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Abstract—Classifying functions according to some common
properties into libraries of functions is an important step in
many logic synthesis and technology mapping algorithms used
in FPGA design flows. NPN classification is one of the frequently
used classifications. Existing algorithms for NPN classification
perform a sequence of steps to derive the resulting NPN class,
but discard the intermediate results produced at the end of each
step. The hierarchical method introduced in this paper uses the
same sequence of steps, but it saves the intermediate results at
each step and reuses them when classifying other functions. It is,
on average, 3.7 times faster compared to a state-of-the-art non-
hierarchical method, at the cost of a modest increase in memory
needed to save the class hierarchy. The hierarchical approach
enables a rapid exact NPN classification for functions up to 10
inputs—it exactly classifies one million 6-input functions in the
same time as the heuristic state-of-the-art algorithm.

I. INTRODUCTION

Negation-Permutation-Negation (NPN) classification assigns
two Boolean functions into the same NPN class if one can
be obtained from the other by negating (i.e., complementing)
and permuting inputs, and negating the output. The number of
NPN classes is much lower than the number of functions.

In practice, NPN classification reduces the size of the
library of functions with some desirable properties used in
synthesis [1], [2] and mapping [3], [4] for FPGAs. NPN
classification is used, first, as a precomputation step, to build the
library of known functions and second, as a Boolean matching
algorithm returning the class for each function encountered
while running the algorithm on a given design.

Due to its importance, NPN classification is a well-studied
problem for which different heuristics and exact algorithms
already exist [5-12]. Although some of these algorithms
are composed of several methods that compute intermediate
representations of the function, they do not save nor use this
information. For example, if an algorithm consists of two
methods for transformations, A and B, then they are executed
one after the other for each function that has to be classified and
the final result is a set of NPN classes, as shown on Figure la.
The intermediate results from A are not saved for future calls,
but only used as input to B and discarded.

On the contrary, we propose to memoize intermediate
representations by building a hierarchy of classes. For the
previous example, as Figure 1b shows, the results from A
form an intermediate level of classes, while the final classes
are obtained by executing B additionally. For each class from
the intermediate levels, we save information that leads to the
final NPN class to which it would merge by executing the

additional methods. Thus, once the hierarchy contains enough
information, the final NPN class is obtained faster—in the best
case, only the first method of the NPN algorithm is executed,
while the following methods are required only if there is no
match with an existing class at the corresponding level.

The idea of the hierarchical approach is independent from the
NPN algorithm and can be applied to any algorithm composed
of several methods. Moreover, it allows creating a hierarchy
of different NPN algorithms—fast heuristics can be used in
the higher levels as a preprocessing step to obtain intermediate
classes, while slower (pseudo-)exact methods can generate the
final NPN classes in the lowest level. In this manner, as an
independent contribution of this paper, we propose an exact
method that enables fast exact NPN classification when being
used to obtain the final NPN classes in a hierarchy.

Following, Section II gives background information. In
Section III, we describe the hierarchical NPN classification,
and propose strategies for exact classification. Section IV gives
the experimental results. Section V concludes the paper.

II. BACKGROUND INFORMATION

In this paper, we use the terms Boolean function, truth
table, cofactor, and disjoint-support decomposition (DSD) as
defined by Huang et al. [12]. Following we give the terminology
associated with NPN equivalence and canonical form.
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(a) Flat organization. (b) Hierarchical organization.

Figure 1: NPN classification of Boolean functions. (a) In
the existing algorithms, all classes belong to one level and
functions are directly matched to these final NPN classes.
(b) Having a hierarchy of classes allows matching the functions
to intermediate classes at the first level (L1), which are further
matched into final NPN classes from the second level (L2).



Figure 2: Hierarchical organization of the classes and methods
of the heuristic algorithm for NPN classification.

Two single-output functions f and g are NPN equivalent if
one can be obtained from the other by negating and permuting
inputs, and negating the output. The NPN class of a function
f with n inputs contains at most n! - 2"+ functions that
can be obtained from f. The representative of an NPN class
is a function that is selected uniquely and gives the NPN
canonical form of any function from the class. To find the
NPN class of a function f, we should determine the required
transformations, for which the truth table of f equals the truth
table of the class representative. For a function f(z1,...,z,),
a permutation vector p = (p1,...,py) encodes the required
permutation of inputs by recording the position for each input,
and a negation vector ¢ = (qo, q1, - - - ,Gn) encodes the polarity
for the output with gy and the polarity for the inputs on the
corresponding positions with g;, where 1 < ¢ < n. Initially,
p=(1,2,3,...,n) as each input is on the initial position, and
g =1(0,0,0,...,0) as the output and inputs are not negated.

III. HIERARCHICAL NPN CLASSIFICATION

In this section, first, we describe the state-of-the-art heuristic
algorithm [12] used to demonstrate our hierarchical approach.
Then, we explain how to build a hierarchy of classes, and we
propose a fast algorithm for exact NPN classification.

A. Methods for Heuristic NPN Classification

As the basis for our algorithm, we use the heuristic version of
the state-of-the-art algorithm for NPN classification by Huang

et al. [12], which is used in several recent publications [2], [4].

The first two methods of the algorithm determine the polarity
of the output and the polarity of each input by counting the
number of 1s in the truth table and cofactors, respectively. Then,
the third method orders the inputs in increasing order by the
number of 1s in the positive cofactor. However, if some inputs
have equal number of 1s, then they form a fied group and their
position is ambiguous. Thus, the fourth method performs a
series of negations and permutations within each tied group to
minimize the integer value of the function’s truth table.

B. Building a Hierarchy of NPN Classes

The proposed hierarchical approach creates a hierarchy of
NPN classes by saving intermediate results (i.e., truth tables).
As Figure 2 shows, in a hierarchical version of the heuristic
algorithm [12], each method creates one level of NPN classes
in the hierarchy. For each level, a hash table stores the truth
tables of the classes’ representatives in that level. The hierarchy
of classes allows to stop the execution as soon as the function
equals a representative from a level of the hierarchy. For
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Figure 3: Adding four functions f, g, h, and ¢ to a hierarchy
of classes using an algorithm that consists of three methods A,
B and C. (a) The hierarchy of classes before adding the four
functions. (b) The classes added to the hierarchy for the three
new functions are given with dotted lines. Over the dotted lines
we give the method executed for classifying each function.
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example, Figure 3 shows how a hierarchy is updated after the
functions f, g, h, and ¢ are matched and added. The function
f shows the best-case scenario as it is matched in the first
level, after executing A, while, the functions h and ¢ show the
worst-case scenario, when all methods are executed.

In the hierarchical approach, when we have a match at
some intermediate level m in the hierarchy, the computed
vectors p,, and ¢,, encode only the transformations required
to generate the representative of the intermediate class. The
final transformations are generated by additionally applying
Dmgc and @, that transform the intermediate representative of
the class ¢ from level m to the representative of its final class.
Thus, once we have a match, the final vectors are computed as
p= permU-te<pm7pm;c> and ¢ = permUte(Qmapm;c) D gm;c
where permute(a, b) orders the elements of a as defined by b.

C. Towards a Fast Exact NPN Classification

The naive way to perform exact NPN classification, for a
function with n inputs, is to try exhaustively all n! - 27+1
transformations, and select the one that leads to the minimum
integer value of the truth table. However, this is computationally
hard and prohibitively slow even for functions with few inputs.

The concept for building a hierarchy of classes is not limited
to any method for NPN classification. We can easily extend
the hierarchy with additional methods that refine the results by
merging classes. Thus, to perform an exact NPN classification,
we propose to pre-classify the functions by a fast heuristics, as
proposed in Section III-B, and then to produce the final level
of classes using an algorithm for exact NPN classifications as
a last method of the hierarchy. The runtime benefit of such
classification is presented in Section IV-B.

D. Group-Based Exact NPN Classification

Instead of executing the exhaustive exact NPN classification,
we propose the following exact algorithm that uses the tied
groups formed by the third method from Section III-A. After



TABLE I: Comparison of the runtime and memory usage of the algorithm OrigH and its hierarchical implementation HierH.

#Vars  #Func #Unique #Classes Time (s) Speed-up Memory (MB) #Classes per level for HierH
functions OrigH HierH OrigH HierH 1 2 3 4
6 IM 40195 4.0% 204 0.28 0.10 2.80 0.03 0.44 38844 5845 1190 204
8 1M 81864 8.2% 1344 0.80 0.22 3.64 0.13 4.00 81244 34994 4160 1344
Full 10 100K 19723  19.7% 1723 0.19 0.09 2.11 0.50 5.00 19699 10579 2651 1723
DSD 12 100K 20245 20.2% 3157 0.68 0.30 2.27 2.00 22.00 20239 11724 4394 3157
14 10K 5270  52.7% 891 0.38 0.20 1.90 8.00 40.00 5270 2369 1094 891
16 10K 3211 32.1% 1057 1.58 0.69 2.29 32.00 128.00 3211 2293 1332 1057
6 IM 44493 4.4% 2254 0.36 0.10 3.60 0.03 0.63 43783 20590 5229 2254
8 M 77312 7.7% 14270 1.50 0.24 6.25 0.50 5.50 77188 57452 23336 14270
Partial 10 100K 17325 17.3% 6620 0.32 0.08 4.00 1.00 7.00 17317 14287 9194 6620
DSD 12 100K 18383  18.4% 8545 1.32 0.34 3.88 6.00 30.00 18381 15455 10952 8545
14 10K 5930 59.3% 2482 0.53 0.31 1.71 8.00 48.00 5930 4655 3131 2482
16 10K 5889  58.9% 3110 2.57 1.65 1.56 32.00 192.00 5889 5233 3744 3110
6 M 5909 0.6% 1748 0.32 0.09 3.56 0.03 0.19 5859 4506 2638 1748
8 M 5745 0.6% 2949 0.99 0.14 7.07 0.13 0.75 5730 5182 4091 2949
Non 10 100K 3926 3.9% 2016 0.49 0.05 9.80 0.50 2.00 3914 3613 3055 2016
DSD 12 100K 2517 2.5% 1409 141 0.16 8.81 2.00 8.00 2517 2345 1932 1409
14 10K 1624 16.2% 980 0.50 0.11 4.55 8.00 32.00 1624 1522 1372 980
16 10K 358 3.6% 282 2.69 0.28 9.61 32.00 128.00 358 346 325 282
Geomean 0.70 0.19 3.72 1.19 8.57

this method, the position is deterministically defined only for
untied inputs that form groups with one element, which we call
singleton inputs. As the order of the groups is deterministically
identified, it suffices to determine the order of the inputs
within each group. So, instead of trying exhaustively all n!
permutations, we only need to try Hle g;! permutations, where
k is the number of groups and g; is the number of inputs in
the group ¢, for 1 < ¢ < k, and n = Zle g;. However, in
some cases, the polarities of the output and singleton inputs
are not uniquely defined. To minimize the integer value of the
truth table, we have to try both of their polarities. The final
truth table is not minimum, but it is minimal and unique given
the permutations of the third method.

Finally, in the worst case, all inputs belong to one group
and this algorithm has the same complexity as the exhaustive
exact NPN classification, while in the best case, only singleton
groups exist for which we require only 2"*! transformations.

IV. EXPERIMENTAL RESULTS

ABC [13] contains implementation of the heuristic state-of-
the-art algorithm [12] (command festnpn -A 5 <input file>>) and
the exhaustive exact algorithm (command festnpn -A 1 <input
file>). We refer to these algorithms as OrigH and OrigE,
respectively. The proposed algorithm from Section III-B,
HierH, is the hierarchical version of OrigH and is added
to ABC (command testnpn -A 7 <input file>). The exact
algorithm from Section III-C, HierE1, is HierH with OrigE
added as last method. Finally, HierE2 differs from HierEl
by using the algorithm from Section III-D as last method.

As benchmarks we use the sets of Boolean functions used by
Huang et al. [12]. They are divided by their DSD properties [14]
(functions with full DSD, partial DSD, and non-DSD), and by
the number of input variables (even values from 6 to 16).

For the efficiency of the algorithms, we compare the runtime
for Boolean matching while building a library of known

functions. The algorithms classify each function, considering
that the functions are produced on-the-fly as in practical
applications, such as technology mapping [3]. A timeout is
reported if the runtime exceeds 12 hours. We also compare
the memory required for the hash tables that store the class
representatives. Additionally, for the hierarchical algorithms,
a permutation and a negation vector are saved for each class.
But, this memory is negligible compared to the one required
for the hash tables, and thus, it is omitted from the results.

A. Comparison to a State-of-the-Art Heuristic Algorithm

Table I compares the runtime and memory usage of the
algorithm OrigH and its hierarchical implementation HierH.
Since both versions of the algorithm execute the same steps to
generate the representative of each function, the final number of
classes, “#Classes”, is identical for both versions. This proves
the correctness of the hierarchical algorithm HierH.

Regarding the runtime, “Time (s)”, on average over all runs,
HierH is 3.7 times faster than OrigH. Regarding memory
usage, “Memory (MB)”, OrigH saves only the last level of
classes, and thus it uses, on average, 7.2 times less memory
than HierH, which saves the classes derived from each method.
But, practically, the maximum increase in memory is only 160
MB, which is easily affordable nowadays.

B. Hierarchical Exact NPN Classification

Table II compares the runtime and memory usage of the exact
algorithms OrigE and HierEl. As before, both OrigE and
HierEl generate the same final classes, and thus the number
of classes is identical for both algorithms.

In ABC, the command for OrigE first removes the duplicate
functions, and then classifies only unique functions. Yet, this is
only possible if all functions are precomputed, but in practical
applications they are usually generated on-the-fly. To make
a fair comparison, we evaluate both cases under “Unique



TABLE II: Speed-up for exact NPN classification of function with 6 and 8 inputs.

All functions

Unique functions only

Time (s)

Time (s) Memory (MB)

#Vars #Func #Classes Speedup Speedup
OrigE HierEl OrigE HierEl OrigE HierEl
Full 6 IM 191  1983.03 0.39 5084.69 69.61 0.45 154.69 0.03 0.47
DSD 8 IM 1274 >12h 72591 - 43486.15 716.72 60.67 0.13 4.13
Partial 6 IM 2103 2345.11 4.00 586.28 73.11 4.14 17.66 0.03 0.66
DSD 8 IM 13923 >12h 7310.89 - 41012.60 7718.16 5.31 0.50 6.00
Non 6 IM 1673 1992.16 2.71 735.11 8.98 3.09 291 0.03 0.22
DSD 8 IM 2836 >12h 1534.50 - 3111.02 1509.05 2.06 0.13 0.88
Geomean 2100.26 57.04 1298.90 795.58 60.30 13.19 0.08 1.07

TABLE III: Group-based exact NPN classification.

#Vars #Func #Classes Time (s) Speedup

Full 6 IM 191 0.20 1.95
D“SD 8 M 1274 59.34 12.23
10 100K 1707 9229.80 -

Partial 6 IM 2103 0.50 8.00
DSD 8 IM 13923 136.27 53.65
10 100K 6494 6304.21 -

Non 6 1M 1673 0.26 10.42
DSD 8 IM 2836 19.21 79.88
10 100K 1904 4456.96 -

Geomean 46.66 14.29

functions only” and “All functions”, respectively. As shown,
HierEl is significantly faster when the functions are generated
on-the-fly, and it is 13 times faster if only unique functions
are considered. However, HierE1 still requires more than 12
hours to classify the sets of 10-input functions.

C. Hierarchical Group-Based Exact NPN Classification

As HierE2 performs less transformation whenever the
inputs are divided in more than one group, and as Table III
shows, it is 14.3 times faster than HierE1l. Remarkably, for
the sets with 6-input functions, on average, HierE2 produces
the exact classification in 0.30 seconds, while the state-of-the-
art heuristic OrigH requires 0.32 seconds. But, even HierE2
is not scalable enough for classifying functions with more than
10 inputs and calls for a smarter method for exact classification.

V. CONCLUSION

In this paper, we present a new approach for fast NPN classi-
fication based on building a hierarchy of classes. The approach
is general and improves the runtime of different algorithms
for NPN classification for a modest increase in memory usage.
But, NPN-based applications in logic synthesis [1], [2] and
technology mapping [3], [4], [15], which are used in FPGA
design flow, can afford to use up to 160 MB more memory to
benefit from the speed-up in runtime. Finally, it is astonishing
that the proposed hierarchical algorithm for exact classification
is as fast as a state-of-the-art heuristic when they perform
Boolean matching for one million 6-input practical functions.
But, exactly classifying functions with more than 10 inputs
still is a problem that we plan to address in the future.

Acknowledgments. This work was partly supported by NSF/NSA grant
“Enhanced equivalence checking in cryptoanalytic applications” at University of

California, Berkeley, and partly by H2020-ERC-2014-ADG 669354 CyberCare.

[1]

[2]

[3]

[4

=

[5

[ty

[6]
[7]

[8

—

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

A. Kennings, A. Mishchenko, K. Vorwerk, V. Pevzner, and A. Kundu,
“Efficient FPGA resynthesis using precomputed LUT structures,” in
Proceedings of the 20th International Conference on Field-Programmable
Logic and Applications, Milano, Aug. 2010, pp. 532-37.

W. Yang, L. Wang, and A. Mishchenko, “Lazy man’s logic synthesis,” in
Proceedings of the International Conference on Computer Aided Design,
San Jose, Calif., Nov. 2012, pp. 597-604.

A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational
and sequential mapping with priority cuts,” in Proceedings of the
International Conference on Computer Aided Design, San Jose, Calif.,
Nov. 2007, pp. 354-61.

A. Mishchenko, R. Brayton, W. Feng, and J. W. Greene, “Technology
mapping into general programmable cells,” in Proceedings of the 23rd
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, Monterey, Calif., Feb. 2015, pp. 70-73.

E. Goto and H. Takahasi, “Some theorems useful in threshold logic
for enumerating Boolean functions,” in International Federation for
Information Processing Congress, Aug. 1962, pp. 747-52.

M. A. Harrison, Introduction to Switching and Automata Theory.
York: McGraw-Hill, 1965.

L. Benini and G. De Micheli, “A survey of Boolean matching techniques
for library binding,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 2, no. 3, pp. 193-226, 1997.

U. Hinsberger and R. Kolla, “Boolean matching for large libraries,” in
Proceedings of the 35th Design Automation Conference, San Francisco,
Calif., Jun. 1998, pp. 206-11.

D. Debnath and T. Sasao, “Efficient computation of canonical form for
Boolean matching in large libraries,” in Proceedings of the Asia and
South Pacific Design Automation Conference, Yokohama, Japan, Jan.
2004, pp. 591-96.

A. Abdollahi and M. Pedram, “A new canonical form for fast Boolean
matching in logic synthesis and verification,” in Proceedings of the 42nd
Design Automation Conference, Anaheim, Calif., Jun. 2005, pp. 379-84.
D. Chai and A. Kuehlmann, “Building a better Boolean matcher and
symmetry detector,” in Proceedings of the Design, Automation and Test
in Europe Conference and Exhibition, Munich, Mar. 2006, pp. 1079-84.
Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko, “Fast Boolean
matching based on NPN classification,” in Proceedings of the IEEE
International Conference on Field Programmable Technology, Kyoto,
Dec. 2013, pp. 310-13.

ABC: A System for Sequential Synthesis and Verification, Berkeley
Logic Synthesis and Verification Group, Berkeley, Calif., Mar. 2016,
http://www.eecs.berkeley.edu/ alanmi/abc/.

R. Ashenhurst, “The decomposition of switching functions,” in Pro-
ceedings of the International Symposium on the Theory of Switching,
Cambridge, Mass., Apr. 1957, pp. 74-116.

F. Mailhot and G. De Micheli, “Algorithms for technology mapping
based on binary decision diagrams and on Boolean operations,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 12, no. 5, pp. 599-620, 1993.

New



