
CHARGE RECYCLING FOR POWER REDUCTION IN FPGA INTERCONNECT

Safeen Huda, Jason Anderson

Dept. of ECE, University of Toronto
Toronto, ON, Canada

Hirotaka Tamura

Fujitsu Laboratories Limited
Kawasaki, Japan

ABSTRACT

We propose charge recycling (CR) to reduce power con-
sumption in FPGAs. We take advantage of the property that
many routing conductors are left unused in any FPGA im-
plementation of an application. Charge recycling via the un-
used conductors reduces the amount of charge drawn from
the supply, lowering energy consumption. We present a
routing switch that operates in two modes: normal and CR,
and describe the CAD tool changes needed to support CR
at the routing and post-routing stages of the flow. Results
show that dynamic power in the FPGA interconnect can be
reduced by∼15-18.4% by the proposed techniques, depend-
ing on the performance constraints.

1. INTRODUCTION

Recent years have seen explosive demand for low power
computing systems; from increased battery life in mobile
systems to reduced electricity and cooling costs in large scale
compute-farms, power reduction is a much pursued goal at
all ends of the computing spectrum. While field-programmable
gate arrays (FPGAs) are widely used in diverse applications,
their high power consumption stands in the way of their
widespread use in mobile and cloud settings. Indeed, a re-
cent study showed that an FPGA design implementation con-
sumes 7-14×more power than a functionally-equivalent ASIC
design [1]. Power consumption in FPGAs is dominated by
interconnect [2] – the area overhead required to realize pro-
grammability contributes to long metal wires with high ca-
pacitance, as do the programmable switches attached to each
wire.

In this paper, we attack FPGA interconnect power through
a charge recycling (CR) approach. Our approach leverages
a unique aspect of FPGAs, namely, that a considerable por-
tion of an FPGA’s wire segments are unused in any given de-
sign, even in designs that use a high fraction of the available
look-up-tables (LUTs). In modern commercial FPGAs, the
unused routing conductors are wasted and pulled to a con-
stant voltage. We propose instead that (some) conductors
be programmably available as charge reservoirs (when they
are unused), wherein they are each paired with a used con-
ductor in close proximity. Given a used conductor with an
available reservoir, charge from the used conductor is trans-
ferred to the reservoir on a falling transition; that is, instead

of dumping all charge to the ground rail. Conversely, charge
from the reservoir is transferred to the used conductor on
a rising transition, thereby reducing the amount of charge
that needs to be drawn from the supply rail to bring the used
conductor to rail VDD. We propose a dual-mode intercon-
nect switch design capable of CR. In the first (high-speed)
mode, the switch functions as a traditional switch; in the
second (low-power) CR mode, special circuitry within the
switch realizes the charge recycling behavior as described.
Note that this power reduction technique is complimentary
to other dynamic power reduction techniques, such as op-
erating with multiple power supplies, or VDD scaling. As
such, combining charge recycling with other dynamic power
reduction techniques will lead to further power reduction.

As with other architectural features, CAD tool support
is required for CR to be applied successfully. We altered the
routing algorithm within the publicly-available VPR frame-
work [3] to encourage high-activity non-timing-critical sig-
nals to be routed using CR-capable switches that have avail-
able (free) reservoirs. We also implemented a post-routing
mode selection pass that chooses the mode for CR-capable
switches, subject to user-supplied speed performance con-
straints. Our mode selection is implemented as a mixed-
integer linear program (MILP). The CAD tools are informed
by models of the power, speed and area of CR-capable rout-
ing switches, derived from HSPICE simulation results for a
65nm commercial process.

We studied the power reductions afforded by the pro-
posed techniques, as well as impacts to speed and area. Re-
sults show that power in the FPGA interconnect can be re-
duced by up to 15-18.4%, depending on the architectural pa-
rameters and speed-performance constraints. While a num-
ber of circuit-level approaches to FPGA power reduction
have been considered, including dual VDD [4], power-gating
sleep mode [7], low-swing signaling [8], subthreshold tech-
niques [9], and body-bias leakage control [10], to the au-
thors’ knowledge, ours is the first work to consider charge
recycling. The remainder of this paper is organized as fol-
lows: Section 2 reviews FPGA interconnect hardware and
describes prior work on charge recycling in the custom ASIC
context. The proposed charge-recycling interconnect switch
is described in Section 3, including the circuit-level details
and simulation results. The necessary CAD tool modifica-
tions are described in Section 4. The results are presented in
Section 5. Conclusions appear in Section 6.

CLB CB

CB SB

CLBCB

CBSB

CLB CB

CB SB

CLBCB

CBSB

Routing

Wires

(a) Top level organization of CLBs,
CBs, SBs, and routing wires.

VDD

Routing

Conductor
m inputs

n ctrl

signals

(b) Circuit-level structure of rout-
ing switch.

Fig. 1: Conventional FPGA circuit structures.

2. BACKGROUND

2.1. FPGA Routing Hardware

Electrical connectivity between logic blocks (CLBs) in an
FPGA is facilitated the programmable routing network. The
routing network is comprised of fixed-length routing wires,
Connection Boxes (CBs) which connect CLBs to routing
wires, and Switch Boxes (SBs) which are used to stitch to-
gether routing wires to form paths. A simple organization
of routing wires is shown in Fig. 1(a). The switch box con-
sists of buffered routing switches, an example of which is
shown in Fig. 1(b). The first stage of this circuit consists of
a multiplexer with m inputs; these are the m tracks in the
switch box that can be connected to the track being driven
by this switch. The pull-up PMOS on the multiplexer output
is present because the mux is typically implemented using
NMOS transistors (which are poor at passing logic “1”).

Due to the large capacitances of the routing wires in a
modern FPGA, the power dissipated in the routing network
is a dominant component of the total power dissipated, as
much as 62% [7]. As such, any effort to reduce the power
consumption in the routing network will potentially allow
for an appreciable reduction in overall power.

2.2. Charge Recycling

Charge recycling is a technique that has been explored in
the ASIC domain, particularly in the application of on-chip
busses [13]. The idea is as follows: In conventional logic cir-
cuits, when a conductor makes a transition from logic “1” to
“0”, the stored energy on the wire – equal toCV 2

DD/2 where
C is the wire capacitance – is completely dissipated. In con-
trast, charge recycling stores some of that (normally) dissi-
pated charge in secondary nodes (capacitors). This charge
can then be delivered to a wire which is making a transition
from logic “0” to “1”, reusing some of the energy that would
have been otherwise lost in a conventional circuit.

The charge recovery and recycling process is illustrated
in Figs. 2 and 3, respectively. The figures show two capac-
itors, CL, the load capacitor, and CR, a reservoir capacitor
used to store recovered charge. Switches connect CL to ei-
ther VDD or GND, and a third switch can be used to con-
nect the two capacitors together. In Fig. 2, we see that CL is

VDD

VDD 0
CL CR

VDD

VDD/2 VDD/2
CL CR

VDD

0 VDD/2

CL CR

Fig. 2: Charge recovery during a “1” to “0” signal transition.
VDD

0 VDD/2

CL CR

VDD

VDD/4 VDD/4
CL CR

VDD

VDD VDD/4
CL CR

Fig. 3: Charge recycling during a “0” to “1” signal transition.

initially connected to VDD, and there is no charge stored in
CR. During a logic “1” to “0” transition at CL, initially the
circuit undergoes a charge recovery phase, where CR and
CL are connected (both VDD and GND are disconnected
from CR). Given that the two capacitors have equal capac-
itance, through charge sharing, half of the charge initially
stored in CL will be transferred over to CR, and thus the
voltages of these capacitors will settle to VDD/2. After the
charge recovery phase, the two capacitors are disconnected,
and CL is connected to GND, and thus fully discharged.

In Fig. 3, CL is initially connected to GND, and the
voltage at CR is equal to VDD/2 as a consequence of the
charge recovery phase of a preceding logic “1” to “0” transi-
tion. In a “0” to “1” transition, the circuit initially undergoes
a charge recycling phase where CR and CL are connected
to one another while both the VDD and GND rails are dis-
connected. Through charge sharing, the voltage at CL will
rise (while the voltage at CR will fall) to VDD/4. After the
voltage at CL has settled, CL and CR are disconnected from
one another, and the CL is connected to VDD to complete
the full transition to logic “1”. Note that in this example, the
amount of charge actually drawn from the VDD rail equal to
0.75 ·CL ·VDD as opposed to CL ·VDD. That is, there is an
immediate 25% reduction in energy.

3. CR-CAPABLE FPGA INTERCONNECT

To reduce power consumption in the routing network, we
propose an FPGA architecture with a routing network con-
taining charge reservoirs (i.e. spare capacitors) which can
be used to store the charge from a signal wire which is being
discharged, and then reuse the stored charge when the signal
wire is later being charged to VDD. In our case, the charge
reservoirs are actually unused routing resources within the
routing network. That is, we are not proposing to create
“new” capacitors to be used as reservoirs; rather, we pro-
pose to use unused routing resources as reservoirs.

Figure 4 shows waveforms for the falling and rising tran-
sitions of a signal wire whose charge is being recovered
and recycled. During a rising transition, we see two dis-

Fig. 4: Charge recovery/recycling on transitions: output waveform
during a rising transition (shown on left); output waveform during
a falling transition (shown on right).

VDD

Delay Line

CR

CWire

TSCR

CR

Circuit

CWire

Unused Routing

Conductor

DLOUT

SRAM

Cell

CR CR

SRAM

Cell

TS TS

M8

M7

CR
DLINT

DLINT

Input

StageVIN

TS

Fig. 5: CR buffer circuit.

tinct phases: a first phase where the routing conductor is ini-
tially charged to an intermediate voltage value VINT LOW

as charge is shared between the routing conductor and the
charge reservoir, and a second phase where the routing con-
ductor is fully charged to VDD. Similarly, during a falling
transition, the output undergoes two distinct phases while
discharging. In the first phase, the routing conductor is par-
tially discharged to an intermediate voltage, VINT HIGH ,
through charge sharing with a charge reservoir. In the sec-
ond phase of discharging, the routing conductor is fully dis-
charged to GND.

In the steady state after several transitions have occured,
VINT LOW and VINT HIGH will assume constant respec-
tive values. Assuming that the reservoir and load capaci-
tors have equal capacitance, we note that VINT HIGH must
be equal to VDD+VINT LOW

2 , and VINT LOW must be equal
to VINT HIGH

2 . From these two relations, we can therefore
show that VINT LOW = 1

3VDD, which therefore implies
a theoretical maximum energy reduction of 33% using the
proposed charge recycling technique.

The challenge in designing a charge-recycling FPGA in-
terconnect switch is in realizing the dynamic behavior that
must happen on rising and falling transitions. The switch
must first disable the driving buffer, then it must allow charge
sharing between the load and reservoir, and then, after charge
sharing is complete, the switch must re-enable the driving
buffer to complete the transition, bringing the load to one of
the two rails. Note that the reason we must first disable the
driving buffer is that otherwise, we may draw charge from
the supply rail to charge both the load and the reservoir!

To implement the desired behavior, we designed the buffer
circuit shown in Fig. 5, which we call a CR Buffer. The
CR Buffer consists of an inverting input stage which applies
the appropriate signals to the gates of M7 and M8 (which
comprise the buffer’s output stage), based on the operating
mode of the buffer. The buffer circuit is further augmented
with a circuit that performs the charge sharing between the
load and reservoir, which we call the CR circuit. As shown
in Fig. 5, two additional SRAM configuration cells produce
signals CR (charge recycling) and TS (tristate) which con-
trol whether the switch is in normal mode (high-speed), CR
mode, or is tristated (when its load conductor is being used
as a reservoir by another switch).

A high level description of the operation of the charge
recycling buffer is as follows: whenever there is a transition
at VIN , the calibrated delay of the delay line leads to a differ-
ence in signal levels between VIN and DLOUT (the output
of the delay line). This difference results in the output stage
of the buffer being momentarily tristated by the input stage,
and activates the charge recycling circuit which will connect
the output load to the reservoir conductor - thus allowing
charge to be shared between the two conductors. After the
transition at VIN has propagated to the output of the delay
line, and VIN and DLOUT are now equal, the charge recy-
cling circuit will disconnect the output load from the reser-
voir, while the output stage will be re-enabled , thus allowing
the output to completely rise (fall) to VDD (GND).

The delay line (Fig. 6) consists of two stages (as shown
in the figure): the first stage is a current-starved inverter
which serves as the main delay cell in the delay line, while
the second stage (inverter) serves to simply buffer the out-
put of the first stage. The delay line operates in two modes:
when CR and TS are both low (i.e. the CR buffer is not op-
erating in CR mode), transistors MD7 and MD8 area off,
MD9 and MD10 are on, and so DLINT is pulled to VDD.
Thus, when a switch is not operating in CR mode, the delay
line and CR circuit are both inactive. When CR is high and
TS is low (CR buffer is operating in CR mode), DLINT

will be directly connected to VIN . As such the delay line
is active, and DLOUT will simply be a delayed version of
VIN . Note that transistors MD1 and MD4 act as clamped
current sources, as their gates are biased with voltages VPB

and VNB , respectively. The bias voltages are set to limit the
amount of current that may flow through these transistors,
intentionally slowing down the inverter. The delay of the
delay line can be calibrated by adjusting the values of bias
voltages on the clamped current sources and in fact, this de-
lay must be calibrated to match the settling time of the sig-
nal and reservoir nodes during charge sharing for maximum
power savings.

The description of the input stage of the buffer circuit
(Fig. 7), when operating in CR mode, is as follows: When
VIN makes a transition from logic “1” to “0”, M1 will im-
mediately turn on, raising the gate of M7 to VDD and thus
turning it off. Due to the delay line, node DLOUT will ini-
tially continue to hold logic “1”. This combination of logic
values results in M5 turning on, but M4 remaining turned

off; this prevents the gate of M8 to be raised to VDD imme-
diately following a “1” to “0” transition at the input. Thus,
the output stage is momentarily tristated as both M7 and
M8 are off. Note that the gate of M8 remains low dur-
ing this period as it effectively retains the node voltage prior
to the transition at VIN . As the transition at VIN propa-
gates through the delay line, DLOUT will make the transi-
tion from “1” to “0”, and this causes M4 to turn on, which
results in M8 turning on, thus allowing the output to fall to
logic “0” (GND rail). A rising transition on VIN results
in analogous behavior – temporary charge sharing with the
reservoir before connecting the load to the VDD rail.

Regarding the mode selection, note that transistors M9
is controlled by CR, while transistors M10 is controlled by
TS. As with the signal CR, TS is also the output of a con-
figuration bit and is used to put the buffer into tristate mode;
it is necessary for the buffer driving an unused conductor to
be put into tristate mode so that the charge recycling process
does not result in short circuits between buffers. When CR
is high and TS is low, M9 and M10 are both off, and so the
gating circuit works as described above. When TS is high
and CR is low, M10 will be on; assuming that an unused
buffer will have its VIN held at VDD and given thatDLOUT

is at logical “0”, this ensures thatM8’s gate will be driven to
GND while M7’s gate will be driven to VDD, thus placing
the buffer in tristate mode.

We now turn to the circuit that performs the charge shar-
ing between the load and reservoir, which we called the CR
circuit. The details of the CR circuit are shown in Fig. 8.
The CR circuit is implemented using pass transistor logic
and drives the gates of the transistors connecting the switch
output and charge reservoir nodes. The description of the
circuit is as follows (assuming CR is at logic “1”, and so
DLINT = VIN): When VIN makes a transition from “0”
to “1”, since DLOUT will remain at logical “0” for a brief
period of time, M13 will be turned on, resulting in tran-
sistor M18 turning on, which allows charge to be recycled
from the reservoir capacitor. After a brief period of time,
DLOUT will make the transition to logical “1”, and this re-
sults in M14 turning on and thus M18 being shut off. This
disconnects the reservoir node from the output. When VIN

VIN

VDD

DLOUT

VNB

VPBMD1

MD2

MD3

MD4

VDD

MD5

MD6CR

CR

DLINT DLINT
MD7

MD8

CR

MD9

MD10

TS

DL First

Stage

DL Second

Stage

Fig. 6: Circuit implementation of delay line in CR buffer.

M1

VDD

VIN

DLOUT

M2

M3

M4

M5

M6

M7

M8

M10

M9

VDD

VDD

VDD VDD

CR

TS

VOUT

Fig. 7: CR Buffer with input stage circuitry exposed.
VDD

M11

M12

M13

M14

CR

M17

M18

DLINT

DLOUT

M15

M16

DLINT

CL

Fig. 8: Charge recycling (CR) circuit.

makes a transition from “1” to “0”, since againDLOUT will
momentarily remain at logical “1”, the gate of M17 will be
pulled to GND through M12, thus turning it on and allow-
ing charge to be recovered from the load by the reservoir
capacitor. Again, after the signal VIN has completely prop-
agated through to DLOUT , M11 will turn on, M12 will be
shut off, which results in bothM17 andM18 being shut off,
again disconnecting the output from the reservoir capacitor.

We simulated the proposed switch design using commer-
cial 65nm STMicroelectronics models. Fig. 9 shows the
simulated waveforms as the output node of a switch and
a reservoir node when the input to the switch is driven by
a signal with a high toggle rate. Note that, as expected,
during the charge recovery/recycling phases, the output and
reservoir node voltages converge to the same voltage – this
is expected since during these phases the nodes are effec-
tively short-circuited to one another. We estimate that the
total load capacitance of a length-4 wire in a commercial
FPGA is near 200fF as follows: Based on the tile area data in
[15], we estimated a single tile length in each dimension as
170µm for an FPGA in 65nm CMOS which implies a wire
capacitance of 170fF for a length-4 wire, assuming a wire
capacitance per length of 0.25fF/µm. We anticipate that the
additional parasitic capacitance of a length-4 wire (result-
ing from the diffusion capacitance of the many multiplexors
connected to a length-4 wire) will push the total load capac-
itance close to 200fF in 65nm CMOS. With a 200fF load the
simulations show a power savings of 26%. The difference
in simulated power savings and the theoretically-expected
33% reduction is because of the additional overhead power

400 410 420 430 440 450 460 470 480 490 500
0

0.2

0.4

0.6

0.8

1

Time [ns]

N
o

d
e

 V
o

lt
a

g
e

 [
V

]

CR Buffer

Output

Node
Reservoir

Node

Fig. 9: Simulated waveforms of switch output and reservoir nodes.

consumption of the circuitry needed to facilitate charge re-
cycling.

The simulated delay for our designed CR buffer, when
used in CR-mode, is approximately 650ps, which represents
a two-fold delay hit over a conventional buffer, based on our
simulations. While the delay penalty may appear high, prior
work shows that over 70% of interconnect switches can be
slowed down by 75% in a commercial 90nm Xilinx FPGA,
without any critical path delay increase [8]. When the CR
buffer is not used in CR-mode however, the simulated delay
penalty is approximately 25ps, which is∼8% of the delay of
a conventional buffer. This delay penalty is resulting from
the fact that in the input stage of the CR buffer, when op-
erating in normal mode, the gate of M8 is charged through
two series PMOS transistors (M4 and M5), while the gate
of M7 is discharged through two series NMOS transistors
(M2 and M3). Nonetheless, since the majority of the total
delay through the buffer is given by the delay of the out-
put stage, the delay penalty at the input stage posed by our
buffer design results in a modest overall delay penalty.

4. TOOL SUPPORT

One of the premises of the proposed power saving technique
is that switches which are in a CR mode will have adjacent
tracks which are unused and thus can serve as reservoirs.
Therefore, special effort must be made during the physi-
cal implementation of a circuit to create opportunities for
charge recycling, especially for switches carrying signals
with high switching activity (as CR will provide the most
benefit for high-activity signals). In order to ensure that CR-
mode switches have unused adjacent tracks, the first com-
ponent of our CR-aware CAD flow is a modification to a
conventional FPGA router. The router is modified to en-
courage high-activity signals to be routed using CR-capable
switches, and moreover, to see that the reservoirs associated
with such switches (in the underlying architecture) remain
unused.

The VPR router incorporates the PathFinder algorithm [16].
PathFinder routes individual driver/load connections one at
a time. A cost function is used to find a low-cost path through
the routing fabric from a driver to a load. The cost function
incorporates metrics of timing performance and routability
(i.e. the ability to legally route all of the connections in the

circuit) in order to yield a routed circuit with a favorable
quality of results. The cost function implemented VPR is:

Costn = (1− Criti) · cong costn
+Criti · delay costn (1)

where n is the routing resource (e.g. wire segment) being
considered for addition to a partially-completed route, i is
the driver/load connection being routed, Criti is the tim-
ing criticality of the connection (equal to 1 for connections
on the critical path, and decreasing to 0 as the slack of the
connection increases), cong costn is the congestion cost of
routing resource n which gives an indication of the demand
for the routing resource among nets, while delay costn is
the delay of routing resource n.

The rationale for cost function (1) is that when connec-
tion i is being routed to a routing resource n, if the connec-
tion has high criticality (i.e.Criti is close to 1), then the cost
of using the routing resource is principally given by the de-
lay of that resource (equal to delay costn). For such timing-
critical connections, the principal concern should be to route
the connections using the fastest routing resources, with less
focus on the demand for such resources by other nets. On the
other hand, if the criticality of the connection being routed
is low (i.e. Criti is close to 0), then the cong costn is the
dominant part of the cost of using a resource. As such, con-
nections with sufficient timing slack are encouraged to use
resources with less demand, potentially pursuing more cir-
cuitous routes to reduce demand on overcongested nodes.

Turning now to our modification of the VPR router, for a
routing segment, n, driven by a CR-capable switch, we use
the following cost function:

Costn = (1− Criti) · [cong costn
+(1− αi) · res costn
+αi · (PF · res occn +GF · not crn)]
+Criti · delay costn (2)

where αi is the activity factor for connection i being routed
(normalized to a [0:1] range), PF and GF are scalar tuning
parameters (determined empirically), and res costn is equal
to (1 − Critj) · αj , where j is the index of the connection
currently occupying the potential reservoir of node n. Note
that res occn and not crn are binary variables; res occn is
equal to 1 if node n is a CR-capable switch whose reservoir
is used and is equal to 0 otherwise, while not cr is equal to
1 if node n is not CR-capable, and is equal to 0 otherwise.

The motivation for the modification to the cost function
is as follows: while routing a circuit, we wish to route con-
nections which have high switching activity and sufficient
timing margin (i.e. connections which are favourable can-
didates to use CR-mode switches) such that they use CR-
capable switches whose reservoir tracks are unoccupied. A
switch with an occupied reservoir track cannot be put into
CR mode, and therefore, such a scenario would lead to a
lost opportunity for power savings. In general, when rout-
ing connection i, we need to consider two cases: 1) connec-
tion i is a favourable candidate to use CR-mode switches,

or 2) connection i is not likely to use CR-mode switches.
For the former case, we aim to penalize routes where reser-
voir tracks are currently occupied, this is given by the (1 −
Criti) ·αi ·PF ·res costn term. For the latter case, we aim
to avoid situations where connection i uses a track which
could potentially be a reservoir for another connection j
(which may be a favourable candidate to use CR-mode switches).
As such, we penalize this case as well, and this is given by
the (1 − Criti)[(1 − αi) · res costn)] term. Furthermore,
the (1−Criti) ·αi ·GF ·not crn term acts to penalize nets
which are favourable candidates to be put into CR mode, but
are not using CR-capable switches.

4.1. Post-Routing CR Mode Selection

After routing is complete, we perform the final mode selec-
tion for each CR-capable routing switch. We formulate the
problem of mode selection as a mixed-integer linear pro-
gram (MILP). Our formulation accepts a user-provided crit-
ical path delay constraint as input and optimizes power sub-
ject to the constraint by placing an (activity-weighted) max-
imum number of routing conductors into CR mode. Let
G(V,E) be the circuit’s timing graph where each vertex,
v ∈ V , represents a routing conductor or pin and each (di-
rected) edge, e = (u, v), represents a programmable switch
or a combinational path through a combinational logic ele-
ment (e.g. a LUT). Let C be the subset of V corresponding
to CR-capable routing conductors. For each vertex v ∈ C,
we introduce a binary 0/1 decision variable, γv , indicating
whether v is in CR mode. Then, the delay of the conductor
is:

Dv = DIntrinsicv + γv · δv (3)

where DIntrinsicv is v’s delay when CR is turned off, and
δv is the added delay when CR is enabled. Vertices corre-
sponding to input pins on combinational logic elements are
assigned zero delay. We lump the delay through a combina-
tional logic element onto the vertex corresponding to its out-
put pin, however, it is straightforward to model the case of
there being multiple different path delays through the gate.
No γ variables are introduced for non-CR-capable vertices
– such vertices only have intrinsic delays.

Having defined the delays for logic and routing, we in-
troduce constraints specifying the worse-case arrival time at
any vertex, v, Arrv . Normally, this is done using a max
function over vertices that fanin to v in the timing graph.
However, as max constraints cannot be handled directly in
MILP, we introduce “greater than” constraints for each of
v’s fanin vertices:

Arrv ≥ ∀(u,v) ∈ E Arru +Dv (4)

where the arrival times for vertices corresponding to primary
inputs and flip-flop outputs are initialized to 0. Strict equal-
ity is used for vertices having a single fanin vertex in G (as
no max function is needed in such cases).

Let CO be the subset of verticies in V corresponding to
combinational path end-points, i.e. primary outputs of the

circuit and flip-flop inputs. Given a user-provided constraint
on the critical path delay, T , we introduce the following con-
straints:

∀v ∈ CO Arrv ≤ T (5)

The objective function of the MILP seeks to maximize
the switching activity-weighted number of routing conduc-
tors placed in CR mode, and, at the same time, contains
terms that cause the arrival time constraints in (4) to real-
ize a max function:

φ =
∑
i ∈ C

αi · γi −
∑
j ∈ V

Arrj (6)

where αi is the switching activity of vertex i. The first sum-
mation counts the number of conductors in CR mode, where
each is weighted by its activity. The second summation,
whose sign is negative, ensures that the arrival time assigned
for each vertex is as small as possible, yet consistent with the
constraints of (4), thereby realizing the familiar max func-
tion seen in timing analysis arrival time propagation. Note
that we scale all delay values to be small enough such that
the second summation in (6) does not dominate (6). The ob-
jective function (6) and the constraints above constitute an
MILP that can be solved with a standard MILP solver (we
used the open-source lpsolve ver. 5.5 [17]).

5. EXPERIMENTAL STUDY

In order to assess the merits of the proposed circuitry and
CAD flow, we used the set of benchmark circuits packaged
with VPR 6.0 [3]. Our baseline non-CR-capable architec-
ture contains unidirectional wire segments (direct-drive) which
span 4 CLB tiles, uses the Wilton switch block [18], and
has logic blocks with ten 6-LUTs/FFs per CLB. All bench-
mark circuits were routed on the baseline architecture to de-
termine the minimum number of tracks per channel needed
to route each circuit successfully (Wmin). For each circuit,
we then computed W = 1.3 ×Wmin to reflect a medium-
stress routing scenario – standard approach in FPGA archi-
tecture research. The computed W value for each circuit
was used for all experimental runs of the circuit. We use
the ACE switching activity estimator tool [19] to compute
switching activity for each signal in each benchmark circuit.
We make the following assumptions about the architecture
in our study: (1) each routing segment is paired with one
other routing segment and either can serve as the reservoir
for the other, and (2) the paired routing conductors have the
same start/end points but run in opposite directions1.

We assess the available power reductions as the perfor-
mance constraint on the worst-case critical path is varied in
the post-routing mode selection phase of our CAD flow (see
Equation 5). Naturally, relaxing the path constraints will
allow more switches to be placed in CR mode, yielding im-
proved power reductions at the expense of speed. The power

1We considered alternative pairings, however, this scheme produced the
best results. The power reduction results for alternative pairings are omitted
for space reasons.

!"#$%&'$()*+,&-$+-.*$(

)*+,&-$+-.*$(/&-,(01(

0"2"3&%&-4(

5678(9'+*$"#$(&'(

0*&:+"%(;"-,(

Fig. 10: Power reduction vs. critical path relaxation factor. Shown
for an architecture fully populated with CR capable switches.

results correspond to dynamic power consumed in the FPGA
interconnect. As discussed previously, we assume that CR
mode provides a 26% reduction in switch power consump-
tion and results in a 2× delay hit compared to a conventional
buffer. When a CR buffer is not used in CR mode, we as-
sume a 8% delay hit compared to a conventional buffer, as
obtained from simulation results above.

Fig. 10 shows the variation in power savings vs. the rel-
ative critical path (compared to the baseline). The leftmost
point of the blue curve shows the minimum power savings
that can be achieved with this technique under minimum re-
laxation of performance constraints. Here, we see a power
savings of approximately 15.5%, and a critical path penalty
relative to the baseline of 1.3%. One important point to
note is that while the CR buffer circuit reduced intercon-
nect power by ∼26%, only a fraction of all of the routing
conductors can be put into CR mode. Moreover, all of the
routing conductors which cannot be put into CR mode incur
a power penalty of around 1%, because of the gating cir-
cuitry in the input stage (the CR circuitry and delay line are
both disabled when the switch is not in CR mode). This is
why the total interconnect power reduction is diminished to
15.5%, while the intrinsic penalty to critical path is due to
the delay penalty of CR buffers (not operating in CR mode).
However, by relaxing timing constraints, more switches can
be put into CR mode. Those switches used for connections
with high criticality and thus could not be put into CR mode
under strict timing constraints can now be put into CR mode,
and thus additional power savings can be achieved. The re-
sults show that an additional 3% in power savings can be
achieved as the critical path is allowed to increase by a fac-
tor of 2. Power savings in the FPGA interconnect reach over
18% in this case, which we believe will be useful in power-
sensitive applications that do not need to run at high speed.

The power reductions for an architecture fully populated
with CR capable switches and a critical path relaxation fac-
tor of 1, are detailed on a benchmark-by-benchmark basis
in Table 1 (columns 2 and 3). Note that in the table, TF
refers to the critical path relaxation factor; a TF of 1 im-
plies no relaxation of the minimum critical path achievable
in the proposed architecture, while a TF of 1.5 refers to a
50% relaxation of the minimum critical path.

In addition to assessing the merits of the proposed tech-
niques from the perspective of power reduction, we also
studied the impact on area incurred by including CR-capable
routing switches. We first begin with a breakdown of the
area, in the number of minimum-width transistors, of all
components of a CR-capable switch. We use the number
of min-width transistors as the area metric as this is the area
metric used in the VPR place/route tool, and thus, it allows
us to find the percentage increase in area (over the baseline
architecture) of our CR-capable routing architecture.

The total area overhead of the proposed additional cir-
cuitry is equal to 45 minimum-width transistors per switch:
39 minimum-width transistors for the CR circuit, gating cir-
cuit, and delay line, and an additional 6 transistors for an
additional SRAM configuration cell needed for CR-mode
selection (note that Fig. 5 shows two SRAM cells, but these
are shared between two paired CR-capable buffers). From
our benchmark circuits, we obtained the number of CR-
capable switches for each circuit as the percentage of CR-
capable switches was varied from 10% to 100%, and as-
sessed the total routing area overhead incurred by the addi-
tional circuitry. The variation in area overhead and power
savings vs. the percentage of CR capable switches is shown
in Fig. 11. For the case where the FPGA is fully popu-
lated with CR-capable switches (which leads to maximum
power reduction), the proposed circuitry leads to an ∼25%
increase in routing area with a power savings of approxi-
mately 15.5%. Note that as the percentage of CR capable
switches is reduced, we see diminished power savings; this
is because architectures with reduced number of CR capa-
ble switches offer less opportunities to the router to put CR-
favourable nets into CR mode. Nonetheless, it is interesting
to observe that the reductions in power savings are not di-
rectly proportional to the reduction in CR-capable switches.
For instance, as the percentage of CR capable switches is re-
duced to 50%, the total power savings drops from 15.5% to
approximately 10%; thus there is a 35% reduction in power
savings, but a 50% reduction in area overhead. This encour-
ages us to potentially investigate architectures which have a
reduced number of CR capable switches but still over sig-
nificant power savings. The area overhead for each circuit is
shown in Table 1. Column 4 in the table shows the increase
in routing area; column 5 in the table shows the increase in
overall area.

Table 1 shows that the overall increase in area is 11.3%.
With a square tile layout, this corresponds to an increase of
∼5.5% (i.e.

√
1.113) in each of the x and y tile dimensions.

We believe this is a loose upper bound on the additional ca-
pacitance that would arise from having a larger tile, as the
portion of total capacitance contributed by attached switches
is unaffected by the tile size increase. The power reductions
provided by the proposed technique (15-18.4%) thus exceed
the potential increase in wire capacitance (at most 5.5%).

!
"
#
$
%&'

(
)
*+
,
-&./

$
"
0
$
1%*2&3

$
(
+
4&

5+1$%2"++$21&

!"#$%&'()*+,-&

5+1$%2"++$21&

6%$(&7)$%8$(9&

:"1(;&6%$(&

7)$%8$(9&

Fig. 11: Area overhead and Power Savings vs. percentage of CR-
capable switches.

Circuit Pwr Red. Pwr Red. Routing Area Total Area
TF = 1 TF = 1.5 Increase Increase

bgm 13.9% 19.9% 24.2% 13.9%
blob merge 13.6% 14.1% 24.8% 12.5 %
boundtop 16.5% 17.5% 24.5% 10.7%
ch intrinsics 17% 19.4% 27% 10.4%
diffeq1 17.4% 19.8% 26.8% 11.3%
diffeq2 13.3% 19% 25.7% 10.2%
LU8PEEng 15.9% 16% 24% 13.7%
mkDelayWorker32B 16.5% 20.7% 23.8% 11.9%
mkPktMerge 12.9% 20.3% 22.9% 8.3%
mkSMAdapter4b 16.5% 18.1% 24.7% 10.9%
or1200 18.7% 19% 24.1% 11.9%
raygentop 15.8% 17.2% 25.1% 11.5%
sha 15.9% 16.4% 24.8% 10.2%
stereovision0 16.6% 18.2% 23.1% 9.9%
stereovision1 14.2% 16.9% 24.2% 12.9%
stereovision2 14.9% 21.4% 24.1% 13.8%
stereovision3 15.1% 20.3% 32.4% 9.2%
geomean 15.5% 18.4% 25% 11.3%

Table 1: Power reductions and area overhead for each benchmark
in an architecture fully populated with CR-capable switches.

6. CONCLUSIONS AND FUTURE WORK

In this work, we presented a novel technique which specif-
ically targets the reduction of dynamic power in the routing
network of FPGAs. The idea is to leverage the unused rout-
ing conductors in the FPGA interconnect as charge reser-
voirs, which receive charge from neighboring conductors
on their falling transitions and which share charge on rising
transitions. Ultimately, this reduces the amount of charge
that needs to be drawn from the supply rail, saving power.
We presented a comprehensive description of the proposed
technique, from transistor-level description of necessary cir-
cuit structures, CAD flows and algorithms which would op-
timize the possible power reductions afforded by the pro-
posed technique, and assessed the tradeoffs in area, power,
and performance. Results show that charge recycling re-
duces dynamic power in the FPGA interconnect by ∼15-
18.4%, depending on performance constraints.

7. REFERENCES

[1] I. Kuon and J. Rose, “Measuring the gap between FP-
GAs and ASICs,” IEEE Trans. On CAD, vol. 26, no. 2,
pp. 203–215, Feb. 2007.

[2] L. Shang, A. Kaviani, and K. Bathala, “Dynamic power

consumption of the Virtex-II FPGA family,” in ACM
FPGA, 2002, pp. 157–164.

[3] J. Rose and et al., “The VTR project,” in ACM FPGA,
2012, pp. 77–86.

[4] F. Li, Y. Lin, and L. He, “FPGA power reduction using
configurable dual-Vdd,” in ACM/IEEE Design Automa-
tion Conference, 2004, pp. 735–740.

[5] A. Gayasen, Y. Tsai, N. Vijaykrishnan, M. Kan-
demir, M. Irwin, and T. Tuan, “Reducing leakage en-
ergy in fpgas using region-constrained placement,” in
ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays, Monterey, CA, USA, 2004,
pp. 51–58.

[6] A. Bsoul and S. Wilton, “An FPGA architecture sup-
porting dynamically controlled power gating,” in IEEE
FPT, 2010, pp. 1–8.

[7] T. Tuan, A. Rahman, S. Das, S. Trimberger, and S. Kao,
“A 90-nm low-power FPGA for battery-powered appli-
cations,” IEEE Trans. on CAD, vol. 26, no. 2, pp. 296–
300, 2007.

[8] J. Anderson and F. Najm, “Low-power programmable
FPGA routing circuitry,” IEEE Trans. VLSI, vol. 17,
no. 8, pp. 1048 –1060, 2009.

[9] J. Ryan and B. Calhoun, “A sub-threshold FPGA with
low-swing dual-VDD interconnect in 90nm CMOS,” in
IEEE CICC, 2010.

[10] Stratix III Programmable Power White Paper, Altera
Corp., 2007.

[11] G. Nabaa, N. Azizi, and F. N. Najm, “An adaptive
FPGA architecture with process variation compensation
and reduced leakage,” in ACM/IEEE DAC, 2006, pp.
624–629.

[12] B. Bishop and M. Irwin, “Databus charge recovery:
practical considerations,” in ACM/IEEE ISLPED, 1999,
pp. 85 –87.

[13] P. Sotiriadis, T. Konstantakopoulos, and A. Chan-
drakasan, “Analysis and implementation of charge re-
cycling for deep sub-micron buses,” in ACM/IEEE
ISLPED, 2001, pp. 364–369.

[14] K. Patel, W. Lee, and M. Pedram, “In-order pulsed
charge recycling in off-chip data buses,” in ACM Great
Lakes Symp. on VLSI, 2008.

[15] H. Wong, V. Betz, and J. Rose, “Comparing FPGA
vs. Custom CMOS and the impact on processor
microarchitecture,” in ACM/SIGDA Intl. Symp. on
FPGAs, 2011, pp. 5–14.

[16] L. McMurchie and C. Ebeling, “PathFinder: A
negotiation-based performance-driven router for FP-
GAs,” in ACM FPGA, 1995, pp. 111–117.

[17] LP solve reference
(http://lpsolve.sourceforge.net/5.5/), 2012.

[18] S. J. Wilton, “Architecture and algorithms for field-
programmable gate arrays with embedded memory,”
Ph.D. dissertation, 1997.

[19] J. Lamoureux and S. Wilton, “Activity estimation for
field-programmable gate arrays,” in IEEE FPL, 2006,
pp. 1–8.

