
The University of Manchester Research

Hierarchical reconfiguration of FPGAs

DOI:
10.1109/FPL.2014.6927491

Link to publication record in Manchester Research Explorer

Citation for published version (APA):
Koch, D., & Herkersdorf, A. (Ed.) (2014). Hierarchical reconfiguration of FPGAs. In A. Herkersdorf (Ed.),
Proceedings of the 24th International Conference on Field Programmable Logic and Applications (pp. 1-8). IEEE.
https://doi.org/10.1109/FPL.2014.6927491

Published in:
Proceedings of the 24th International Conference on Field Programmable Logic and Applications

Citing this paper
Please note that where the full-text provided on Manchester Research Explorer is the Author Accepted Manuscript
or Proof version this may differ from the final Published version. If citing, it is advised that you check and use the
publisher's definitive version.

General rights
Copyright and moral rights for the publications made accessible in the Research Explorer are retained by the
authors and/or other copyright owners and it is a condition of accessing publications that users recognise and
abide by the legal requirements associated with these rights.

Takedown policy
If you believe that this document breaches copyright please refer to the University of Manchester’s Takedown
Procedures [http://man.ac.uk/04Y6Bo] or contact uml.scholarlycommunications@manchester.ac.uk providing
relevant details, so we can investigate your claim.

Download date:26. Apr. 2024

https://doi.org/10.1109/FPL.2014.6927491
https://research.manchester.ac.uk/en/publications/9086365a-5839-4346-a91c-f71594eeb0bb
https://doi.org/10.1109/FPL.2014.6927491

Hierarchical Reconfiguration of FPGAs

Dirk Koch
The University of Manchester

Email: dirk.koch@manchester.ac.uk

Christian Beckhoff
University of Oslo

Email: christian@ReCoBus.de

Abstract—Partial reconfiguration allows some applications
to substantially save FPGA area by time sharing resources
among multiple modules. In this paper, we push this approach
further by introducing hierarchical reconfiguration where
reconfigurable modules can have reconfigurable submodules.
This is useful for complex systems where many modules have
common parts or where modules can share components. For
such systems, we show that the number of bitstreams and
the bitstream storage requirements can be scaled down from
a multiplicative to an additive behavior with respect to the
number of modules and submodules. A case study consisting
of different reconfigurable softcore CPUs and hierarchically
reconfigurable custom instruction set extensions demonstrates
a 18.7× lower bitstream storage requirement and up to 10×
faster reconfiguration speed when using hierarchical reconfig-
uration instead of using conventional single-level module-based
reconfiguration.

I. INTRODUCTION

Partial reconfiguration is a technique for sharing FPGA
resources among multiple modules that are executed mu-
tually exclusively to each other. By loading only the en-
tire currently needed modules to an FPGA, a smaller and
consequently cheaper and less power hungry device can
be used. Examples for such systems have been presented
several times before.

For instance, in [1], [2], [3], partial reconfiguration was
used for adapting systems to environmental changes (e.g.,
light conditions in a vision system or channel quality in a
wireless communication system). As the environment can
only be in one specific state, specialized hardware acceler-
ators were used for adapting a system at run-time.

A more flexible system using partial reconfiguration was
proposed by Dennl et al. in [4]. In that system, recon-
figuration is used for accelerating database processing by
composing a chain of SQL operator modules together at run-
time for executing SQL queries. This system uses module
relocation and multi-instantiation of modules which is not
available when using the Xilinx vendor tools.

A. Hierarchical Reconfiguration

Common for all these examples is that modules are
placed into a static system that provides the communication
infrastructure for hosting the reconfigurable modules. In
this paper, we introduce a methodology for implementing
reconfigurable modules hierarchically inside reconfigurable
modules. In this case, a reconfigurable module will provide
the communication infrastructure for hosting reconfigurable
modules and not a surrounding static system. However,
the static system will still be in charge for managing the

configurations and for sending configuration data to the
FPGA.

Hierarchical reconfiguration allows the efficient imple-
mentation of many modules that have common parts or
that can share components. For example, consider a sorter
accelerator for the reconfigurable database accelerator, pre-
sented in [4]. Then the sorter should only be configured
to the device if needed to process a given query. However,
for sorting different data types, including integer, floating-
point, and text, different sorters have to be implemented and
provided by the system. By using hierarchical reconfigu-
ration, someone can consider a system that consists of a
universal sorter providing the data movement and storage
functionality which is able of embedding reconfigurable
submodules that perform the data type specific operations
(e.g., integer, floating-point, or string compare).

B. Hierarchical Multicore System
As a case study, we will examine how reconfigurable

custom instruction set extensions can be used by different re-
configurable softcore CPUs in a dynamic multicore system.
The concept is illustrated in Figure 1. The system allows
adapting to different workload scenarios by loading special-
ized instances of softcore CPUs or dedicated hardware accel-
erators into a reconfigurable region. Assuming that the static
system is the level-0 configuration, these modules represent
level-1 configurations. Some level-1 modules can themselves
hierarchically host reconfigurable modules which are level-2
modules. We use the term reconfigurable submodule and
level-2 module interchangeable in this paper to distinguish
from reconfigurable level-1 modules. Note that more than
two levels of partial reconfiguration might be used for large
FPGAs. For example, we could consider our case study
with a static system (level 0) hosting a reconfigurable CPU
(level 1) that can be dynamically extended with a crypto
accelerator (level 2) that itself provides the secret key as a
level 3 sub-subodule.

In the example in Figure 1, it should be noticed that all
partial modules, regardless if they are level-1 or level-2, are
relocatable to different positions. However, this might follow
restrictions due to resource constraints such as different
resources for logic and memory on the FPGA fabric.

C. Advantages
By providing multiple level-1 modules in a bitstream

library at run-time, more specialized modules can be used
in a system allowing for better performance at lower FPGA
cost. For instance, a reconfigurable softcore CPU might only
provide the required instructions to run a specific task while

Figure 1. Hierarchical reconfiguration. Some level-1 modules can host
level-2 modules. Note that the level-1 softcore CPUs vary with respect
to data cache (DC), instruction cache (IC), and the number of resources
available to host level-2 modules.

removing all logic for instructions that will never be used
by this task. This concept is known as ISA subsetting [5].
In addition, there might be different versions of the softcore
CPU with different instruction cache and data cache sizes
for better matching memory requirements of different tasks.
Another adaptation which cannot be efficiently carried out
by the user logic of most FPGAs, but by reconfiguration,
is changing to subword multiplication (e.g., changing a 32-
bit multiplier to two 16-bit or four 8-bit multipliers). In our
case study (see Section IV), we will use a very generic MIPS
softcore CPU specification that can be parameterized with
different memory layouts and that supports ISA subsetting
for generating level-1 softcore CPUs based on profiling
information [6].

In addition to the level-1 modules, reconfigurable instruc-
tion set extensions (implemented as reconfigurable level-2
submodules) allow a second way of customizing some of
the softcore CPUs. For example, a level-1 CPU might use
a reconfigurable custom instruction set extension for firstly
computing a SHA256 checksum which is replaced after
completion by a reconfigurable AES-round. So instead of
providing two level-1 configurations, one level-1 and two
small level-2 configurations are sufficient to be stored in the
partial module bitstream repository of the assumed system.
If we further assume that both custom instructions require
25% of the logic resources of a customized level-1 CPU,
then the variant with two level-2 instructions can save up to
(100%− 25%)/2 = 37.5% of the memory requirements in
the module repository (2 × 100% versus 75% + 2 × 25%).
This effect is visualized in Figure 2a) and Figure 2b).

More important than the configuration memory savings is
that swapping between different modules can be carried out
much faster, because fewer resources have to be reconfigured
when only reconfiguring the level-2 submodules.

At first glance, this approach seems to be more difficult
to implement as more different modules might have to be
provided. For example, the module repository in Figure 2b)
needs less memory but has to store three instead of two
modules, when using hierarchical reconfiguration. However,
when scaling the approach up to more level-1 and level-
2 modules, less modules will be needed and the memory
requirements get even stronger reduced.

Let M be the set of level-1 modules and N be the set
of level-2 submodules, let further f(m,n) be a character-
istic function that returns 1 if the system uses a specific
combination of a level-1 module (m) with a level-2 module
(n) and that returns 0 else, then traditional single level
reconfiguration needs a repository with

rlevel1 = ∀ m ∈M, n ∈ N
∑

f(m,n) (1)

modules. The number of modules for hierarchical reconfig-
uration is:

rlevel2 = |M | + |N | (2)

If all permutations of level-1 and level-2 modules can occur
in a system, Equation 1 becomes rlevel1 = |M |·|N |. In other
words, the total number of modules scales multiplicative for
the traditional single-level reconfiguration, but only additive
when using hierarchical reconfiguration. Consequently, for
large systems with a large variety of different modules,
hierarchical reconfiguration results in a much cleaner de-
sign flow. Note that the improvement from multiplicative
to additive complexity still holds if we implement design
alternatives to incorporate the heterogeneous resource layout
(e.g. the position of logic, multiplier and memory resources)
of most commercial FPGAs.

We can also say that hierarchical reconfiguration adds
extra programmability to a reconfigurable system. In the
software world, applications are commonly built from li-
braries that again may be built from other libraries and
so forth. Hence, various applications can re-use library
functions in a layered hierarchical manner. For FPGAs,
hierarchical reconfiguration allows adapting this concept
to the hardware world. In both cases, pre-implemented
functions (object code and fully routed netlists respectively)
are plugged together using some kind of interface definition.
Consequently, hierarchical reconfiguration can pave a way
for easier IP reuse and for higher acceptance of FPGAs by
software developers.

D. Paper Organization

The paper continues with a discussion about the design
flow for implementing hierarchical systems in the next
section. This flow is based on the tool GOAHEAD that
will be compared with other partial reconfiguration design
tools in Section III. After this, we present a case study
using hierarchical reconfiguration for a multicore system in
Section IV.

II. DESIGN FLOW

The following sections describe the design flow for imple-
menting hierarchical reconfigurable systems. The flow shares
techniques known from conventional module-based partial
reconfiguration and focus is put on the parts that are specific
for allowing hierarchical reconfiguration. This work is based
on the GOAHEAD tool [7] in which the static system and the
partial modules are implemented independently from each
other. Consequently, we will describe the implementation of
the static system (level-0), the partial modules (level-1), and
the partial submodules (level-2) in different paragraphs.

Figure 2. a) Conventional single level reconfiguration where most of the resources are identical between the two modules, b) Saving repository space
by using hierarchical reconfiguration. Note that this allows also for faster reconfiguration, if only the submodules will be swapped. c) Visualization of the
savings in the module repository if a system uses three level-1 and three level-2 modules. Note that not only the repository requirements are reduced, but
that also the total number of partial modules is less when using hierarchical partial reconfiguration.

Figure 3. Partial module (level-1) design-flow.

A. Level-0: Static System

There are no special requirements for implementing the
static system of a hierarchically reconfigurable system as
compared to a non-hierarchical system. However, the recon-
figuration of the FPGA might need to update parts in the user
logic of the module that is loaded to the fabric. In this case,
the static system has to provide a communication link for
sending corresponding data to the module. For this work,
we used the Atlys Spartan-6 demonstration system which
is distributed with GOAHEAD [7]. This system provides
fine-grained two dimensional module placement including
a communication architecture tailored to streaming applica-
tions. The design flow of the static system is illustrated in
Figure 5.

B. Level-1: Partial Modules

Each level-1 module is implemented individually and
independently to the static system or any other module or
submodule. Consequently, there is no rule in which order the
different parts of the system will be implemented. Therefore,
a bottom-up as well as a top-down design methodology can
be used for hierarchical reconfiguration.

1) Floorplanning: A partial module is implemented by
constraining its resources into a bounding box. GOAHEAD
supports this Floorplanning with a GUI as shown in Figure 3.
Inside the area of the partial user module, a subregion can
be defined, if the partial module should be able of hosting
submodules. Note that submodules are optional in level-1
partial modules.

For floorplanning, it is required that the bounding box
of a partial module provides sufficient resources for hosting
the user logic of the partial module as well as the resources
needed for hosting the submodules. For budgeting the re-
source requirements, we perform an initial synthesis run for
partial modules and submodules, if resource requirements
cannot be determined beforehand.

After this, connection macros have to be placed. These
macros are LUTs that act as sink and source primitives for
connecting the top-level interface signals of a user module
with wires outside the partial module bounding box. This
means that the static system is substituted with static system
connection macros and, in the case that partial submodules
will be used, that the level-2 submodule is substituted by
submodule connection macros. The submodule connection
macros have to be placed inside the submodule region.

2) Constraints Generation, Synthesis, and Placement:
From the floorplanning information, we used GOAHEAD for

Figure 4. Partial module (level-2) design-flow.

creating VHDL-wrappers which instantiate the connections
macros (which are described in the previous paragraph).
These wrappers act as substituting placeholder modules for
the static system and the level-2 submodules. The wrappers
have to be connected directly with the user module and
GOAHEAD creates all VHDL code for this step.

In addition to the placeholder wrapper modules, place-
ment constraints will be generated for the connection macro
placement and further constraints forcing the placement of
all primitives of the user module into the partial module
bounding box. These constraints are used together with op-
tional other user-defined constraints to run the Xilinx vendor
tools for synthesis, technology mapping and placement.

3) Routing and Module Extraction: In addition to the
location constraints, we used the GOAHEAD blocker gen-
eration feature to create two blocker macros. The blockers
occupy all routing resources in a predefined region. By this,
we prohibit the blocked wires to be used in following routing
steps. These blockers are added into the placed design before
running the router. One blocker pre-occupies all routing
resources outside the partial module bounding box and the
second blocker (which is only needed when using level-2
reconfiguration) pre-occupies all routing resources inside the
region allocated for submodules. However, wires that will
be used to connect the partial top-level interface signals
with the connection macros (used to substitute the static

system and the submodules) will be removed from blocking.
This results in tunnels inside the blockers leaving dedicated
routing paths to the connection macros. This process is
shown in Figure 5b).

The connection macros are used to connect all top-level
interface signals except for clock signals. For providing one
or more clocks to the submodules, clock signals are routed to
all blocker primitives inside the level-2 submodule area. This
will speculatively enable all clock tree drivers in this area
(as proposed in Xilinx application note XAPP290 V1.1).

After the blocker insertion, we run the Xilinx production
line router (par). Next, we remove the blocker routing
from the fully routed netlist and use the original floorplan
information to cut out the partial module. This process is
repeated for all partial level-1 modules. The blocker macros
and placement constraints can be reused, if multiple modules
share the same bounding box (i.e., resources). With these
steps, we are building up a module library consisting of
fully placed and routed level-1 modules. Note that after
floorplanning all steps are carried out fully automatic and
manual interaction is only needed if resource requirements
demand a resizing of bounding boxes.

C. Level-2: Partial Submodules

The design flow for partial level-2 submodules is very
similar to the level-1 module design flow except that we are
not reserving resources for a submodule. Figure 4 shows the
floorplan and design-flow for a partial submodule that fits
into the partial module floorplan which is shown in Figure 3.

Note that the level-1 module is designed with two adja-
cent regions for hosting submodules. This is achieved by
providing individual connections in both regions (see the
connection macro placement inside the submodule region
in Figure 3. This can be used to place either up to two
small submodules or one larger submodule. The example
in Figure 4 shows the floorplan for a large submodule.
The flexibility provided in this system reduces substantially
internal fragmentation overhead.

D. Static Route-Throughs

Reserving a larger region for hosting reconfigurable mod-
ules can result in a very congested design with poor per-
formance, if signals have to route around that region. GO-
AHEAD solves this issue by allowing static signals to cross
a reconfigurable region. The described wire blocking for
constraining the routing basically implements an exclusive
allocation of routing resources to the static system, a recon-
figurable module, or a submodule. For implementing static
route-through signals, local long distance wires are allocated
to the static system such that these wires form a straight
predefined routing path through a reconfigurable region. All
these routing paths will then be programmed speculatively
in the level-1 modules and level-2 submodules regardless if
a particular path is used or not by the static system. When
allocating static paths regular structured (e.g., by allocating
the same equivalent wire in all switch matrices within
the horizontal or vertical span of a reconfigurable region),
route-throughs can be used in hierarchically reconfigurable

Figure 5. Phases at the different design levels. a) The static system follows the default GOAHEAD flow with connection macros used to substitute the
reconfigurable modules and blockers which occupy all routing resources except for an optional tunnel. The blocker is created by GOAHEAD and temporarily
embedded into the design only for routing the design. b) Partial modules are implemented by substituting the static system with connection macros. In
addition, connection macros are used within the hierarchical PR region to define the routing with the submodules (together with a blocker). These phases
have to be carried out for each level-1 module and the final physically implemented module netlists can be extracted from the design and stored in a
module library. c) Submodules are implemented individually following the default GOAHEAD flow. The result is a submodule library.

systems together with module relocation. The corresponding
constraints generation is supported in GOAHEAD.

E. Bitstream Generation

All bitstreams are generated with the module placer
available in GOAHEAD and the Xilinx bitstream generation
tool (bitgen), as described in the following sections.

1) Level-0: Start-up Bitstream: For generating the start-
up configuration, we can run the usual vendor bitstream
generation. Alternatively, we can create a start-up bitstream
that already contains certain reconfigurable modules. In this
case, we load the (fully placed and routed) static level-0
design into GOAHEAD. After this, all initial level-1 modules
will be placed, followed by all initial level-2 submodules.
Note that the original connection macros will be overwritten
during this step. Consequently, the connection macros are
not resulting in any logic overhead and reconfigurable re-
gions can be entirely used for implementing partial modules.
The result of this netlist merging is a complete netlist that
can be used with the Xilinx bitstream generation tool for
generating a full initial configuration bitstream containing
already some reconfigurable modules.

The resulting netlist can also be directly used for static
timing analysis. We use this feature for checking the initial
system timing, but also the timing of relocateable modules
at critical positions. Critical positions are, for example,
positions where the routing to other parts of the system has

to take long distances.1 Another critical placement position
is the middle column of the FPGA fabric that includes
the configuration logic. While the configuration logic is
transparent to the user, it still takes area on the die, hence,
resulting in longer routing paths for wires spanning over
that logic [8]. By relocating modules to different positions
on this middle column might consequently result in timing
violations which can be analyzed at design-time.

2) Level-1: Partial Module Bitstreams: Partial module
bitstreams are generated by placing each module one after
the other to each possible placement position into the static
system on a netlist level with the help of GOAHEAD. Then, a
differential bitstream is generated for each resulting design
using the Xilinx vendor bitstream generation tool (bitgen
-r). This bitstream contains the configuration data needed
to reconfigure from a static system to a static system that is
including the partial module at a specific placement position.

With this process, we verify that the partial bitstreams that
are generated by the run-time system reassemble bitstreams
that the vendor tools would generate. At run-time, only
address fields inside the bitstreams have to be adjusted
according to the module placement position. This process
is well documented in the device-specific user guides.

3) Level-2: Partial Submodule Bitstreams: We can now
adapt the methodology from the previous paragraph for
generating the level-2 partial submodule bitstreams. Let the

1In general, it is a good design practice to include registers for all
input and output signals of parts in the system that are involved in the
communication with partial modules. This includes the static system as well
as the modules and submodules). Then (in most cases) only the internal
timing of modules is needed to be verified.

input be one level-0 netlist (static), a set of level-1 mod-
ules (L1 modules) with corresponding placement positions
(L1 positions), a set of level-2 submodules (L2 modules)
with relative placement positions inside the level-1 mod-
ules (L2 positions). Let us further define a function Mer-
geNetlists(start, increment, position) that adds the netlist
increment into the netlist start placed at position. Then we
can describe the partial bitstream generation for submodules
using the following pseudo code.

1: forall (m1 ∈ L1 modules) do
{

2: forall (p1 ∈ L1 positions(m1)) do
{

3: L1 netlist = MergeNetlists(static, m1, p1)
\\ generate level-1 module bitstreams:

4: bitfile m1 p1 =
GenDiffBitstream(static, L1 netlist)

5: forall (m2 ∈ L2 modules) do
{

6: forall (p2 ∈ L2 positions(m2)) do
{

7: L2 netlist =
MergeNetlists(L1 netlist, m2, (p1 + p2))

\\ generate level-2 submodule bitstreams:
8: bitfile m1 p1 m2 p2 =

GenDiffBitstream(L1 netlist, L2 netlist)
} } } }

Line 4 was added to show the generation of the partial level-1
module bitstreams, as described in the last paragraph. As can
be seen, we iterate over a four times nested loop consisting
of all level-1 modules and placement positions (lines 1–2)
as well as over all submodules and corresponding relative
placement positions (lines 5–6). If we consider a rather large
system with 20 modules, each with 10 placement positions
and 5 possible submodules, again each with 2 relative
placement positions, then 20 × 10 = 200 level-1 module
bitstreams have to be generated and 20×10×5×2 = 2000
level-2 submodules. If we assume about half a minute of
processing time per bitstream (note that we only stitch
netlists together without running place&route) the whole
bitstream generation process will roughly take a full day.
Luckily, the problem is fully data parallel for each module
and could consequently be easily distributed to a compute
farm.

The last discussion shows a limited scalability for the
proposed bitstream generation which is still feasible for
practical systems we can imagine today but not for large
scale systems in the future. For scaling this approach up,
more information about the bitstream format is needed
(which can be derived from the here presented bitstream
generation algorithm). Then only 20 + 5 = 25 bitstreams
are needed in total, if modules can be arbitrary relocated.
However, as mentioned before, the here proposed method-
ology ensures valid configurations without relying on non-
disclosed information.

In general it is not recommended to exchange one re-
configurable module by directly overwriting it with another

module configuration because this causes transient short
circuits [9]. Consequently, we generate a blanking bitstream
together with each level-1 or level-2 module bitstream such
that we can remove a module in a reconfigurable area before
sending a new module to the FPGA.

F. Design Automation
The last paragraphs revealed that implementing hierarchi-

cal reconfigurable systems appears to be more complex than
traditional static or reconfigurable systems. However, many
of the described steps are well supported by GOAHEAD and
need only little manual interaction.

The partitioning of the system in the different configu-
ration levels has to be done manual, as common for all
reconfigurable design flows. In general, it is not possible
to automatically decide if parts or modules in a system are
executed mutually exclusive such that they can time-share a
reconfigurable region on an FPGA. For example, because of
the halting problem, we cannot know if a task will terminate
and freeing up its resources, if we assume a Turing complete
model of execution. However, a designer is typically aware
about the modules that are mutually exclusive to each other
(which are reconfigurable level-1 candidates) or if functional
blocks can be reused by different modules (which are level-2
submodule candidates).

The floorplanning of the static system (level-0), non-
hierarchical level-1 modules and the level-2 submodules can
be carried out automatically as described detailed in [10].

III. COMPARISON WITH OTHER PR TOOLS

This paper is based on the GOAHEAD design flow which
differs from the Xilinx vendor PR flow [11]. While GOA-
HEAD follows a strict encapsulation of the static system and
all modules, the Xilinx flow is based on an incremental
design methodology. Using the vendor flow, a static sys-
tem is built by leaving reconfigurable regions unused; and
similar to the GOAHEAD flow, connection macros (called
proxy logic by Xilinx) are placed into the PR region for
implementing the communication with the partial modules.
However, the routing to the connection macros is not further
constrained and is in general different for each region. Then
for each partial module, an incremental design, including
additional placement of module primitives and incremental
routing is performed followed by the generation of a partial
differential bitstream. As the static routing is different in
each reconfigurable region, modules cannot be relocated.
The same would apply when trying to use the Xilinx design
flow in hierarchical reconfigurable systems. Then the routing
is in general different for each combination of a level-1
module and a level-2 submodule.

Considering the example from Section II-E3 with 20
modules, 10 partial regions, 5 possible submodules, and 2
level-2 regions for hosting submodules, 2000 incremental
place&route and bitstream generation steps are needed re-
sulting in 2000 partial module bitfiles to be provided by
the run-time system. Even worse, a single change in the
static system would force us to repeat these steps as the
routing to the proxy logic will change in general. In contrast,
GOAHEAD allows individual modifications to the static

system without any interference with the partial modules
or submodules.

With OpenPR [12] there exists another partial reconfigura-
tion tool which is targeting a more scalable design flow than
available by Xilinx. However, that tool supports less devices
and uses only bus macro communication. This results in a
coarser grained placement grid, higher implementation over-
head, and higher interface latency. Considering the reconfig-
urable custom instruction example that we will examine in
the case study, the bus macro communication in OpenPR
would introduce an overhead as high as the logic which
is available in the area allocated for hosting reconfigurable
submodules.

IV. MULTICORE CASE STUDY

We created a reconfigurable multicore case study for
demonstrating the design flow for implementing hierarchical
partial reconfiguration (see Section II). The static system
has been taken unchanged from a reference design which
is shipped with GOAHEAD for the Atlys Spartan-6 board
from Digilent. That system provides a large reconfigurable
area which is divided into 15 × 5 = 75 tiles. Each tile is
two switch boxes wide and one clock region in height and
multiple adjacent tiles can be used for implementing larger
modules. In addition, each tile provides an interface to a
video stream that is routed meander-like over the whole
reconfigurable region. The video stream follows the VGA
standard but is additionally used to send control data to
partial modules in the blank periods of the video stream.
We can describe the system by its configuration levels:

• level-0 The static system provides a control CPU, mem-
ory controllers for DDR and flash, video I/O modules,
and an ICAP configuration controller.

• level-1 The reconfigurable module library consists
of non-hierarchically reconfigurable video processing
modules (Sobel, Pong, Segmentation) and of three
MIPS CPU systems which each can host up to two
level-2 modules. These systems are identical except
for the data memory and instruction memory layout
which was selected to be 2KB:10KB, 6KB:6KB, and
10KB:2KB for instruction:data memory. This allows
the execution of programs with different memory re-
quirements by using partial reconfiguration. Each re-
configurable system provides a small text output win-
dow and can receive process data and program code via
the video stream (during video idle times). A screenshot
of the implemented system is shown in Figure 6.

• level-2 The submodule library contains reconfigurable
instruction set extensions (count-1-bits, mask&permute,
64-bit-parity, 4x8-bit-saturation-ADD, and CRC).

A. Implementation and Bitstream Generation
The implementation of the reconfigurable level-1 MIPS-

CPU systems and the level-2 custom instructions follows
exactly the design-flow that was presented in Section II. As
the layout of logic, memory, and multiplier resources differs
between the left and right half of the used Spartan-6 LX-45
FPGA, two physical implementations have been generated
for each of the three MIPS-CPU system netlists. With the

Figure 6. Hierarchically reconfigurable system. a) static system (top right
corner of the reconfigurable region) b) a partial MIPS-CPU system with an
attached video frame buffer overlay module to be placed into a). c) partially
reconfigurable custom instructions that fit directly into the MIPS SoC.

configurations single level hierarchical
1 level-1 config. 3× 2× 4×

(4
2

)
3× 2 = 6

+3× 2 = 150
1 level-2 config. – 2× 2× 4 + 2 = 18
total 150 24
bitstream storage single level hierarchical
1 level-1 config. 81 KB 81 KB
1 level-2 config. – 7.8 KB / 18.6 KB
all level-1 config. 150× 81KB 6× 81KB

= 12.2MB = 490KB
all level-2 config. – 16× 7.8KB

+2× 18.6KB
= 163KB

storage total 12.2MB 652 KB
configuration time single level hierarchical
1 level-1 config. 2.5 ms 2.5 ms
1 level-2 config. – 240µs / 475µs

Table I
COMPARISON BETWEEN SINGLE LEVEL AND HIERARCHICAL

RECONFIGURATION CONSIDERING 3 CPU SOFTCORE VARIANTS AND 4
(SMALL) + 1 (LARGE) ISA EXTENSIONS.

help of the design alternatives for the left and right half of
the reconfigurable region, there exist 10 arbitrary placement
positions for the three different CPU-systems.

The module bounding box for a MIPS-CPU system was
chosen to be 13 CLB, 2 BRAM, and 1 DSP columns
wide and one clock region in height. This corresponds
to a partial bitstream size of 81 KB for a level-1 mod-
ule. We implemented four small reconfigurable instruction
set extensions (count-1-bits, mask&permute, 64-bit-parity,
4x8-bit-saturation-ADD) that were two CLB columns wide
which corresponds to 7.8 KB bitstream size per instruction.
An additional CRC computation instruction was four CLB
columns wide (18.6 KB).

B. Results

Table I compares a standard single level reconfigurable
system implementation with a hierarchically reconfigurable
system in terms of number of configurations, storage re-
quirements and reconfiguration time. The table lists only the
differences related to the three hierarchically reconfigurable
MIPS-CPU systems and the five instruction set extensions
because there are no differences for the other modules.

Each CPU system can be placed to any out of 10 possible
positions and it is assumed that any combination of two
small or one large instruction set extension can be used at
run-time. Other scenarios might result in less benefits for
hierarchical reconfiguration.

In the case-study, we provide j = 4 small modules
whereof two of them can be placed in the k = 2 tiles
for hosting submodules. This results in

(
j
k

)
permutations

when not considering symmetric solutions. Therefore, in the
traditional single level reconfiguration case with the 3 CPU
systems able to host any 2 out of 4 small ISA extensions,
we would need 3× 2× 4×

(
4
2

)
= 144 bitstreams. Together

with the 3×2 configurations for the additional larger instruc-
tion, this adds to 150 partial bitstream permutations, hence
rendering partial reconfiguration mostly useless. However,
hierarchical reconfiguration allows the same flexibility with
only 6 level-1 and 18 small level-2 configurations.

The table points out that the configuration memory re-
quirements are 18.7× smaller. In addition, for reconfiguring
one small (large) custom instruction, only 7.8 KB (18.6 KB)
instead of 81 KB configuration data have to be sent to the
FPGA. This results in a 10× (5×) faster reconfiguration
time, when using hierarchical reconfiguration.

We compared the maximal clock frequency of a hierar-
chically reconfigurable MIPS system with a reconfigurable
MIPS system that 1) provided one instruction and 2) that
provided all 5 instruction set extensions (using a slightly
larger bounding box). In the first case, we found on average
a small 4% performance drop, probably due to the extra
constraints. However, in the second case, the hierarchical
approach was 6.8% faster. Here, the hierarchical reconfigu-
ration approach needed a smaller multiplexer than the variant
supporting all instructions in parallel. As a result, this saved
a logic level on the critical path.

V. CONCLUSIONS

In this paper, we introduced hierarchical reconfiguration
of FPGAs which significantly reduces design complexity,
FPGA resource requirements, and bitstream storage require-
ments for large systems consisting of modules that can share
common submodules. This was demonstrated by an 18.7×
storage improvement and up to a 10× faster reconfiguration
in a reconfigurable multicore system consisting of different
reconfigurable CPUs that themselves can host reconfigurable
instruction set extensions.

As the next step, more realistic applications have to be
developed, such as the mentioned reconfigurable database
acceleration system. Furthermore, we will extend this work
for allowing dynamic constructs for hardware programming
which will be implemented with the help or (hierarchi-
cal) partial reconfiguration. For example OpenCL [13] is
becoming popular for programming FPGAs. However, in
contrast to CPU and GPU targets, FPGAs cannot create
or change dynamically threads. This will become an issue
for complex systems. Similarly, hierarchical reconfiguration
is very suitable to implement object oriented hardware
systems [14].

ACKNOWLEDGMENT
The research leading to these results has received funding

from the European Union’s Seventh Framework Programme
(FP7/2007-2013) under grant agreement n 318633.

REFERENCES

[1] C. Claus, R. Ahmed, F. Altenried, and W. Stechele, “To-
wards Rapid Dynamic Partial Reconfiguration in Video-Based
Driver Assistance Systems,” in Proc. of the 6th Int. Conf. on
Reconfigurable Computing: architectures, Tools and Applica-
tions (ARC). Springer, 2010, pp. 55–67.

[2] E. J. McDonald, “Runtime FPGA Partial Reconfiguration,” in
IEEE Aerospace Conference. IEEE, 2008, pp. 1–7.

[3] M. Feilen, M. Ihmig, C. Schwarzbauer, and W. Stechele,
“An Efficient DVB-T2 Decoding Accelerator by Time-
Multiplexing FPGA Resources,” in 22nd Int. Conf. on Field
Programmable Logic and Appl. (FPL), 2012, pp. 75–82.

[4] C. Dennl, D. Ziener, and J. Teich, “On-the-fly Composition of
FPGA-Based SQL Query Accelerators Using a Partially Re-
configurable Module Library,” Field-Programmable Custom
Computing Machines, Annual IEEE Symp., pp. 45–52, 2012.

[5] P. Yiannacouras, J. G. Steffan, and J. Rose, “Exploration and
Customization of FPGA-Based Soft Processors,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 26, no. 2, pp. 266–277, Feb. 2007.

[6] A. Wold, D. Koch, and J. Torresen, “Design Techniques for
Increasing Performance and Resource Utilization of Recon-
figurable Soft CPUs,” in 15th IEEE Symp. on Design and
Diagnostics of Electronic Circuits and Systems (DDECS),
2012, pp. 50–55.

[7] C. Beckhoff, D. Koch, and J. Torresen, “GoAhead: A Partial
Reconfiguration Framework,” in 20th Annual IEEE Sympo-
sium on Field-Programmable Custom Computing Machines
(FCCM), 2012, pp. 37–44.

[8] D. Koch, Partial Reconfiguration on FPGAs – Architectures,
Tools and Applications. Springer, 2003.

[9] C. Beckhoff, D. Koch, and J. Torresen, “Short-Circuits on FP-
GAs caused by Partial Runtime Reconfiguration,” in Proc. of
the Int. Conf. on Field Programmable Logic and Applications
(FPL), Milan, Italy, Aug. 2010, pp. 596–601.

[10] C. Beckhoff, D. Koch, and J. Torresen, “Automatic Floorplan-
ning and Interface Synthesis of Island Style Reconfigurable
Systems with GoAhead,” in 26th Int. Conf. on Architecture
of Computing Systems (ARCS), 2012, pp. 303–316.

[11] Xilinx Inc., “Partial Reconfiguration User Guide (Rel. 13.2),”
2011, available online: www.xilinx.com/support
/documentation/sw_manuals/xilinx13_2/ug702.pdf.

[12] A. A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood,
“OpenPR: An Open-Source Partial-Reconfiguration Toolkit
for Xilinx FPGAs,” in Proceedings of the 2011 IEEE Inter-
national Symposium on Parallel and Distributed Processing
Workshops (IPDPSW), 2011, pp. 228–235.

[13] Altera Inc., “Implementing FPGA Design with the OpenCL
Standard (White Paper WP-01173-2.0),” 2012, online:
www.altera.co.uk/literature/wp/wp-01173-opencl.pdf.

[14] N. Abel, “Design and Implementation of an Object-Oriented
Framework for Dynamic Partial Reconfiguration,” Ph.D. dis-
sertation, University of Heidelberg, Germany, 2011.

