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Abstract—This paper describes a deterministic and parallel
implementation of the VPR routability-driven router for FPGAs.
We considered two parallelization strategies: (1) routing multiple
nets in parallel; and (2) routing one net at a time, while
parallelizing the Maze Expansion step. Using eight threads
running on eight cores, the two methods achieved speedups
of 1.84× and 3.67×, respectively, compared to VPR’s single-
threaded routability-driven router. Removing the determinism
requirement increased these respective speedups to 2.67× and
5.46×, while sacrificing the guarantee of reproducible results.

I. INTRODUCTION

This paper presents a deterministic and parallel implementa-
tion of the VPR routability-driven router [1] using Galois [2],
[3]. The Galois programming model, compiler, and runtime
synergistically accelerate irregular algorithms that dynamically
modify linked data structures [2]. Galois implements specula-
tive parallelism, in which multiple threads may concurrently
modify the same nodes in a larger data structure (e.g., a graph),
and encapsulates conflict detection and resolution in a manner
that is fully transparent to the programmer. As such, Galois
significantly simplifies the implementation task for irregular
algorithms, such as FPGA routers.

Prior work used Galois’ non-deterministic execution model
to parallelize the Maze Expansion step of the routability-driven
router, which routes a single net [4]. This work offers two
key extensions. First, we consider the alternative, which is
to route multple nets in parallel; second, we implement both
approaches using both deterministic and non-deterministic
Galois. Our results show that Galois is more successful at
exposing parallelism when routing a single net, compared
to routing multiple nets concurrently; we also quantify the
performance impact of determinism in both cases. With eight
threads, our most effective non-deterministic router is 5.46×
faster than the single-threaded routability driven router, while
our most effective deterministic router is 3.67× faster.

II. FPGA ROUTING PROBLEM FORMULATION

VPR is an FPGA architectural modeling and CAD tool
framework which is widely used in academic research [5].
VPR features two routers: one which is routability-driven [1],
and the other, which is timing-driven [6]; this paper focuses
exclusively on the routability-driven router.

FPGA routing is equivalent to the NP-complete problem
of finding a set of disjoint paths in a graph (Fig. 1). The
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Fig. 1. An instance of the disjoint path problem: (a) a graph with sources
S = {s1, s2} and sinks T = {t1, t2}; (b) an illegal solution, i.e., two non-
disjoint paths that share a common vertex; and (c) a legal solution, i.e., two
disjoint paths that share no common vertices.

primary data structure representing FPGA routing resources is
a directed Routing Resource Graph (RRG) G = (V,E).

Each vertex v ∈ V represents a wire or pin and each
edge e ∈ E represents a connection between two ver-
tices. Each signal i to route through G forms a net Ni =
(si, {ti,1, ti,2, · · · , ti,m}). Ni emanates from one source si ∈
V and connects to a set of sinks {ti,1, ti,2, · · · , ti,m} ⊂ V
in G. Let Pi,j denote the path from si to sink ti,j in G. Two
paths Pi,j and Pi,k that emanate from the same source may
overlap, but paths in distinct nets must have disjoint routes,
as shown in Fig. 1(c). The solution to the routing problem of
net Ni is the directed routing tree RT (Ni).

III. PATHFINDER ALGORITHM

VPR’s routers are based on a prior algorithm called
PathFinder [7]. PathFinder’s main body is a triple-nested loop;
the outer loop is called the All-net Router, the middle loop the
Signal Router, and the inner loop the Maze Expansion:

• The All-net Router repeatedly calls the Signal Router
to route all of the nets. It terminates either when a legal
solution is found, or a user-specified number of iterations
fail to produce a legal solution.

• Each Signal Router iteration rips up each net and re-
routes it by invoking Maze Expansion. Parallelizing the
signal router entails routing multiple nets in parallel.

• The Maze Expansion traverses the RRG starting from
the source of a net Ni. The net’s routing tree RT (Ni)
is initialized with the source node. Maze Expansion
uncovers the neighbors of the source and stores them
in a priority queue (PQ), sorted by their cost. Then, it
extracts the minimum cost vertex vmin from PQ. If vmin

is a sink, a backtrace procedure constructs a path from the
sink to the routing tree and adds the newly created path
to the RT (Ni). Otherwise, each undiscovered neighbor v
of vmin is inserted into the PQ and the Maze Expansion
continues. Fig. 2 illustrates an example.



(a) (b)

(c) (d)

Fig. 2. Maze Expansion: (a) Priority queue PQ contains vertices that have
been discovered, but whose neighborhoods have not yet been expanded;
RT (Ni) contains part of Ni’s routing tree that has been found so far. (b)
A vertex is chosen for neighborhood expansion; its neighbors that have not
yet been discovered are inserted into PQ, expanding the wavefront of the
search. (c) Expanding the neighborhood of the next vertex discovers a sink.
(d) A backtrace connects the sink to RT (Ni), all vertices and edges along
the backtrace are then added to RT (Ni).

During Maze Expansion, nets may share routing resources,
creating a temporarily illegal solution. To legalize the result,
the All-net Router rips up and re-routes all nets, not just those
that share routing resources, and imposes a penalty cost on the
shared resources to dissuade their use in subsequent iterations;
this tends to push the algorithm toward convergence, although
convergence is not guaranteed. Typical penalty cost functions
consist of at least three terms: b(v), the base cost (the intrinsic
delay of the routing resource); p(v), the present congestion
(a first-order congestion term); and h(v) is the historical
congestion (a second-order congestion term). Refs [7], [1], [6]
discuss several penalty function alternatives in great detail.

IV. IRREGULAR PARALLELISM IN PATHFINDER

The PathFinder Signal Router and Maze Expansion are
irregular algorithms with parallelism that can only be discov-
ered at runtime. The Signal Router can route multiple nets
in parallel. The common case is that a subset of nets being
routed concurrently will not access the same routing resources.
However, if two or more nets route through the same vertex
v, then a conflict occurs. In a serial implementation, routing
the first net through v would increase the present congestion
cost p(v), which would be read by the Maze Expansion of
the second net; this may alter the path that Maze Expansion
obtains for the second net, as a lower-cost vertex may be
chosen instead. A deterministic parallel router must detect this
conflict and delay routing of the second net to ensure that Maze
Expansion reads the correct present congestion cost.

Maze Expansion can explore many RRG vertices indepen-
dently; however, if several concurrent threads discover the

same vertex and insert it into their respective priority queues at
the same time, then a conflict occurs. A serial implementation
would discover each vertex at most once. A deterministic
parallel router must ensure that each vertex is discovered via
the same parent regardless of the number of threads.

V. GALOIS

An algorithm in Galois [2] is the repeated application of an
operator to an element (vertex or edge) of a graph. An element
on which a computation is centered is active; an activity is
the application of an operator to an active element; and a
neighborhood is the set of elements that an activity accesses.
Galois may process active vertices in parallel and activities
may dynamically spawn other activities.

Each element has an exclusive lock that must be acquired by
a thread before it can access that element. Locks are held until
the activity terminates. If a lock cannot be acquired because it
is already owned by another thread, the Galois runtime detects
the conflict and rolls back one of the conflicting activities.

Iteration coalescing allows a thread to execute multiple
loop iterations at once by providing each thread with a local
workset. An activity that generates new active elements places
them in the local workset, instead of the global workset,
which is accessed by all threads. When an activity com-
pletes, the iteration fetches work from its local workset, if
possible, without releasing any locks on the neighborhood.
This continues until the local workset is empty, a conflict
occurs, or the maximum number of coalesced iterations is
reached. The iteration releases its locks when it finishes. If
a conflict is detected, the currently executing activity is rolled
back, while previous completed coalesced activities commit;
the local workset contents are moved into the global workset.

Deterministic Galois [3] constructs an interference graph,
where vertices correspond to tasks and edges are placed
between conflicting tasks. Tasks are executed in rounds, where
each round corresponds to an independent set. The scheduler
assigns a unique id to each vertex, which enables deterministic
heuristics for the independent set problem.

VI. PARALLEL ROUTABILITY-DRIVEN ROUTER

A. Parallel Signal Router

Algorithm 1 shows pseudocode for the parallel Galois
Signal Router. Let K be the number of threads. The netlist
is partitioned into K sets, one set per thread. During the
first All-net router iteration, the historical congestion of each
RRG vertex is set to zero. Subsequent iterations rip-up and re-
route the result of the previous iteration and increase historical
congestion costs as needed. All threads share a record of
successfully routed nets that the Galois runtime has committed.
Each worker thread routes its nets serially and updates inter-
mediate routing results through lock-based data structures in
shared memory. Worker threads synchronize their respective
views of the routing state and synchronize upon completion of
the iteration. Speculation conflicts occur when distinct worker
threads concurrently route multiple nets through the same
RRG vertex. The Galois runtime rolls back the misspeculated



Algorithm 1 Pseudocode of VPR’s routability-driven router
where the signal router has been parallelized using Galois.
Inputs: Set of nets to route N = {Ni|1 ≤ i ≤ n};RRG :
G = (V,E). Outputs: Set of routing trees R = {RT (Ni)|1 ≤
i ≤ n}. Variables: integer iter cnt, boolean found sink,
boolean v discovered.

1: iter cnt← 1
2: for all vertices v ∈ V do
3: v discovered← false
4: initialize vertex cost(v)
5: end for

6: // Global router
7: while iter cnt < MAX ITER do
8: Partition N into K sets
9: ni = the number of nets allocated to the ith thread

10: Ni,j = the jth net allocated to the ith thread
11: for all i = 1 to K in parallel do
12: for all j = 1 to ni do
13: for all vertices v ∈ RT (Ni,j) \Ni,j do
14: p(v)← update present congestion(v)
15: end for
16: Rip-up routing tree RT (Ni,j)
17: end for
18: end for

19: // Parallel signal router
20: for all i = 1 to K in parallel do
21: for all j = 1 to ni do
22: sequential maze expansion(G,Ni,j)
23: update congestion costs(G,Ni,j)
24: backtrace(G,Ni,j)
25: end for
26: end for

27: // Threads synchronize here;
28: // post-processing for the global iteration
29: for all nets Ni do
30: for all vertices v ∈ RT (Ni) do
31: h(v)← update historical congestion(v)
32: end for
33: end for
34: iter cnt← iter cnt+ 1
35: end while

routing trees and waits until the conflicting worker thread
completes its route; then the misspeculated worker threads
proceed. This ensures that the present congestion of the RRG
reflects the route computed by the conflicting worker thread
before the misspeculated worker threads reroute their nets.

B. Parallel Maze Expansion

Algorithm 2 presents pseudocode for the parallel Galois
Maze Expansion. With iteration coalescing enabled, each
thread has a local priority queue (LPQ) and shared memory

Algorithm 2 Pseudocode of VPR’s routability-driven router
where the maze expansion has been parallelized using Galois.
Inputs: Set of nets to route N = {Ni|1 ≤ i ≤ n};RRG :
G = (V,E). Outputs: Set of routing trees R = {RT (Ni)|1 ≤
i ≤ n}. Variables: Integer iter cnt, boolean found sink,
boolean v discovered, global priority queue GPQ, array of
vertex costs V Cost.

1: Allocate RRG, GPQ, R and V Cost in shared memory

2: iter cnt← 1
3: for all vertices v ∈ V do
4: v discovered← false
5: initialize vertex cost(v, V Cost[v])
6: end for

7: // Global Router
8: while (iter cnt < MAX ITER and there exists at least

one congested vertex in the RRG) do

9: // Signal Router
10: for all i = 1 to n do
11: for all vertices v ∈ RT (Ni) \Ni do
12: update present congestion(v, V Cost[v])
13: end for
14: Rip-up routing tree RT (Ni)
15: RT (Ni).insert(si)
16: for all threads T do
17: // Assume iteration coalescing
18: Allocate a local priority queue T.LPQ
19: Connect T.LPQ to GPQ
20: // Galois maze expansion relies on the Galois
21: // runtime system to acquire locks, speculatively
22: // execute operators and commit/abort operators
23: // as appropriate
24: T.Galois maze expansion(G,Ni, V Cost)
25: end for
26: end for

27: for all nets Ni do
28: for all vertices v ∈ RT (Ni) do
29: update historical congestion(v, V Cost[v])
30: end for
31: end for
32: iter cnt← iter cnt+ 1
33: end while

holds a global priority queue (GPQ). Each thread accesses its
LPQ to read the next vertex, only accessing the GPQ when
its LPQ is empty. The active elements are the vertices in the
LPQs; the neighborhoods are the sets of vertices adjacent to
each active vertex; the operator is the neighborhood expansion
which inserts newly discovered adjacent vertices into the
LPQs. When a sink is found, the backtrace procedure involves
a different set of active elements, neighborhood definition, and
operator. Maze Expansion stops when all sinks are found.



TABLE I
FPGA ARCHITECTURAL PARAMETERS.

K N W I Fcin Fcout CLB Area
6 10 1.4 Wmin 33 0.15 0.1 8069.46

TABLE II
SUMMARY OF THE IWLS 2005 BENCHMARKS USED HERE.

Benchmark circuit FPGA size Nets CLBs
ac ctrl 48 × 48 5097 5008
aes core 33 × 33 5800 2518
des area 16 × 16 1569 695
mem ctrl 27 × 27 4464 3158
pci bridge32 74 × 74 8016 7815
spi 13 × 13 923 712
systemcaes 21 × 21 2509 2173
systemcdes 12 × 12 1068 706
usb funct 40 × 40 5154 4429
wb conmax 47 × 47 10430 6297

The GPQ, RRG, and routing trees for each net are stored in
shared memory along with an array, V Cost, which contains
the relevant cost terms associated with each RRG vertex.
V Cost entries are stored separately from the RRG to reduce
contention for locks. Results are reported using a non-blocking
PQ based on software transactional memory (STM) [8].

VII. EXPERIMENTAL SETUP

We ported VPR into the Galois system, making sure that
all data structures were thread-safe. We used VPR 5.0 [5] to
compare with prior work [4] and used the same benchmarks
(10 of the largest circuitrs from IWLS 2005 [9]). Tables I
and II respectively list the FPGA architectural parameters
and benchmarks. We used ABC [10] for logic synthesis and
technology mapping, T-VPack for placement, and compared
directly with VPR’s routability-driven router [1].

For each benchmark, we compute Wmin using VPR’s
routability-driven router (sans parallelization). Routing exper-
iments for each benchmark are then performed using channel
width W = 1.4×Wmin. The maximum number of PathFinder
iterations MAX ITER set to 100; we found legal routing
solutions in all of our experiments. We placed each benchmark
using ten different random number seeds; we routed each
placed circuit three times. For each benchmark and paralleliza-
tion strategy, we report the average execution time of all thirty
runs. All experiments were performed on a server featuring 8
Intel Xeon E5540 processors running at 2.53 GHz and 40 GB
shared memory. We ran our router using 1, 2, 4, and 8 threads,
for both the non-deterministic and deterministic schedulers [3].

VIII. EXPERIMENTAL RESULTS

Fig. 3(a)-(d) reports the speedups of the parallelized Sig-
nal and Maze Routers. The baseline is VPR’s sequential
routability-driven router with no modifications.

With eight threads running on eight cores, deterministic
Galois achieved average speedups of 1.84× for the Signal
Router and 3.67× for Maze Expansion; non-deterministic
Galois achieved respective speedups of 2.67× and 5.46×.

Most notably, the slowdown incurred by deterministic Galois
Maze Expansion compared to its non-deterministic counterpart
increased with the number of threads (18% for two threads;
33% for eight threads). Thus, deterministic execution may not
scale well under the Galois model.

The Galois Signal Router acquires locks for each routing
tree RT (Ni) before committing. This creates large undo
lists, which increases the cost of conflict resolution when
partial routing trees must be discarded; this also negatively
impacts load balancing among threads. The cost to roll back a
conflicting operation (i.e., discovering a vertex) during Maze
Expansion is less than tearing down a partially routed net.
Iteration coalescing reduces the number of accesses to lock-
based shared data structures and improves load balancing: if
a worker thread can obtain work from the GPQ whenever
its LPQ is empty. The Galois Maze Expansion handles these
performance bottlenecks better than the Galois Signal Router,
which explains the performance differences reported in Fig. 3.

IX. RELATED WORK

Most parallel FPGA routers parallelize PathFinder, often
with modifications to ensure determinism or to optimize per-
formance [11], [4], [12], [13], [14], [15]. Alternatives include
linear programming with Lagrangian relaxation [16] and using
Bellman-Ford in lieu of Maze Expansion, which is amenable to
parallelization using a GPU [17]; although both of these papers
achieve substantial speedups compared to a single-threaded
CPU, they also report significantly degraded solution quality.

PathFinder’s result depends on the order in which nets are
routed [18]. Several parallel routers alter the net ordering in
order to achieve higher performance; however, doing so leads
to non-deterministic results [4], [14], [15]. In contrast, deter-
ministic routers incur overhead due to thread synchronization
or limit parallel routing to nets with non-overlapping bounding
boxes [11], [12], [13], [17].

X. CONCLUSION AND FUTURE WORK

The Galois programming model is ideal for irregular al-
gorithms, such as FPGA routers, because it encapsulates
the underlying details of speculative parallelism, such as
lock acquisition, speculation conflicts, and rollback, from the
programmer. A more recent update to the Galois runtime
offers deterministic execution, which is of great importance
to industry. This paper parallelized the VPR routability-driven
router using Galois and two different parallelization strategies,
and quantified the performance disparity between deterministic
and non-deterministic execution. Beyond parallelization, this
paper made no changes to the VPR routability-driven router. In
principle, algorithmic enhancements proposed by others that
are compatible with the Galois Signal Router and/or Galois
Maze Expansion could be added to either implementation; that
said, evaluating the performance of these enhancements in the
context of deterministic and/or non-deterministic Galois is not
the primary objective of this paper. It is certainly possible that
additional enhancements to the Galois Signal Router could
make it more competitive with Galois Maze Expansion.
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Fig. 3. Speedup results normalized to the single-threaded VPR 5.0 routability-router using Galois with 1, 2, 4, and 8 threads. (a) Galois Signal Router,
deterministic scheduler; (b) Galois Signal Router, non-deterministic scheduler; (c) Galois Maze Expansion, deterministic scheduler; and (d) Galois Maze
Expansion, non-deterministic scheduler (reproduced from Ref. [4]).
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