A Dynamically Adaptable Bus Architecture for Trading-Off Among
Performance, Consumption and Dependability in Cyber-Physical
Systems

J.Valverde, A.Rodriguez, J.Camarero, A.Otero, J. Portilla, E.de la Torre, T.Riesgo

I. INTRODUCTION

As technology evolves, physical and digital worlds are getting
closer. New sensor and communication technologies together with
the increasing capability of embedded systems to process big
amounts of data are allowing Cyber-Physical Systems (CPSs) to
grow and become more complex and suitable for a larger number
of applications. As CPSs evolve, some problems inherent to
technology are becomlng important limiting factors. Power
consumption, for instance, is becoming a key limitation [1]. At the
same time, this fact is also affecting in terms of performance,
since, even though the resources available per chip are increasing,
the frequency of operation has stalled. Besides, as the level of
integration is increased, it is more difficult to keep defect density
under control, so new fault tolerant techniques need to be included.
Taking into account the features of CPSs and the technology
problems they are facing, it is clear that a more intelligent and
dynamic use of resources is required.

In this work, a reconfigurable FPGA-based architecture
embedded in an FPGA-based high performance wireless sensor
node (called HiReCookie) is proposed. The HiReCookie node was
already presented by the authors in [2] and [3], where its
architecture, capabilities and very competitive energy consumption
were probed. The node capabilities are combined with a Virtual

Architecture, so called ARTICo” (Reconfigurable Architecture for
an Intelligent Management of Consumption, Computation and
Confidentiality, fault tolerance and security). This architecture
permits the dynamic use of resources while using an execution
model where tasks are accelerated, taking advantage of a multiple
thread parallelization scheme similar to CUDA.

The paper is organized as follows. In section II, similar
strategles studied in the state of the art are reviewed. Sectlon 11
gives an overview of the problems addressed in ARTICo’. In
section IV, the ARTICo® architecture is detailed. In section V, the
execution model is explained. In section VI, a real example to see
some possibilities offered by the architecture is shown. Finally, in
section VII, some conclusions are drawn.

II. STATE OF KNOWLEDGE

Many examples of CPSs can be found in the state of the art. In
[2], some patterns and requirements are detailed. The authors
mention applications related to distribute sensing and surveillance
for crisis response, networked satellites, etc. The authors also
highlight important features of these systems such as dynamic
network adaptation according to the number of nodes,
heterogeneous networks, location and time awareness, etc.

Dependability and computing capabilities are crucial when
designing CPSs. Dependability can be understood as a
composition of many features to provide the service the system
was designed for, in a proper way. Reliability, confidentiality,
safety, fault prevention, fault tolerance, etc. have been widely
studied in the state of the art while the dynamic combination of
them is not often addressed. When using SRAM-based FPGAs,
DPR is a very suitable solution to mitigate Single Event Effects
(SEEs). By means of using hardware redundancy, fault tolerant
capabilities can be achieved since DPR can be used to replicate
modules in a dynamic way [5] and to substitute them in case of
damage [6]. In [7] different Triple Module Redundancy (TMR)
implementations are studied injecting faults into the FPGA
bitstream. Confidentiality and integrity of communications are
also key aspects to guarantee a proper deliver of service. Different
techniques have been already discussed in the literature such as
hash or encryption algorithms like the ECC in [8]. Another factor
of special importance in CPSs is side channel attack (SCA)
protection. In this case, careful cyphering IP block designs must be
done to mitigate this problem. Dual-rail approaches are the most
widely used SCA mitigation techniques. It consists on replicating
logic modules and making one of them to work in exactly reverse
way to the first one, thus balancing and masking data dependent
leakages.

Power consumption is another critical aspect in CPSs,
especially in wireless systems. Traditionally, Wireless Sensor
Network (WSN) platforms have included low performance
microcontrollers that provided enough processing capabilities
while they ensured ultra-low power consumption. However, when
facing complex applications, these processors are not powerful
enough, while power restrictions are still present. It is possible to
find a myriad of different techniques in the state of the art ranging
from energy harvesting proposals to others that take advantage of
fast processing techniques together with low power modes to save
as much energy as possible [3].

CPSs can be also quite demanding in a third factor, processing.
Parallel processing speeds up data-intensive computations and has
been widely analyzed throughout the literature over the last
decades [9]. Communication-centric systems, especially those
with multiprocessors, often use NoCs (Networks on Chip) in order
to reduce data-transfer latency in streaming applications [9], e.g.
image processing. However, bus-based architectures are still a
feasible alternative in those systems that do not present restrictive
scalability requirements. For instance, FLEXBUS [11] is presented
as a dynamic topology that is capable of adapting its logic
resources in order to optimize on-chip communications.

In this work, an architecture and methodology to include
several of these strategies together, being capable to handle them
in a dynamic way is proposed. The bus-based architecture
proposed in this work dynamically adapts itself to a changing
number of connected elements by means of a special unit that
gathers all the requests and manages data transfers transparently.

III. PROBLEM OVERVIEW

Embedded and distributed systems have big resource
limitations in terms of power, fault tolerance and processing
capabilities. This is a very restrictive factor since they are carrying
out, in some cases, very intensive and critical tasks. Besides, in
CPSs, working conditions are very likely to change over time but
devices must continue delivering service with the available
resources at all times. The application designer may not be aware
of these changeable conditions, and hence the system must be
capable of adjusting its resources transparently, and in real time. In
the proposed solution, the biggest advantage is how the resources
are organized and how data delivery is adapted to accelerate data
transactions.

Power limitations can be seen from different perspectives. On
the one hand, restrictions inherent to technology limit the
frequency of operation and thus performance. Not everything can
be working at the same time using the maximum number of
resources with the available power budget. On the other hand, in
some cases, these systems need to be wireless and so powered by
batteries. In order to ease the effect of this limitation, the following
techniques are included in the system design: divide the node into
power islands, use a partial-initial configuration of the FPGA to
reduce power consumption during wake-up time, use parallel
processing to accelerate tasks and delegate tasks to other members
of the network.

Fault tolerance and protection against Side-Channel Attacks
are also critical aspects to take into consideration. CPSs are often
working in critical environments where errors and faults are not
tolerable. Thus, they must include certain techniques to be able to
perform self-diagnosis, self-healing, fault isolation and protection
against SCA. The proposed techniques included in the architecture
are Double or Triple HW Module Redundancy (DMR or TMR),

Dual-rail data delivery and processing to provide Side Channel
Attack Protection (SCA), island isolation in case of failure and
Dynamic and Partial Reconfiguration (DPR) to overwrite or move
modules in damaged areas.

Applications with real time requirements and/or intensive data
processing can take advantage of hardware acceleration. The
strategies provided by the ARTICo® architecture are based on a
CUDA-like execution model where parallel computations are
divided in hardware kemels to accelerate execution. Besides, such
nodes may be networked in order to define a model of
computation based on a hybrid distributed processing model,
where nodes may also be FPGA, CPU or GPU based.

IV. VIRTUAL ARCHITECTURE: ARTICO®

The ARTICo” architecture is a general bus-based architecture
that can be used not only for the HiReCookie platform (see details
n [2]) but also be ported into any other platform where a dynamic
trade-off among consumption, dependability and computation
could be beneficial. The general idea is having a system able to
adjust its resources in real time taking advantage of DPR features.
The architecture adaBptatlon 1s context-aware but application
independent. ARTICo™ is divided into two different regions: static
and dynamic. The static region includes those modules that are not
reconfigured in real time while the dynamic one hosts different
hardware accelerators that can be replicated or multiplexed in time
depending on the working needs.

A. Execution Model

ARTICo® follows an execution model similar to the CUDA
approach, while the underlying hardware is completely different.
In the CUDA model, many software processors, called Streaming
Multiprocessors (SM), run potentially parallelizable tasks called
kernels while these kernels are divided into segments called
threads. These threads are grouped in blocks. Every different
thread block is independent since it does not share data with other
blocks. On the contrary, in ARTICo’, a task can be executed with
the help of a variable set of hardware accelerators, where each
thread block runs in different copies of the same hardware block.
The number of block accelerators can be changed dynamically,
depending on resource availability and desired operation point. In
the CUDA execution model, all data must be transferred from the
host memory to the device memory prior to the kernel invocation.
In this architecture, however, each processing element can start
whenever each thread block has available its input data. Data is
provided by a block called Data Shuffler (DS), coordinated with
the Resource Manager RM, which makes coalesced access to
memory in order to maximize the efficiency of burst accesses to
memory.

Establishing an analogy between ARTICo® and CUDA
execution models, potential parallelizable computations are tagged
as kernels, whereas each concurrent execution of the same kernel
will be known as a thread. The archltecture concept is to adapt the
CUDA execution model to ARTICo’, keeping as many advantages
as possible such as transparent parallehsm mapping and resource
allocation or even thread-level scalability, while changing
completely the underlying hardware.

B. General Architecture

The architecture of the system is shown in Figure 1. As it can be
seen, the architecture is composed of the following modules:

subspace using the basis obtained in the previous stage. Then, the
Fuclidean distance between the projection and the references is
calculated. This process is performed online and therefore,
hardware acceleration capabilities must be used in order to reduce
computing time. An important limiting factor when loading
different blocks of a kernel dynamically is reconfiguration speed.
In this example, the recognition algorithm is included in a Spartan
6 FPGA, so it is better to include the previous tasks on a single
kernel and replicate its blocks so it does not need to be
reconfigured unless the operation mode needs to be changed.
Therefore, in the proposed solution, the kernel that includes the
recognition algorithm is divided into 8 blocks (each block is
configured in a clock region of the Spartan 6).

To make a comparison with other implementation targets, the
algorithm has been implemented in three different platforms with
different configurations and processors. Some results can be found
in Table 1. The objective of this analysis is to compare
performance, price and energy consumption among different
approaches. The conclusions are summarized as follows:

¢ Computing time: as it was expected, GPUs provide the fastest
solution followed by the HiReCookie with ARTICo®. The
improvement by using the architecture can be seen comparing
the solution with the single hardware accelerator, where time is
reduced over 20 times.

¢ Energy consumption: although computation time is 6 times
slower than in the case of the Tesla GPU, energy consumption
is 20 times lower in the case of ARTICo”.

o Price: the price of the Spartan 6 is comparable to the rest of the
platforms except in for the Tesla GPU, which is ten times
higher.

VI. CONCLUSIONS AND FUTURE WORK

The concepts of urgency, confidentiality, fault tolerance or
priority for a task are widely known and have been applied to
computing, as well as being addressed many times for research,
but most of them as isolate objectives. However, this work has
shown that the replication of modules, together with the adequate
and efficient provision of data between the accelerators and
memories, can serve all these purposes in a very similar manner.
Acceleration with parallel execution of threads is a well-studied
model of computation, and there are tools and models, like CUDA,
which may be used as a common specification entry for GPU
platforms as well as for this type of HW accelerated architectures.
The ARTICo’ architecture permits to implement a parallel kernel
invocation method, which would launch parallel thread blocks in a
variable number of accelerators as they are progressively being
reconfigured. Dynamic security and dependability levels are also

Table 1: Execution Implementation Comparison

Power Price

Device Model Energy (J) w) © Execution Time (ms)
CPU2.20 GHz
i7.2670QM 0.855 45 120 19
Laptop
GPU 1.33 GHz
GeForce GT 540M 0.147 3 2 42
CPUZSOGHZ | 9550 | 170 140 15
Desktop -
e GPU L15 GHz 0.500 238 1470 2.1
Tesla C2075 : :
CPU 100 MHz
MicroBlaze 10.480 131 116 8000
HiReCookie Single HW 0047 | 135 116 350
(Spartan6 FPG: ™ Accelerator
ARTICO?® 0.021 1.75 116 12.2

possible. In a varying context scenario, tasks that are not
considered critical might become (or stop being) critical under
some unforeseen conditions, so the use of dynamic DMR or TMR,
is also an advantage. A face recognition algorithm has been
implemented in different technologies in order to compare
performance, price and energy consumption, with satisfactory
results. Although GPUs are faster, ARTICo” offers a comparable
solution in terms of computing time, while consumption is lower.

In conclusion, the proposed architecture opens up a scenario
where trade-off decisions at system level can be easily ported into
HW, at run-time. The application specification requires explicit
parallelism declaration, as for CUDA, and an API for memory
transfers, kernel invocation and synchronization (as for CUDA,
also), and data reduction, permits easy porting of multi-thread
models. This API, as well as an enhanced RM, are future lines of
work.

VII. ACKNOWLEDGMENT

This work was supported by the Spanish Ministry of Economy
and Competitiveness under the project DREAMS (Dynamically
Reconfigurable Embedded Platforms for Networked Context-
Aware Multimedia Systems) with number TEC2011-28666-C04-
02.

