
Master Thesis

Accurate and Flexible

Flow-Based Monitoring

for High-Speed Networks

Author: Supervisor:
Marco Forconesi Gustavo Sutter

High-Performance Computing and Networking Research Group
Escuela Politécnica Superior, Universidad Autónoma de Madrid

(Spain)

September, 2013

Acknowledgment

To the HPCN staff, specially G. Sutter, S. López B. and J. López V.

‘An absence of fear of the future and of veneration for the past. One who
fears the future, who fears failure, limits his activities. Failure is only the
opportunity more intelligently to begin again. There is no disgrace in honest
failure; there is disgrace in fearing to fail. What is past is useful only as it
suggests ways and means for progress.’

Ford H., “My Life and Work”, 1922.

Declaration of Authorship

I,Marco Forconesi, declare that this thesis titled, ‘Accurate and Flexible
Flow-Based Monitoring for High-Speed Networks’ and the work presented
in it are my own. I confirm that:

• This work was done mainly while in candidature for a Master degree
at this University.

• Where any part of this thesis has previously been submitted for a
degree or any other qualification at this University or any other insti-
tution, this has been clearly stated.

• Where I have consulted the published work of others, this is always
clearly attributed.

• Where I have quoted from the work of others, the source is always
given. With the exception of such quotations, this thesis is entirely
my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others,
I have made clear exactly what was done by others and what I have
contributed myself.

Signed:

Date:

Contents

Summary . 1

Introduction. .2

Published Paper. .3

Paper Revisions . 11

Application Note: Integration on NetFPGA-10G . . 17

Thesis Conclusion and Future Work 30

M.Forconesi Master’s Thesis

Summary

This Master’s Thesis1 reports the project developed for the ‘Trabajo de Fin
de Máster’ subject of the Master’s Degree in ICT Research and Innovation
(I2-ICT). The project consists of a hardware prototype implementation that
classifies 10 Gbps IP network traffic. The work is novel since it can monitor
a higher number of concurrent communications than all previous implemen-
tations and also it analyzes every packet on the monitored link, i.e. it does
not perform packet sampling.

1This project has been developed with the support of the
High Performance Computing and Networking Research Group.

1

M.Forconesi Master’s Thesis

Introduction

As opposed to a monograph style, this thesis is based on a research publica-
tion submitted for the 23rd International Conference on Field Programmable
Logic and Applications that took place in Porto, Portugal last September,
2-4, 2013. The reasons why this work has not been reformatted to be pre-
sented in the traditional style are the following:

• A paper accepted to be presented at an international conference re-
flects the fact that it has a research and innovation component, since
it is of interest to the modern research community2.

• The writing quality of the documentation related to the work, e.g. the
paper, is as good as possible since it will have more opportunities to
be accepted.

• The publication is subject to international and independent reviewers
who accept or reject the work depending on the work itself.

• The student agrees with the use of the modern fashion of a ‘thesis by
publication’ due its quality, economical and efficient advantages.

In the following the publication mentioned above, titled “Accurate and
Flexible Flow-Based Monitoring for High-Speed Networks”, is presented in
its original full-version (7 pages). Although the paper has been accepted to
be presented as a short paper (4 pages) plus a poster presentation at the
conference, the full-version provides a more complete documentation of the
developed work.

As a final complement to the developed project, an application document
explains how to integrate and test the prototype in the NetFPGA-10G plat-
form. This document was specifically written for the NetFPGA-10G com-
munity and for that matter the authors gave their best in order to obtain
the best possible quality, as well as for the paper.

2This is a mandatory requirement for the ‘Trabajo de Fin de Máster’ subject.

3

M.Forconesi Master’s Thesis

Published Paper

The following document is the paper submitted to the 23rd International
Conference on Field Programmable Logic and Applications. The article
explains why network monitor is a need, the state-of-the-art in the topic,
the reason to do the packet processing in hardware, the description of the
developed architectures and the obtained results after the testing phase.

5

ACCURATE AND FLEXIBLE FLOW-BASED MONITORING
FOR HIGH-SPEED NETWORKS

Marco Forconesi, Gustavo Sutter, Sergio Lopez-Buedo, Javier Aracil

High-Performance Computing and Networking Research Group
Escuela Politécnica Superior, Universidad Autónoma de Madrid (Spain)

email: {marco.forconesi, gustavo.sutter, sergio.lopez-buedo, javier.aracil}@uam.es

ABSTRACT
In this paper we present an architecture to classify 10 Gbps
network traffic based on FPGAs using the NetFPGA plat-
form. Flow-based network monitoring is today the most
spread technology employed by engineers and administra-
tors to analyze and detect network issues.

The main improvements of our design, compared to the
state-of-the-art flow analyzer tools, come from: (i) the ar-
chitecture allows to process full rate 10 Gbps links without
sampling even with the shortest packets (14.88 Mpps - Mil-
lion packets per second); (ii) it is possible to manage up to
786,432 concurrent flows; (iii) the project is developed in
an open-source hardware platform and the code is opened to
the community; (iv) it relieves the networks and its devices
from the overload of monitoring process.

1. INTRODUCTION

Flow-based monitoring is the most common practice used
to analyze network traffic in order to track information
on resources and bandwidth utilization as well as network
dysfunctionalities and attacks. The infrastructure consists
mainly of two parts: the data source that analyzes the pack-
ets in the network and creates the flows, and the data collec-
tor which receives the exported flows from the data sources
and stores them for future processing. A data source an-
alyzer is typically implemented inside the network devices,
such as routers and switches, and it takes advantage of its re-
sources to analyze the network packets and store the flows’
information while those are active on the link. Periodically,
the removed flows from the data source are sent to the data
collector through the same network that is being monitored.
The communication between the data source and data col-
lector is typically done by the use of some specific proto-
col like NetFlow [1] by Cisco R©, sFlow [2] by Foundry R©,
Jflow [3] by Juniper R© or IPFIX [4] an IETF standard. Those
Layer 3 protocols are carried on a UDP stream from the data
source to the data collector. The main advantage of monitor-
ing a network using these devices is that is not necessary to
add any extra component, since the entire packet processing

is done inside the routers or switches and the communica-
tion to a data collector is accomplished by the use of the
same network. Unfortunately, in the context of high-speed
networks, they exhibit the following drawbacks that are not
possible to mitigate:
• In highly loaded networks, the extra processing per-

formed by routers and switches could result in too much
overload. When this occurs, the flow monitoring is
skipped in order to dedicate all the device’s resources
to route packets, thus losing all the flow-based informa-
tion [5].

• In high-speed networks, the flow-based monitoring per-
formed by routers and switches, is accomplished in the
basis of packet sampling, i.e. not all the packets on the
network are analyzed. This could result in poor accuracy
of the data delivered to the collector.

• As stated earlier, communication between the data
source and the data collector is done by the use of the
same network that is being monitored. This could lead
to network overloading and also to incorrect information
since production traffic is mixed with network measure-
ment traffic.

• The flows’ information sent on the UDP packets to the
data collector, are deleted forever from the data sources.
Since UDP is not a reliable transport, if the packets are
dropped somewhere in the network, then it is not possi-
ble to recover the flow-based information in anyway.

• Routers and switches have limited resources so they can-
not scale to higher link-rates or larger memory capac-
ity to store the active flows. Moreover, these network
devices are closed platforms, so even if they perform
flow-based monitoring, network engineers are not free
to modify how flows are defined or what type of infor-
mation is collected.
In order to overcome the limitations listed above, a flex-

ible open-source platform to collect the flow-based infor-
mation suitable for high-speed networks is needed. It is also
desirable that the measurement traffic technique does not be-
come intrusive on the network that is being monitored and
does not impact on the network devices either. Our goal

M.Forconesi Master’s Thesis

7

is to improve the decision-making process of network ad-
ministrators with the aid of a high-quality flow monitor tool
which will supply analysis algorithms with accurate inputs.

2. RELATED WORK

Besides of commercial routers, there are many proposed
probes that generate network flows at 10 Gbps and beyond.
Many attempts are made based on software that use com-
modity hardware while others are based on reconfigurable
hardware.

Software based probes: Although modern NICs (Net-
work Interface Cards) hardware can handle high packet
rates, standard operating system network stacks are still af-
fected by a several software bottlenecks. The most impor-
tant is the per-packet operations like buffer allocation and
transfer to user-space. To overcome such issues, several ap-
proaches in order to bypass standard stacks are used. For
example, processing multiple packets in batch to limit the
number of interruption and DMA transactions, or exposing
memory of packet buffers to the user-space for “zero-copy”
access. The state-of-the-art in software implementations re-
quires multicore implementations and a careful balance be-
tween cores. nProbe [6] and softflowd [7] are two very well-
known and popular open-source approaches. Danelutto et
al. [8] reports the use of several advanced parallel program-
ming techniques in the implementation of ffProbe and com-
pares against nprobe, sofflowd. They achieve up to near
10 Mpps for ffProbe and poorer results for the others.

Reconfigurable Hardware Probes: Žádnı́k [9] makes
a first implementation on NetFPGA-1G (a Virtex R©-2 plat-
form). This version is publicly available in the NetFPGA-
1G repository and supports only 1 Gbps link-rate. The
project evolved to FlowMon [10] using Virtex R©-5 in the
contest of liberouter project [11]. This report describes two
versions of FlowMon: the first one uses the FPGA to re-
ceive the packets while the flow processing and storage is
made in the host PC, the second one uses on board QDR
memory for the flows’ storage and the processing is done in
the FPGA. The implementation is limited to 3 Mpps. Yusuf
et al. [12] proposed an architecture for network flow analy-
sis on FPGA. They use a Virtex R©-2 device and are able to
store up to 65,536 concurrent flows and a maximum below
3 Mpps. Rajeswari et al. [13] give some results for Virtex R©-
5, they claim superior speed but only for 500 concurrent
flows.

We present in this paper two architectures, one using
only internal BlockRAMs of the FPGA to store the flows
and a more complex one that uses external QDR-II memory.
Our architecture distinguishes itself from previous works in
the following main aspects:
1. It can store up to 3/4 million concurrent flows.
2. It allows out-of-band transport of the exported flows

from the data source to the data collector for the sake
of freeing the monitored network of flow-based informa-
tion traffic. It can be done via PCIe or another network
interface instead.

3. Communication between the data source and data col-
lector can be implemented using any format and with a
reliable transport mechanism.

4. It can analyze 10 Gbps links even in the worst-case sce-
nario (smallest packets with shortest inter-packet gap),
i.e. 14.88 Mpps with 64-bytes packets.

5. The architecture could scale up to 40 Gbps networks
with the use of state-of-the-art FPGA devices.

6. The project is implemented in an open-source hard-
ware [14] and the code is opened to the community, thus
it is completely customizable depending on the network
engineer’s needs.
Both proposed architectures are available throughout a

public repository [15] and will be discussed further.

3. FLOW-BASED MONITORING TECHNIQUE AND
DEVELOPMENT PLATFORM

In this section we review the key concepts of flow-based
analysis, that led to the developed architectures. Afterwards
we briefly present the NetFPGA-10G platform as the hard-
ware resource where the designs have been implemented.

3.1. Flow Cache and Network Flow as the Traffic Anal-
ysis Unit

A flow, according to Cisco’s R© definition, is a unidirec-
tional stream of packets between a given source and des-
tination [1]. Each flow is identified by five key fields, which
are listed below:
• Source IP address
• Destination IP address
• Source port number
• Destination port number
• Layer 3 protocol type

Those packets with the same elements above (5-tuple
henceforth) belong to the same flow. Every Ethernet frame
received by the application is parsed to extract its 5-tuple
and additional information, such as: timestamp, TCP flags
and bytes within the frame. A fast local memory inside the
core, known as flow cache, is used to store the active flows
of the link that is being monitored. The data structure on the
flow cache is called flow table and it consists of a list of flow
records, one for each active flow. The information contained
for each flow record: number of packets, total number of
transmitted bytes, timestamp of the flow creation/expiration
and TCP flags, is used for a later traffic analysis, once the
flow is purged from the flow cache. Every time a packet is
received, the memory is polled to determine if the extracted
5-tuple matches an active flow, if not, a new flow entry is

M.Forconesi Master’s Thesis

8

Process	A:
Flow	creation
&	updates

OutputFlow	Table
Active	Flows

Process	B:
Flow	activity	&
inactivity	monitor Flows

Input

Packets

Fig. 1. Concurrent Process Running on the Flow Table.

created. Otherwise the active flow in the flow table is up-
dated.

Parallel to the flow creation and updates, there is a mech-
anism that is in charge of removing the flow records from the
flow table once it is no longer on the link. The rules for ex-
piring the flows, i.e. purge them from the flow table, are the
following:
• If a flow shows no activity for a certain time (no new

packets belonging to the flow are received), then it is
removed from the flow table since the connection no
longer exists on the link. Inactivity timeout is typically
set to 15 seconds.

• The long lived flows, those that keep receiving packets
with a certain regularity, are removed after an activity
timeout has elapsed. This condition is useful to avoid
counters’ overflow. Activity timeout is typically set to
30 minutes.

• Flows with TCP protocol that have reached the end of
the connection (FIN flag set) or have been reset (RST
flag set) are purged from the flow cache.
As can be inferred, two concurrent processes are access-

ing the flow table (the memory) as depicted in Fig. 1.
After the flows are purged from the flow cache, nor-

mally they are packed in bundles and delivered to some kind
of computing device (data collector device) for its storage
and/or high-level analysis. This task is performed by another
unit, known as flow export, and the implementation can vary
depending on the needs. Since the construction of the flows
acts much as a filter, the amount of information at the in-
put of flow cache is several orders of magnitude bigger than
its output, when dealing with regular network traffic. For
this reason the focus of this implementation is on flow cache
rather than flow export, since the latter can be implemented
in many ways without a hard challenge.

3.2. Development Platform

The design has been implemented and tested on the open-
source NetFPGA-10G project [14]. NetFPGA-10G is the
second release of the NetFPGA project and refers to an
effort to develop an open source hardware and software
platform for enabling rapid prototyping of networking de-
vices [16]. It was developed at the Standford University
together with Xilinx R© Research Labs to help researchers
quickly build fast, complex designs, mainly in hardware.

The platform is intended to provide everything necessary to
get end users off the ground faster, while the open-source
community allows researchers to leverage each other’s
work. The platform has a Virtex R©-5 TX240T FPGA [17] in-
terfaced with five SFP+ cages trough AEL2005 PHY chips
that provides four independent 10 Gbps Ethernet ports. The
board is also populated with three external QDR-II and four
RLDRAM memory modules that give 27MB and 288MB
respectively.

4. PROPOSED ARCHITECTURES

In this section we will examine the two implementations that
were developed: NF BRAM and NF QDR. The former uses
internal BlockRAMs of the FPGA to store the active flows,
while the latter uses external QDR-II memory instead. The
NF BRAM implementation supports up to 16,384 concur-
rent active flows and the NF QDR supports up to 786,432.
Both of them were designed to work with no-sampling over
the received packets in order to implement a precise flow
analyzer tool. Before we introduce the details of each archi-
tecture, we will analyze the timing requirements needed for
being able to deal with 10 Gbps Ethernet traffic, even in the
worst-case scenario.

4.1. Temporal Restrictions

According to the IEEE 802.3 standard [18], the minimum
Ethernet frame is 576-bits long. That includes: pream-
ble, start of frame delimiter, source and destination MACs,
type/length, data and frame check sequence. On the other
hand, the IEEE 802.3ae-2002 [19] defines the minimum in-
terframe gap to be 40-bits (5 octects) in the receiving MAC.
That sums the total of 616-bits i.e. 61.6 ns between pack-
ets. The user side of the MAC core in the NetFPGA-10G is
a 64-bits wide interface running at 200 MHz in single-data
rate (SDR). That means we have a total of 12 clock cycles
to process every packet in the worst-case scenario.

4.2. Architecture of NF BRAM

This implementation of the flow cache uses BlockRAMs
available on the FPGA for the flow table. Since the Block-
RAMs of the FPGA are true dual port, the connection of the
two concurrent processes, depicted in Fig. 1, is as simple
as connecting the logic of Process A to one port of Block-
RAMs and Process B to the other. In the following we will
describe the internal modules of the NF BRAM architecture
shown in Fig. 2.

Packet Parser. This module receives all the Ethernet
frames from the link that is being monitored. It extracts its
5-tuple, described in Sec. 3.1, plus the information needed
to create a new flow or update an existing one. That infor-
mation is comprised of: the timestamp aligned to the start

M.Forconesi Master’s Thesis

9

Packet
Parser

Hashing
Module

Create/
Update
Flows

Export
Module

Timeout
Conditions
Monitor

Flow
Table
(BRAM)

Output
Flow	Records

Input
Packets

Port	A
Port	B

Time
Counter

Fig. 2. NF BRAM Block Diagram.

of the frame reception, the TCP flags (if the packet has that
Layer 3 protocol) and finally the number of bytes within the
frame. If the frame the interface is receiving is not TCP or
UDP or if its FCS (Ethernet CRC) is corrupted (signaled
from the MAC user interface), then the frame is discarded
by this module. An external GPS module provides a time
counter to precisely timestamp the incoming frames. The
GPS module is a different project and will not be addressed
here.

Hashing Module. When a 5-tuple is received from the
packet parser, this unit calculates a 14-bit wide hash code to
obtain an address where the flow record will be stored. A
hash function is needed since a memory with 2104 locations,
one for each possible 5-tuple, is not feasible. In addition,
a full memory look-up would neither meet timing nor be
scalable to bigger flow tables. Note although, that we have
at least 12 clock cycles to calculate a hash code for each
packet, so a relative complex hash function is implemented
(using multipliers and more) in order to minimize the prob-
ability of collision.

Create/Update Flows. Is the name given to Process A
in Fig. 1. With the previously calculated hash code, the flow
table is addressed and its content analyzed. If the busy flag
is set, it means that an active flow is on that location, so
the received 5-tuple is compared to the stored one. If they
match, the flow is updated with the information of the re-
ceived packet, if they do not match there is a collision and
the received packet is discarded. On the other hand, if the
busy flag is clear then a new flow record is created in that
position of the flow table. Note that in case of a collision
we could decide to export the old flow and create a new flow
record with the new packet, instead of throwing it. Both
approaches do not achieve the goal of the tool. The third
condition, listed in Sec. 3.1, to purge a flow record from the
memory is performed by this unit. If a TCP packet with a
RST or FIN flag set to one is received, the memory is polled
to check if there is an active flow to which the packet be-
longs to. In that case the flow is updated and exported im-
mediately. If the memory in the corresponding location is
empty or other flow record is on it, the received TCP packet
is exported as flow record with only one packet on it.

Flow Table. As stated earlier, this module is imple-

bu
sy
	fl
ag TCP

flags

Flow's
initial

timestamp

Flow's
last

timestamp

Flow's
packet
counter

Flow's
byte

counter
Flow's	5-tuple

address	(x)

104-bits1'b 8'b 32-bits 32-bits 32-bits 32-bits

Fig. 3. Memory Organization on NF BRAM.

mented with BlockRAMs of the FPGA. It is codified to
allow each flow record to be stored and read back in one
memory address as shown in Fig. 3. The access of the two
processes to the memory is completely in parallel and in-
dependent. With this configuration, the design could run at
line rates above 10 Gbps.

Timeout Conditions Monitor. Is the name given to Pro-
cess B in Fig. 1. This unit uses a linear counter to address
the flow table. For each entry the busy flag is checked. If it is
clear, the linear search continues, if it is set instead then two
operations are performed in parallel. The first one checks
that the time elapsed since the last packet of the flow ar-
rived is less than the prefixed inactive timeout. This is done
by subtracting the flow’s last timestamp to the current time
counter (from the external GPS module). The second opera-
tion consists of checking that the time elapsed since the flow
record was created is less than the prefixed active timeout
and is done by the subtraction of the flow’s initial timestamp
from the current time counter. If either of the two conditions
are satisfied, the flow record is exported outside the core and
removed from the flow table by clearing the busy flag.

Export Module. This module receives the flow records
that were purged from the flow table and exports them out
of the flow cache core. It implements the necessary logic
to generate AXI4-Stream [20] transactions in order to com-
municate with different types of external modules. As an
example, a NetFlow v5, v9 or IPFIX core could receive the
removed flows and send them out with the corresponding
protocol. It can also be connected to a PCIe DMA engine
in order to send the flow records to the host, or it can send
the flows out with the use of an Ethernet interface in a plain
format (one Ethernet frame for every exported flow record).

4.3. Architecture of NF QDR

This second architecture boosts the flow-based monitoring
on FPGA in three manners. First, it uses external QDR-
II memory to implement a much bigger flow table, com-
pared with the previous one, and also it does not consume
the FPGA’s BlockRAMs. Second, it gives a flexible way
for the network engineer to configure the flow cache accord-
ing to his/her needs, with the aid of two-addresses per flow
record scheme. Third, it reduces the flow drops caused by
the flaws of the hash function.

Since the functionality of both NF QDR and NF BRAM
remains the same, only the differences between them and the

M.Forconesi Master’s Thesis

10

Packet
Parser

Hashing
Module

Flow
Look-up

Export
Module

Timeout
Conditions
Monitor

Main
Memory
Arbiter

Output
Flow	Records

Input
Packets

Internal
Cache

Create/
Update
Flows Communication

with	External
Memory

Time
Counter

Fig. 4. NF QDR Block Diagram.

enhancements will be addressed next.

4.3.1. Architectures’ Details

A top level block diagram of the NF QDR implementation
is shown in Fig. 4. The main difference with the NF BRAM
architecture is due to the memory access of the two concur-
rent processes. Since there is only one available port in these
external memories, we must provide a multiplexing mecha-
nism for both processes to share the communication with
the memory. We will describe the following internal mod-
ules: Flow Look-up, Internal Cache and Main Memory
Arbiter of the NF QDR since all the others have the same
functionality as described in 4.2.

Flow Look-up. When a hash code is calculated from
an extracted 5-tuple, this module first looks-up if the active
flow record is in the internal cache module. If the flow is
in cache, it is updated and the update is written back to the
external main memory. If the flow is not found in the cache,
this module performs a read operation on the main memory.
The information about the received packet and its hash code
is passed to the create/update flows module and the process
of creating a new flow record or updating an existing one is
almost the same than in the other architecture.

Internal Cache. In order to reduce the read operations
to main memory, this cache module is used to store the most
recently created flows. Burst of packets that belong to the
same flow do not poll the memory every time they are re-
ceived to check if the flow is active. If the flow to be up-
dated upon a packet reception is in the cache, then the exter-
nal memory is only addressed to write the updated flow back
so an exact copy of the information in the cache is present
in the main memory. This module increases the bandwidth
available for Process B that must share the communication
to the memory with Process A, as depicted on Fig. 1.

Main Memory Arbiter. As stated earlier, the two con-
current processes must share the communication with the
main memory, since no true dual ports are available in this

bu
sy
	fl
ag

TCP
flags

Flow's
initial

timestamp

Flow's
last

timestamp

Flow's
packet
counter

Flow's
byte

counter

Flow's	5-tuple

address	(x)

104-bits 1'b

8'b 32-bits 32-bits 32-bits 32-bits

A
va
ila
bl
e

sp
ac
e

8'b

Avaliable	for
other	configurations

address	(x+1)

39-bits

Fig. 5. Memory Organization on NF QDR.

case. The reception of a packet is an asynchronous event
so a predefined scheduling is not possible. The dispatcher
maintains a number of read operations on queue that max-
imize the memory throughput, but the Process B’s pending
tasks are limited to a small number so a good response time
for the creation and updates of the flows (Process A’s tasks)
is achieved. This module also implements all the necessary
logic to interface the external memories with the aid of the
Xilinx R© MIG (Memory Interface Generator) [21].

4.3.2. User Defined Flows

The main memory organization of the NF QDR is based on
a two-addresses per flow scheme and is shown in Fig. 5. Ev-
ery flow record is split on the flow table in the flow’s ID
(5-tuple) and the flow’s information. What uniquely identi-
fies the flow (e.g. its 5-tuple) is stored in address x with its
LSB (Least Significant Bit) set to one, while the flow’s in-
formation is stored in the contiguous address x+1. With this
scheme, the architecture provides the flexibility needed for
the network engineer to define the flows in whatever he/she
understand by a flow, having only to modify the packet
parser module and leaving the more complex memory man-
agement as it is. For example, a researcher that is interested
in analyzing how many concurrent TCP connections over
each VLAN are active in a particular link, would have to
modify the packet parser module extracting the VLAN ID
field from each Ethernet frame, and drop all the non-TCP
packets.

4.3.3. Collision Treatment

A good design of the hash function is crucial in order to min-
imize the probability of collisions, i.e. two or more input
elements that get the same hash code. Normally whenever
a collision takes place, the colliding flow must be discarded
and the performance of the tool is compromised since it is
not capable of doing what it was designed for: monitor the
flows on a link. The construction of a well-balanced hash
function is not an easy task since the normal assumption
that all the input elements have the same probability of oc-
currence is not true. For example, the Layer 3 Protocol type

M.Forconesi Master’s Thesis

11

Memory
Module	A

FPGA

Hash
Code	X

Slot	A Slot	B Slot	C

Memory
Module	B

Memory
Module	C

Flow	Table

Fig. 6. Slots for Collision Treatment on NF QDR.

field is likely to be: TCP (0x06), UDP (0x11) or some more
few values but not any arbitrary value out of the 256 pos-
sible. The IP addresses as well as the Layer 3 Ports also
share this behavior. To reduce the possible flaws of the hash
function, in the NF QDR implementation, the three avail-
able QDR-II memory modules available on the NetFPGA-
10G board are used to provide three slots for each hash code
as shown in Fig. 6. When a new flow record with a particu-
lar hash code is about to be created, an empty slot is fetched
from module A to module C. If all three slots are busy with
other flow records, it means that at least four elements (5-
tuples) generated the same hash code and the fourth new
flow record has to be dropped. Fortunately, the likelihood of
occurrence of a level 3 collision is less than the occurrence
of a level 2 and even less than a level 1 collision, both of
which are not an issue in this implementation.

5. IMPLEMETATION RESULTS AND VALIDATION

In this section we firstly report the total amount of FPGA
resources the architectures use. Then we describe the pro-
cedures followed to test the performance of the described
designs, covering hardware, software and traffic details. Fi-
nally we present a comparison between our architectures
and the ones introduced in Sec. 2.

5.1. Hardware Resource Utilization

The designs were coded in VHDL and synthesized us-
ing Xilinx EDK/XST v13.4 [22] [23]. The code for
NF BRAM and a simplified version of NF QDR are pub-
licly available [15]. As mentioned earlier the target plat-
form is NetFPGA-10G which contains a Xilinx R© Virtex R©-5
TX240T FPGA. Table 1 shows the main resource utilization
of the FPGA for each design. The clock frequency for both
architectures is 200 MHz i.e. the same of the user side of the
MAC core, as stated in Sec. 4.1. A careful design method-
ology was taken in order to meet all timing constraints.

Table 1. Resource Utilization of the FPGA
#Luts #Flip Flops #BRAMs

NF BRAM 897 1642 121
NF QDR 5296 7050 7

Table 2. Performance Comparison
Link Dev Max. con. Max.

(Gbps) Flows Mpps
Žádnı́k [9] 1 V2 60K 1.4

Rajeswari [13] 10 V5 0.5K -
Yusuf [12] 10 V2 64K 2.9

FlowMon [10] 10 V5 500K 3.0
NF BRAM 10 V5 16K 14.8
NF QDR 10 V5 768K 14.8

5.2. Experimental Testbed

The verification and stress test of the designs were carried
out in our laboratories with the aid of software tools [24].
In the following, we describe the tests in more detail. Two
general-purpose PCs containing 10 Gbps Ethernet interfaces
were connected to the NetFPGA-10G platform. The first PC
was used as traffic generator, running a high-performance
network driver [24] that is capable of 10 Gbps link satu-
ration. The second machine captured in a file the output
flow records exported by the design under test. Each Eth-
ernet frame sent from the design carried one exported flow
record in a non-standard plain format. The same input traf-
fic was processed offline with a well-known flow capturing
software [25]. Both output files were compared to extract
the differences. From a detailed analysis of the results, the
observed differences were due to the collisions occurred in
the hardware implementations. All the Ethernet connectiv-
ity, between the NetFPGA-10G and the PCs, is by means
of multi-mode fiber optics, with SFP+ transceivers using
850 nm wavelength i.e. 10GBASE-SR. We utilized both,
synthetic traffic and real traces for the tests. With the first we
tested the worst case scenario using a loop generator of min-
imum size packets with minimum interframe gaps during a
100-second run. With the real traffic captures, we tested the
flow creation in a real scenario and checked the output flows
against the output of the software tools mentioned above.

5.3. Performance Comparisons

In Table 2 we compare the published hardware implementa-
tions refered in Sec. 2 against the two introduced here. We
evaluate the performance of each architecture based on: the
maximum supported number of concurrent flows, the link-
rate, the maximum amount of the smallest packets (as de-

M.Forconesi Master’s Thesis

12

scribed in Sec. 4.1) expressed in millions, and finally the
FPGA device used for the implementation (V5 stands for
Xilinx R© Virtex R©-5 and V2 for Virtex R©-2).

6. CONCLUSION

We have developed an accurate and flexible flow-based clas-
sifier tool for 10 Gbps networks. The main characteris-
tics that outperform the previous published works comes
from the possibility to process saturated 10 Gbps links with-
out packet sampling even with the shortest packets, i.e.
14.88 Mpps, and the possibility to manage up to 3/4 con-
current flows. We proposed two architectures, one that uses
internal BlockRAMs of the FPGA (NF BRAM) and a sec-
ond that uses external QDR-II memory (NF QDR), which
both are public open-source hardware projects. We encour-
age network engineers to create specific flow-based tools to
aid the detection of network issues and attacks on the basis
of our work. We hope that new network monitoring tech-
niques will rapidly emerge with the fact of building in the
work of others.

7. REFERENCES

[1] Cisco Inc., “Netflow services solutions guide,” Jan. 2007.
[Online]. Available: http://www.cisco.com/en/US/docs/ios
/solutions docs/netflow/nfwhite.html

[2] M. Lavine and P. Phaal, “sFlow Version 5,” Foundry
Networks and InMon Corp., Tech. Rep., July 2004. [Online].
Available: http://www.sflow.org/sflow version 5.txt

[3] Juniper Networks Inc., “Junos OS, Flow Monitoring,” Nov.
2012. [Online]. Available: http://www.juniper.net/

[4] B. Claise, “Specification of the IP Flow Information Export
(IPFIX) Protocol for the Exchange of IP Traffic Flow
Information,” RFC 5101 (Proposed Standard), Internet
Engineering Task Force, Jan. 2008. [Online]. Available:
http://www.ietf.org/rfc/rfc5101.txt

[5] WildPackets Inc., “Beyond Monitoring – Root-Cause
Analysis,” Tech. Rep., Dec. 2009. [Online]. Available:
http://www.wildpackets.com/resources/whitepapers

[6] L. Deri, “nProbe: an Open Source NetFlow Probe for Gigabit
Networks,” in Proceeding of Terena TNC, May 2003.

[7] D. Miller, “softflowd, a software NetFlow probe,” Sept. 2004.
[Online]. Available: http://code.google.com/p/softflowd/

[8] M. Danelutto, D. Deri, and D. De Sensi, “Network monitor-
ing on multicores with algorithmic skeletons,” Advances in
Parallel Computing, vol. 22, pp. 519 – 526, 2012.

[9] M. Žádnı́k, “NetFlowProbe on NetFPGA-1G,” May 2010.
[Online]. Available: http://wiki.netfpga.org/foswiki/bin/view
/NetFPGA/OneGig/NetFlowProbe

[10] M. Žádnı́k, L. Polčák, O. Lengál, M. Elich, and P. Kramoliš,
“FlowMon for Network Monitoring,” in Networking Studies
V : Selected Technical Reports. CESNET, z.s.p.o., 2011, pp.
135–153.

[11] Liberouter. [Online]. Available: http://www.liberouter.org/

[12] S. Yusuf, W. Luk, M. Sloman, N. Dulay, E. C. Lupu, and
G. Brown, “Reconfigurable architecture for network flow
analysis,” IEEE Trans. VLSI Syst., vol. 16, no. 1, pp. 57–65,
2008. [Online]. Available: http://ieeexplore.ieee.org/stamp/
stamp.jsp?arnumber=4407545

[13] P. Rajeswari and N. Nagarajan, “An fpga based hardware ar-
chitecture for network flow analysis,” European Journal of
Scientific Research, vol. 83, no. 3, pp. 338–337, Aug. 2012.

[14] “NetFPGA-10G board description,” 2012. [Online]. Avail-
able: http://netfpga.org/10G specs.html

[15] M. Forconesi, G. Sutter, and S. Lopez-Buedo, “Open source
code of nf bram and nf qdr,” 2013. [Online]. Available:
https://github.com/forconesi/HW-Flow-Based-Monitoring

[16] Wikipedia, the free encyclopedia, “NetFPGA.” [Online].
Available: http://en.wikipedia.org/wiki/NetFPGA

[17] Xilinx Inc., Virtex-5 FPGA Data Sheets, March 2010.
[Online]. Available: http://www.xilinx.com/support/

[18] IEEE Standard Association, IEEE Standard for Ethernet -
Section 1, IEEE Std. 802.3-2012 (Revision to IEEE Std
802.3-2008), Dec. 2012.

[19] ——, IEEE Standard for Information Technology- Telecom-
munications and Information Exchange Between Systems-
Local and Metropolitan Area Networks- Specific Require-
ments Part 3: Carrier Sense Multiple Access With Collision
Detection (CSMA/CD) Access Method and Physical Layer
Specifications Amendment: Media Access Control (MAC) Pa-
rameters, Physical Layers, and Management Parameters for
10 Gb/S Operation, IEEE Std. 802.3ae-2002 (Amendment to
IEEE Std 802.3-2002), Dec. 2002.

[20] ARM Inc., “AMBA AXI Protocol v2.0,” Tech. Rep., 2010.
[Online]. Available: http://www.arm.com/products/system-
ip/amba/amba-open-specifications.php

[21] Xilinx Inc., Memory Interface Solutions, User Guide
UG086 (v3.6), Sept. 2010. [Online]. Available:
http://www.xilinx.com/support/

[22] ——, Embedded System Tools Reference Manual
EDK (v13.4). UG111, Jan. 2012. [Online]. Available:
http://www.xilinx.com/support/

[23] ——, XST User Guide for Virtex-4, Virtex-5, Spartan-3, and
Newer CPLD Devices (v12.4). UG627, Dec. 2010. [Online].
Available: http://www.xilinx.com/support/

[24] P. S. del Rı́o, D. Rossi, F. Gringoli, L. Nava, L. Salgarelli,
and J. Aracil, “Wire-speed statistical classification of net-
work traffic on commodity hardware,” in Internet Measure-
ment Conference, 2012, pp. 65–72.

[25] P. S. del Rı́o, D. Corral, J. Garcı́a-Dorado, and J. Aracil, “On
the impact of packet sampling on skype traffic classification,”
IFIP/IEEE International Symposium on Integrated Network
Management (IM 0213), 2013.

M.Forconesi Master’s Thesis

13

M.Forconesi Master’s Thesis

Paper Revisions

In the following are given the four revisions the above paper had. It is
worthy to note that these reviewers are independent of the department and
the university where the work was developed.

15

M.Forconesi Master’s Thesis

==

REVIEWER #1

==

Reviewer’s Scores

Question 1: Technical Contribution and Quality: 4

Question 2: Originality: 4

Question 3: Overall Rating: 4

Question 4: Presentation and Language: 4

Question 5: In Scope of FPL: 4

Question 6: Reviewer Expertise Level: 3

Nominate for FPL Community Award: Yes

Suggested Presentation Type: Regular paper

Comments

This is a fine paper about flow monitoring in FPGAs. The presented work is new

in that it supports a higher number of flows then previously published work.

This was achieved by deploying a hash table for the flow lookup.

The code is contributed to the open source community through NetFPGA.

The paper could be further improved by including more specifics. For example,

the SRAM-based architecture contains a cache. I’m missing the argumentation of

why a cache is necessary. How much access bandwidth to SRAM is available, how

much is needed, and how effective does the cache needs to be. Also what is the

performance without the cache (included in table 2) Can you not meet the 10G

line rate any more?

Also nice to have would be a discussion on

* deployment models for this flow monitor

* discussion of the design’s limitations (for example a simplistic hash

implementation)

* how the priority handling is done in the main memory arbiter (time slots?)

17

M.Forconesi Master’s Thesis

==

REVIEWER #2

==

Reviewer’s Scores

Question 1: Technical Contribution and Quality: 4

Question 2: Originality: 3

Question 3: Overall Rating: 4

Question 4: Presentation and Language: 4

Question 5: In Scope of FPL: 4

Question 6: Reviewer Expertise Level: 4

Nominate for FPL Community Award: No

Suggested Presentation Type: Poster

Comments

The paper describes a hardware design implemented in the NetFPGa platform for

flow-based network processing. The proposed design can handle 750k concurrent

flows and supports a 10Gbit line.

The paper describes two proposed designs and reports an improvement in terms of

of flows and processing throughput, however there are several concerns:

- most of the related works the authors compare to, use older FPGA devices

(Virtex 2 instead of Virtex 5) so the comparison is not very fair. One would

expect the same design implemented in V2 to be at least 2-4 times faster in a

V5.

- Authors do not explain what is the main idea behind their design that make

their solution more efficient (faster, better)

- It appears that the use of external memory in the NF_QDR case increases the

number of flows handled, do the other works use external memory e.g. papers [9,

12]?

Apparently the increase in # of flows comes from the use of external memory

and the improvement in performance comes from the use of better FPGA device

(compared to [12] or even [9]).

The writing quality of the paper is fine.

18

M.Forconesi Master’s Thesis

==

REVIEWER #3

==

Reviewer’s Scores

Question 1: Technical Contribution and Quality: 2

Question 2: Originality: 1

Question 3: Overall Rating: 2

Question 4: Presentation and Language: 4

Question 5: In Scope of FPL: 3

Question 6: Reviewer Expertise Level: 4

Nominate for FPL Community Award: No

Suggested Presentation Type: Poster

Comments

I have two main concerns with the paper:

1) The novelty of the paper is very low. The paper presents a hardware

accelerated platform for NetFlow monitoring for 10 Gbps half-duplex line.

However, full-duplex monitoring of 10 Gbps were already achieved in [10] which

is even referenced in the paper. As all Ethernet 10 Gbps lines are full-duplex,

it does not make much sense to monitor half-duplex lines.

2) The authors probably did not read [10] carefully enough, becauseu they list

its performance as 3 Mpps but the correct performance is almost 30 Mpps (i.e.

fully loaded full-duplex 10 Gbps line with 64 bytes-long frames). Name of the

author si also misspelled (dnic instead of dnk).

I also have some other minor comments:

* In 4.2, the authors state that "Since the BlockRAMs of the FPGA are true dual

port, the connection of the two concurrent processes, depicted in Fig. 1, is as

simple as connecting the logic of Process A to one port of BlockRAMs and

Process

B to the other." However, both processes can access the same flow record at the

same time, e.g. A updates the flow record while active timeout (B) fires. The

authors does not address such problem.

* The authors does not elaborate more about the hash function used for flow

record addressing. What hash function is used? Are there any references of

19

M.Forconesi Master’s Thesis

its evaluation? What is the likelihood for a collision occurring?

* In 4.2, the authors state that "Both approaches do not achieve the goal of

the

tool." It is not clear what this sentence mean?

* The duration of tests is not clear. How many flows and/or packets were

evaluated? I also suggest to include established tests like RFC 2544. What is

the performance of the tool for other packet sizes (e.g. 65B)?

Typography and language issues:

* Data are in a cache, not on a cache (section 4.3.1).

* Processes read from a memory, not on a memory (section 4.3.1).

* Conclusion states "and the possibility to manage up to 3/4 concurrent flows."

instead of 768,000 flows.

20

M.Forconesi Master’s Thesis

==

REVIEWER #4

==

Reviewer’s Scores

Question 1: Technical Contribution and Quality: 5

Question 2: Originality: 3

Question 3: Overall Rating: 5

Question 4: Presentation and Language: 5

Question 5: In Scope of FPL: 4

Question 6: Reviewer Expertise Level: 4

Nominate for FPL Community Award: No

Suggested Presentation Type: Regular paper

Comments

This is a good paper: clearly explained, implemented, and open sourced. The

work will form a useful contribution to the NetFPGA 10G community.

A weak point was the treatment of hashing. There is only vague discussion of

the issues involved in choosing a hash function, and no description of the

actual hashing function used and its statistical worthiness. There was no

attempt to deal with hash overflows in any subtle kind of way, which adds

concern given the lack of evidence that such collisions might be minimized.

21

M.Forconesi Master’s Thesis

Application Note:
Integration on NetFPGA-10G

The document below details the steps to integrate the open source archi-
tecture presented here, in the NetFPGA-10G platform. This guide was
prepared for the NetFPGA-10G community and is publicly available in the
NetFPGA-10G repository3.

3https://github.com/forconesi/NetFPGA-10G-live/wiki/NetFlow-simple-10G-Bram

23

NETFLOW SIMPLE 10G BRAM
ON NETFPGA-10G

Design Document

Revision 1.0

October, 2012

Marco Forconesi, Gustavo Sutter, Sergio Lopez-Buedo
High Performance Computing and Networking (HPCN) research group

Universidad Autónoma de Madrid, Spain

M.Forconesi Master’s Thesis

25

Design Document NetFlow_Simple_10G_Bram i

Table of Contents

1 Introduction ... 1

2 Description .. 1

3 Internal Architecture.. 2

3.1 NetFlow Cache Pcore ...2

3.1.1 Packet Classification ...2

3.1.2 Create or Update Flows ...3

3.1.3 Export Expired Flows from Memory ...4

3.1.4 Export Flows to NetFlow Export & Export Flows to 10G interface4

3.1.5 Time Stamp Counter Generator ...4

3.2 NetFlow Export Pcore ..5

3.2.1 Flow Encoding ..5

3.2.2 NetFlow v5 Header ...6

3.2.3 UDP Header ..6

3.2.4 IP Header ..6

3.2.5 General Control Process ..6

3.2.6 Ethernet Frame Sender ..6

4 Building the Project with and without NetFlow Export Pcore .. 7

5 Testing the Design ... 9

5.1 An example for sending traffic and capturing NetFlow v5 packets9

6 References ... 10

Table of Figures

Figure 1: NetFlow_Simple_10G_BRAM. Pcore block diagram ..1

Figure 2: NetFlow Cache Pcore‟s internal architecture..3

Figure 3: Composition of the 5-tuple ..3

Figure 4: NetFlow Export Pcore‟s internal architecture ...5

Figure 5: Building the project with NetFlow Export Pcore ..7

Figure 6: Building the project without NetFlow Export Pcore ...8

Figure 7: Using one 10 Gbps Interface to test the design ...8

Figure 8: An example for testing NetFlow_Simple_10G_Bram ..9

M.Forconesi Master’s Thesis

26

Design Document NetFlow_Simple_10G_Bram 1

1 Introduction

This guide describes the NetFlow_Simple_10G_Bram project on NetFPGA-10G platform [4]. It

captures the active flows received on a 10 Gbps Ethernet interface and exports them via other

10 Gbps Ethernet interface using the NetFlow v5 protocol.

It is the first prototype of NetFlow at 10 Gbps. It stores up to 4096 concurrent flows using

internal FPGA‟s Block Rams (BRAM). It is able to process every packet the interface receives

even in the worst case (shorter Ethernet frames with minimum interframe gap), i.e. without

sampling.

A second prototype of NetFlow that uses the external QDRII memory is being developed right

now (NetFlow_Simple_10G_QDR). It will store up to 786,432 concurrent flows. Shortly, this

design will be available at NetFPGA-10G community projects.

2 Description

NetFlow_Simple_10G_Bram project processes every packet the interface 0 receives and

classifies them in the different active flows. It discards the unsupported frames and builds the

PHY PORT 0

PHY PORT 1

PHY PORT 2

PHY PORT 3

M

M

10GMAC

S

M

10GMAC

S

M

10GMAC

S

M

10GMAC

S

M

NetFlow

Cache

S

M

NetFlow

Export

MicroBlaze

S MDIO

AXI

Interconnect

FPGA
Scope

NetFlow Scope

NetFPGA-10G CARD

S

Figure 1: NetFlow_Simple_10G_BRAM. Pcore block diagram

M.Forconesi Master’s Thesis

27

Design Document NetFlow_Simple_10G_Bram 2

flow entries with those packets that form the active TCP and UDP flows. Once these flows

expire, they are grouped together in NetFlows v5 packets that are sent through interface 1 to a

remote NetFlow controller. Figure 1 shows a block diagram of the design at the EDK Pcore

level.

This project was created using the “10G Ethernet Interface Loopback Test” project as a reference

design. The configuration program of the MicroBlaze that configures the MDIO registers was

maintained. The “Packet Generators/Checker” Pcores and the internal connections between the

10GMAC Pcores were removed. To build the NetFlow_Simple_10G_Bram project it is

necessary to follow the same steps as for the reference loopback test project.

3 Internal Architecture

The project is organized in two main cores: Netflow Cache and NetFlow Export. This section

describes these cores. The reason why NetFlow is split in these two parts is mainly due to:

1. Cisco [3] (who invented NetFlow) makes this conceptual division, described in NetFlow

Services Solutions Guide. Technical report [2].

2. To implement others exports protocols rather than NetFlow v5 (e.g.: NetFlow v9, IPFIX),

it is only necessary to replace (or modify) the NetFlow Export Pcore. NetFlow Cache

remains the same.

In what follows, Netflow Cache and NetFlow Export Pcore‟s internal architectures are depicted.

Both Pcores are coded in VHDL.

3.1 NetFlow Cache Pcore

As shown in Figure 1, NetFlow Cache has two AXI4-Stream interfaces. The one on the left is a

64-bits width slave interface and is connected to the 10GMAC user interface to receive the

Ethernet frames. The other one on the right is a master interface and is also 64-bits width. It

exports the expired flows out of the Pcore.

A top level diagram of NetFlow Cache Pcore‟s internal architecture is shown on Figure 2. The

VHDL modules are explained below, following the data path sequence. The Flow Table is

implemented using dual port Block Rams of the FPGA, as well as the output FIFO.

3.1.1 Packet Classification

This module extracts the 5-tuple of each Ethernet frame and timestamps it using the time

information. It also extracts the next items to keep track of the flows statistics:

 Number of bytes in the IP Total Length field of IPv4 packet‟s header.

 TCP flags, if protocol is TCP.

If the Ethernet frame that the interface is receiving is not valid, the frame is discarded. This

occurs when the packet is neither TCP nor UDP.

After a valid frame is received, this module sends the 5-tuple plus the information listed above to

the Create or Update Flows module. The composition of the 5-tuple is shown at Figure 3.

If there were more types of flows of interest, this is the unit to be modified. Also, it is very easy

to do that, because it is only necessary to add if-then-else line codes with the fields that must be

checked. The rest of the design remains the same.

M.Forconesi Master’s Thesis

28

Design Document NetFlow_Simple_10G_Bram 3

3.1.2 Create or Update Flows

When a new frame arrives, this unit checks if it belongs to an existing flow in the Flow Table. If

so, the flow statistics (i.e. number of bytes, number of packets and time stamp since the last

frame matched the flow) are updated. If the flow does not exist, i.e. the received frame is the first

of a new flow, then a new flow entry is created in the Flow Table.

This module receives the 5-tuple plus the frame information provided by the Packet

Classification module described in 3.1.1. With the 5-tuple it computes a hash code using the

Hash Function module. After this, the Flow Table is addressed using the hash code as the

address, and if the flow exists it is updated, otherwise it is created.

The reason of the hash function is because it is not possible to use the full 104-bits to address a

memory, since 2
104

x 136-bits is an unreal memory size. Using smaller memories (2
12

 x 136-bits

in this design) a hash function is implemented in order to reduce the probability of collisions

(two or more different flows trying to occupy the same flow entry). The other approach is to put

the flows in contiguous Flow Table’s entries as they are created. The problem with this would be

SOURCE-IP DEST-IP SOURCE-PORT DEST-PORT PROTOCOL

104-bits width

Figure 3: Composition of the 5-tuple

Figure 2: NetFlow Cache Pcore’s internal architecture

S M

 AXI4-Stream Bus Signals
FPGA

Resources

VHDL

Modules

NetFlow Cache

Create or

Update Flows

Packet

Classification

Flow Table

P
ort A

Time Stamp

Counter Gen.

Export

Expired

Flows From

Memory

Export Flows

to NetFlow

Export

FIFO

Export Flows

to 10G

Interface

P
or

t
B

S

M

Instantiates one

or the other

Hash

Code

Hash

Function

Flow Entries In

Expired Flows

Expired

Flows
5-tuple

pkt info

Eth.

frames

Sequential

counter

Flow Entries Out

Time

Export Accelerator

M.Forconesi Master’s Thesis

29

Design Document NetFlow_Simple_10G_Bram 4

that a sequential look up will have to be done each time a frame is received and thus the response

time will increase. On the other hand, if a parallel look up is implemented the amount of

hardware will not be attainable with larger memories (e.g.:1Mflows flow tables).

If a collision takes place, this is, a new flow is to be created on a busy flow entry, then the new

flow is discarded and the old one is preserved. Every time there is a collision and a flow is lost it

is a bad performance by the application. The idea is to use a large memory size for the Flow

Table and also the best possible hash function. The hash function of this design was created with

polynomial division using primitive polynomial.

3.1.3 Export Expired Flows from Memory

This module checks if a flow has expired and if it has, it removes the flow entry from the Flow

Table and exports the flow to a FIFO. The expiration conditions (see also [2]) are:

 Flows which were idle for a specified time (by default 15 sec, A.K.A. Inactive Timeout)

are expired and removed from cache.

 Long lived flows are expired and removed from cache. Flows are not allowed to live

more than a specified time (30 minutes by default, A.K.A. Active Timeout). The reason of

this condition is to avoid counters overflow.

 TCP connections which have reached the end of byte stream (FIN) or which have been

reset (RST) (RST or FIN flag set to „1‟) will be exported.

The constants Active Timeout and Inactive Timeout can be setup in the Pcore instantiation in

EDK.

Since the Flow Table is implemented using dual port BRAMs, through the memory‟s Port B, a

sequential counter addresses the Flow Table as shown in Figure 2. At each entry the expiration

conditions are evaluated. Additionally, to accelerate the export process, when a TCP packet

containing a FIN or RST flag set to „1‟ is received, the Create or Update Flows module signals

to Export Expired Flows from Memory module to remove the flow entry immediately. This is

also shown in Figure 2.

3.1.4 Export Flows to NetFlow Export & Export Flows to 10G interface

Expired flows are read from FIFO and exported via AXI4-Stream transactions out of the Pcore.

Normally, an instance of NetFlow Export Pcore exists in the EDK project, so Export Flows to

NetFlow Export VHDL module is generated. If you wish to see the expired flows immediately

after they leave the NetFlow Cache Pcore, for example to check the expiration conditions, then

Export Flows to 10G interface has to be generated.

Whichever module, Export Flows to NetFlow Export or Export Flows to 10G interface, is

instantiated in the project, is controlled from the NetFlow Cache Pcore instance in the EDK.

Setting the parameter “NetFlow Export Present = YES” generates the former and “NetFlow

Export Present = NO” generates the latter.

3.1.5 Time Stamp Counter Generator

This module generates a counter with the number of milliseconds elapsed since the device

booted (the FPGA was configured). This counter is used to timestamp the frames the interface

receives, and also to determine in the Export Expired Flows from Memory module, how long has

a flow been active/inactive.

In the future this module could be connected to a GPS receiver to synchronize with absolute

time.

M.Forconesi Master’s Thesis

30

Design Document NetFlow_Simple_10G_Bram 5

3.2 NetFlow Export Pcore

Expired flows from the NetFlow Cache Pcore are transmitted via AXI4-Stream transactions to

this Pcore. Once it has N expired flows, where N is 30 for NetFlow v5 [2], it sends a NetFlow v5

packet through a 10GMAC interface to a NetFlow Collector. If it has one or more flows but less

than N it waits one minute and then sends the NetFlow v5 packet with the number of flows

received until that moment. Figure 4 shows the internal architecture of this Pcore, after it all the

VHDL modules are explained.

3.2.1 Flow Encoding

This module receives the flows exported by NetFlow Cache Pcore via the AXI4-Stream master

interface and writes them in a FIFO. When it has up to N flows (see 3.2) or it has one or more

flows and the minute waiting for more flows to fulfill the N flows has elapsed, it then signals the

General Control Process that all PDUs in the NetFlow packet are in the FIFO. After that, it waits

for an ACK signal from General Control Process to start over the encoding process.

Flow Encoding, as well as NetFlow v5 Header module, calculates the UDP checksum over the

data while it is arriving. In this module, the partial UDP checksum calculated over the flow

records (PDUs) is delivered to NetFlow v5 Header module when the encoding process finishes.

See [5] for UDP checksum calculation procedure.

Figure 4: NetFlow Export Pcore’s internal architecture

S M

 AXI4-Stream Bus Signals
FPGA

Resources

VHDL

Modules

M

S

UDP Header

FIFO

Ethernet

Frame Data

P
ort B

 P
or

t
A

NetFlow Export

IP Header

NetFlow v5

Header

Flow

Encoding

Ethernet

Frame

Sender

General

Control

Process
Addr

Data In

D
ata O

u
t

A
d

d
r

Expired

Flows

Records

In

Pkt Sent

Flow Enc. Ready

NetFlow v5

PDUs

Headers

Header

M.Forconesi Master’s Thesis

31

Design Document NetFlow_Simple_10G_Bram 6

3.2.2 NetFlow v5 Header

Once the flow encoding process is ready, this module calculates the header of the NetFlow v5

packet according to the payload. It also captures time information, necessary for the header, from

a Sys Time Generator module (not shown on Figure 4) similar to the one present in NetFlow

Cache Pcore. For more information about the NetFlow v5 Header format see [1].

Additionally, this module calculates a partial UPD checksum over the generated header and adds

it to the partial UDP checksum provided by the Flow Encoding module.

When the NetFlow v5 header and the partial UDP checksum are ready, NetFlow v5 Header

module signals the next module, UDP Header, to start operating.

3.2.3 UDP Header

Once the NetFlow v5 header is ready the UDP header calculation starts. It calculates the final

UDP checksum, using the partial checksum provided, as well as the others UDP header‟s fields.

3.2.4 IP Header

Like UDP Header and NetFlow v5 Header modules, this one waits for the UDP header to be

calculated before it starts the IP header calculation. This is due to the fact that the fields in the

header depend on the payload (UDP packet is the payload of IP packet).

When the IP header has been calculated, the General Control Process is signaled to continue its

operation.

3.2.5 General Control Process

This is the main module of this Pcore. Its function consists in fulfilling a memory which has the

same width of the master AXI4-Stream tdata vector. The information in the memory is the

Ethernet frame, with all the high level packets, that will be sent through the 10GMAC Pcore. The

memory is implemented in Block Rams of the FPGA and its size is as big as the maximum

NetFlow v5 packet that can be sent. This includes packets‟ headers plus the maximum number N

of NetFlow v5 PDUs (N = 30 for NetFlow v5 [2]). Once all the data is on the memory, Ethernet

Frame Sender module is signaled to start reading this memory, using the other port, and

generating the proper AXI4-Stream transactions to the 10GMAC Pcore.

The process of fulfilling the memory starts by saving the flow records in the right position on the

memory when the Flow Encoding module finishes. After this, all the packets‟ headers are

calculated, so the General Control Process reads those headers and adds this information on the

memory‟s lower addresses. When the operation is completed, the Ethernet Frame Sender

module starts reading the memory from address zero to the maximum address recorded.

3.2.6 Ethernet Frame Sender

As it was explained in 3.2.5, this module waits for the Ethernet frame‟s data to be written on the

Ethernet Frame Data memory and then it starts reading this memory from address zero to the

maximum indicated. Each memory entry has the same width as the master AXI4-Stream tdata

vector. Since AXI4 provides a mechanism for flow control (this means the slave can prevent the

master of sending data) the completion of Ethernet Frame Sender’s task is non-deterministic.

This is why this module signals when all the other modules can start over and the Ethernet

Frame Data memory can be rewritten.

The FIFO shown in Figure 4 was implemented to avoid the situation where no new flow records

can be received from the NetFlow Cache Pcore until the end of the transmission of the current

NetFlow v5 packet. In this manner when the Flow Encoding module operation has finished,

M.Forconesi Master’s Thesis

32

Design Document NetFlow_Simple_10G_Bram 7

General Control Process starts reading the FIFO and in that moment it signals back to Flow

Encoding module that it can start over. Having two memory storages makes it possible for the

reception of the flows and the transmission of the previous encoded NetFlow v5 packet to be

performing at the same time.

4 Building the Project with and without NetFlow Export Pcore

Normally NetFlow Export Pcore is connected to NetFlow Cache Pcore as shown in Figure 5.

With this configuration, Port 1 is going to send the expired flows on NetFlow v5 packets as

explained in 3.2.

Figure 5: Building the project with NetFlow Export Pcore

In case you want the NetFPGA-10G to output the expired flows directly to a 10 Gbps Ethernet

interface instead of NetFlow v5 packets, build the project with the option “NetFlow Export

present = NO” in the instantiation of the NetFlow Cache Pcore in the EDK. Then, connect the

output of NetFlow Cache to a 10GMAC slave interface where you want the expired flows out.

Figure 6 shows the connection of the NetFlow Cache Pcore without NetFlow Export Pcore.

M.Forconesi Master’s Thesis

33

Design Document NetFlow_Simple_10G_Bram 8

Figure 6: Building the project without NetFlow Export Pcore

If you only have one computer with a 10 Gbps interface, you can still run the design connecting

the input traffic and the output expired flows to one Port as illustrated in Figure 7.

Figure 7: Using one 10 Gbps Interface to test the design

M.Forconesi Master’s Thesis

34

Design Document NetFlow_Simple_10G_Bram 9

5 Testing the Design

Connect Port 0 to a 10 Gbps traffic generator (or splitter) and Port 1 to a 10 Gbps NIC (NetFlow

collector) to receive the NetFlow v5 packets which contain the expired flows.

Once the bitstream configuration file is ready, following the steps mentioned in 4, configure the

FPGA. It is also possible to use the pre-built bitstream file provided with the code.

Send traffic to Port 0 and listen to Port 1 to receive NetFlow v5 packets sent by the

NetFPGA-10G.

It is possible to send 10 Gbps traffic to Port 0 in different ways. Here is a very simple way to do

that.

5.1 An example for sending traffic and capturing NetFlow v5 packets

Figure 8: An example for testing NetFlow_Simple_10G_Bram

Figure 8 is a picture that shows a possible scenario. Use a pcap file with TCP, UDP and all kinds

of packets as the input traffic. In the computer connected to Port 1 run the bash command:

tcpdump –i eth1 –w output_file.pcap

in order to start listening to the interface. In the other computer, connected to Port 0, run the

command:

tcpreplay –t –i eth0 input_pcap_file.pcap

Wait enough time to make sure all the flows have expired and the encoding timeout in the

Netflow Export Pcore has elapsed. It is necessary to provide the correct flags to both

tcpreplay and tcpdump commands. See [7] [6] to specify the correct ones for your system.

Finish the tcpdump process (Ctrl-C). Read the output_file.pcap with Wireshark

program. Check the flows in the NetFlow v5 packet(s) and all the other packets‟ headers.

M.Forconesi Master’s Thesis

35

Design Document NetFlow_Simple_10G_BRAM 10

6 References

[1] Cisco Inc. NetFlow Export Datagram Formats. Technical report.

[2] Cisco Inc. NetFlow Services Solutions Guide. Technical report, 2007.

[3] Cisco Inc. http://www.cisco.com/. 2012.

[4] NetFPGA Project. NetFPGA-10G board description. http://netfpga.org/, 2011.

[5] J. Postel. User datagram protocol. RFC 768, Internet Engineering Task Force, August

1980.

[6] Tcpdump.org. Tcpdump & Libpcap. http://www.tcpdump.org/.

[7] Aaron Turner. The Tcpreplay suite. http://tcpreplay.synfin.net/.

M.Forconesi Master’s Thesis

36

M.Forconesi Master’s Thesis

Conclusions and
Future Work

Thesis Conclusions

As the paper conclusion states, we have developed, implemented and tested a
set of hardware tools for monitoring IP networks. For analysis processes, the
more accurate the input information is, the more precise are the conclusions,
given that the methodology is correct.

Network monitoring is a useful approach to detect issues and diagnose
problems, but for high speed networks the measure technique becomes a
challenge. In order to mitigate such limitations we proposed two hardware
architectures that performs all the time-critical tasks and supplies the anal-
ysis algorithm with the flow information needed.

The presented architectures are capable of monitoring 10 Gbps saturated
links without packet sampling. Besides, up to 786,432 concurrent flows can
be monitored and a flexible flow definition is possible. The project is open
source code and available to be used as a starting point for further advanced
monitoring techniques.

Research Publications

The presented architectures as well as the published paper are part of a
bigger research work. In chronological order, the following papers have been
published:

• Forconesi M., Sutter G., Lopez-Buedo S. and Sisterna C., “Clasifi-
cación de Flujos de Comunicación en Redes de 10 Gbps con FP-
GAs”, in Jornadas de Computación Reconfigurable y Aplicaciones,
Sept. 2012.

• Forconesi M., Sutter G., Lopez-Buedo S. and Aracil J., “Accurate and
Flexible Flow-Based Monitoring for high-Speed Networks”, in Inter-
national Conference on Field Programmable Logic and Applications,
Sept. 2013.

• Forconesi M., Sutter G., Lopez-Buedo S. and Gomez-Arribas F., “Clasi-
ficación de paquetes IP a 10 Gbps descripto desde lenguajes de alto
nivel”, in Jornadas de Computación Reconfigurable y Aplicaciones,
Sept. 2013.

37

M.Forconesi Master’s Thesis

Future Works

The last paper is the future work of this Thesis. Despite of the advantages
of using hardware to solve high speed processing problems, it lacks of the
software low time development time. New techniques to design hardware
from high level languages (C/C++) are currently the target of our research.
They will provide lower time to market and a broader community of devel-
opers rather than the Verilog/VHDL; in other words this new design flow
will aid to achieve low-cost high-performance hardware implementations.

38

