. 3b. A direct consequence of this decision 
is the elimination of the input multiplexer at each FB (to 
select either N or W) in typical VRC implementations. The 
VRC is configured through the PLB bus, which involves the 
transfer of 98 bits (obtained in 4 simple 32-bit transfers). 

3. IMPLEMENTATION RESULTS 

The evolvable platform was implemented in a Virtex-5 
LX110T FPGA included in Digilent's XUPV5 Evaluation 
Platform. Results are given for a 4 x 4 array. Each PE within 
the RA implementation occupies two CLB columns along 
one clock row, that is, 40 CLBs. According to individual 
synthesis results per PE (needed to extract the partial bit-
stream), these occupy from 7 to 10 slices. Overhead due to 
the communication is also very high, since 6 of these slices 
are dedicated to bus-macro terminals. Regarding the VRC 
implementation, a highly functional description was used, 
which yielded moderate synthesis results. The VRC was 
built aside the prototype RA implementation so some rough 
edges still need to be polished to obtain good synthesis 
results (mainly in terms of circuit delay, as a result of 
plugging the shared components together). 

Table 1 shows the implementation results obtained for 
each version of the component. The module Component 

refers to the whole evolvable component as the higher 
entity to be considered in the comparison. No results are 
thus considered for the MicroBlaze implementation and 
associated resources needed for the whole design. In Table 1, 
Array corresponds just with the evolvable 2D architecture 
of PEs, while Misc comprises all the associated logic and 
memory resources needed to control the array and feed its 
inputs. In this case, the resource usage reported for the Array 
entry in the RA version is based on the FPGA region that 
needs to be declared as a reconfigurable region so that the 
synthesizer does not use it for other purposes. Therefore, 
the figures do not indicate how many resources are actually 
needed to hold each PE implementation but those contained 
within that region. Finally, the enhanced HWICAP and the 
external memory controller resource usage are shown, which 
might be reused for other purposes in the system. 

3.1. Timing Analysis 

Two operating modes have to be considered to evaluate 
timing performance. One of them is the adaptation phase, 
when the component is evolving. Once a working circuit 
has been found, evolution is stopped and the system enters 
into its standard mode of operation. Within these phases, 
several different tasks need to be accomplished. In each 
generation during evolution, the EA creates new offspring 
candidate solutions (task T0ffs) which are evaluated (Tevai) 
and assigned a fitness value (Tfit) before selection (Tsei) 
of the best fitted individual(s) for the next generation is 
done. This cycle is repeated throughout a given number 
of generations. In order to evaluate an individual, the array 
needs to be reconfigured to this candidate filter. Therefore, 
Tevai can be split into reconfiguration (Trec) and filtering 
(Tfut). Finally, during normal system operation, images are 
filtered with the selected candidate, which corresponds with 
Tfut. Taking into account the associated times for each of 
these tasks (t0ffs f° r T0ffs and so on), time elapsed in each 
generation during evolution can be written as: 

tg = AX (t0ffs + trec + tfut + tfu) + tsel (1) 

where A is the population size. Therefore, if Ng is the 
number of generations, the total time needed for evolution 
can be expressed as tevo = tgxNg. Eq. (1) can be simplified 
since the execution of some tasks is overlapped; TQffs is 
done in SW and Tevai in HW, which takes longer for this 
application. Besides, Tfit and Tsei are also done in HW in 
parallel with Tfut. Therefore, tevo ~ AxNg (trec + tfm) = 
NEVALS x tevai, where NEVALS is the total number of 
evaluations. Due to the inherent pipeline of the matrix the 
array produces one pixel per clock cycle, so filtering time 
of one candidate circuit takes Rx C clock cycles, where R 
and C are the number of rows and columns of the image. 

Significant performance dissimilarities are expected due 
to the big differences between reconfiguration and filtering 



Table 1. Usage results for the evolvable processing architecture. 
Version Module Slices Slice Regs 

Component 5763 12931 
Array 1280 5120 

RA Misc 1101 1932 
HWICAP 1615 2765 
Mem. Ctrl 1767 3114 

Component 2791 4224 
VRC Array 1096 215 

Misc. 1567 3676 

Table 2. Reconfiguration, filtering and evolution times 
Time (/is) 

Task RA@ 200MHz VRC@100MHz 

Reconflg. (1 PE) 15.92 n , 
Reconflg. (3 PE) 69.61a a 4 

Filtering 82.12 163.84 

Total evolution 122 132 
a Average time measured during evolution. For 
a given circuit, changing k PEs involves chang­
ing also some PEs needed to return to the 
original, common parent. 

times of each version. Table 2 shows a timing comparison 
along an evolutionary cycle of 100000 generations using a 
128 x 128 size image and a mutation rate of 3. Maximum 
frequency for each version is also reported in Table 2. 
Regarding filtering time, it differs as a result of the extra 
delay of the VRC due to the multiplexers. However, RA 
reconfiguration will take longer, and will depend on the 
number of changed PEs (mutation rate in the EA). 

3.2. Discussion on the results 

As seen in Table 1 the RA uses slightly more than twice 
the resources of the VRC. More than half of it is due 
to the RE (HWICAP and Multi-Port Memory Controller, 
MPMC) needed to access the DDR2 memory containing 
the PE library. Therefore, the extra resources wasted in the 
VRC implementation are compensated by those needed to 
use DPR, so no real difference is observed here. However, 
if the bitstream size per PE is reduced (which is being 
tackled now by reducing the reserved logic for the RA), the 
need for an external memory could disappear, saving the 
resources consumed by the MPMC. Also, higher array size 
is in favour of RA, since variable size-dependent resource 
usage is smaller. 

Regarding timing performance, reconfiguration time is 
fixed for different mutation rates in the VRC, since it 
just involves writing the configuration register. However, 
this time depends on the number of changed PEs for the 
RA, yielding a higher timing overhead in reconfiguration. 
Since filtering time is double in the VRC, the whole timing 
performance is very similar under these circumstances. The 
operating frequency of the final circuit is significantly higher 

Slice LUTs LUTRAM DSP BRAM 

11276 1518 0 38 
5120 1280 0 0 
1932 64 0 12 
2344 145 0 9 
1880 29 0 17 
5472 128 0 12 
2539 0 0 0 
2300 128 0 12 

in the RA case, yielding a higher throughput. In any case, a 
VRC would be able to achieve a frame rate of up to 48.23 
images per second for full-HD resolution. 

4. CONCLUSIONS 

A comparison has been carried out between an evolvable 
architecture using both native DPR and a VRC. For modern 
6 input LUT devices, the area overhead of VRCs is not as 
high as expected. In terms of maximum working frequency, 
the VRC is in clear disadvantage, but it is still able to 
hold full-HD throughput. Nevertheless, deeper and further 
comparisons, including power consumption, are still needed. 

5. REFERENCES 
[1] L. Sekanina, Evolvable Components - From Theory to 

Hardware Implementations, ser. Natural Computing Series. 
Springer Verlag, 2003. 

[2] A. Upegui and E. Sanchez, "Evolving Hardware with 
Self-Reconflgurable Connectivity in Xilinx FPGAs," in 1st 
NASA/ESA Conf. on Adaptive Hardware and Systems (AHS-
2006). Los Alamitos, CA, USA: IEEE Computer Society, 
2006, pp. 153-160. 

[3] F. Cancare, M. Santambrogio, and D. Sciuto, "A direct bit-
stream manipulation approach for Virtex4-based evolvable 
systems ," in Proc. of 2010 IEEE Int. Symp. on Circuits and 
Systems. IEEE, 2010, pp. 853-856. 

[4] J. Torresen, G. Senland, and K. Glette, "Partial Reconfigu­
ration Applied in an On-line Evolvable Pattern Recognition 
System," in NORCHIP, 2008., nov. 2008, pp. 61 -64. 

[5] A. Otero, R. Salvador, J. Mora, E. de la Torre, T. Riesgo, and 
L. Sekanina, "A fast Reconfigurable 2D HW core architecture 
on FPGAs for evolvable Self-Adaptive Systems," in 2011 
NASA/ESA Conf. on Adaptive Hardware and Systems (AHS), 
june 2011, pp. 336-343. 

[6] K. Glette, J. Torresen, and M. Yasunaga, "An Online EHW 
Pattern Recognition System Applied to Sonar Spectrum Clas­
sification," in Evolvable Systems: From Biology to Hardware, 
ser. LNCS, vol. 4684. Springer Verlag, 2007, pp. 1-12. 

[7] L. C. Wang J., Chen Q.S., "Design and implementation of 
a virtual reconfigurable architecture for different applications 
of intrinsic evolvable hardware," IET computers and digital 
techniques, vol. 2, no. 5, pp. 386-400, 2008. 

[8] Z. Vasicek and L. Sekanina, "Hardware Accelerator of Carte­
sian Genetic Programming with Multiple Fitness Units," Com­
puting and Informatics, vol. 29, no. 6, pp. 1359-1371, 2010. 

[9] R. Salvador, A. Otero, J. Mora, E. de la Torre, T. Riesgo, 
and L. Sekanina, "Evolvable 2D computing matrix model for 
intrinsic evolution in commercial FPGAs with native recon­
figuration support," in 2011 NASA/ESA Conf. on Adaptive 
Hardware and Systems (AHS), June 2011, pp. 184 -191. 


