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Abstract—FPGAs are rising in popularity for acceleration in
all kinds of systems. However, even in cloud environments, FPGA
devices are typically still used exclusively by one application only.
To overcome this, and as an approach to manage FPGA resources
with OS functionality, this paper introduces the concept of re-
source elastic virtualization which allows shrinking and growing
of accelerators in the spatial domain with the help of partial
reconfiguration. With this, we can serve multiple applications
simultaneously on the same FPGA and optimize the resource
utilization and consequently the overall system performance. We
demonstrate how an implementation of resource elasticity can be
realized for OpenCL accelerators along with how it can achieve
2.3x better FPGA utilization and 49% better performance on
average while simultaneously lowering waiting time for tasks.

I. INTRODUCTION

Modern SRAM-based FPGAs provide device capacities
well beyond a million LUTs which, in many cases, is enough
to perform multiple tasks in parallel. Furthermore, High-
Level Synthesis (HLS) has become mature enough to allow
widespread deployment of FPGAs for general purpose accel-
eration and recent cloud service installations such as Microsoft
Azure, Amazon F1 Instances, and Alibaba Cloud underline
this development. However, while these developments are
very impressive, FPGA run-time management and hardware
virtualization techniques have not progressed at the same pace.

In this paper, we introduce and evaluate the concepts behind
resource elastic FPGA virtualization which manages FPGA
resources in the spatial domain (i.e. how many resources to
allocate for a hardware task) as well as in the time domain
(i.e. when to occupy a certain FPGA region and for how
long). The important novelty of this paper is that applications
can readjust resources transparently to the calling application,
to maximize FPGA utilization and consequently to optimize
overall performance.

This paper assumes that the FPGA provides its resources in
slots as shown in Figure 1. In the figure, and for the rest of the
paper, we use one dimensional tiling of the FPGA resources
into adjacent slots. However, the methodology proposed in this
paper could also be applied to systems that tile resources in
two dimensions, if needed.

In our approach to virtualization, modules may occupy one
or more adjacent slots. Modules may have more than one
physical implementation called an implementation alternative
for using different numbers of resources (e.g., for trading
resources for throughput). We also assume that the operation
of a long acceleration job can be preempted and that the time
to reach the next possible preemption point is known or is at
least bound.

In the software world, context switching between tasks for
virtualization can be performed almost instantaneously. In the
FPGA case, however, configuration time of hardware modules
is very expensive (typically in the range of many milliseconds).

Moreover, extra time is needed to deal with internal states of
hardware tasks (which is mainly defined by internal flip-flop
values and other memory elements). Therefore, it often makes
sense to continue operation before changing the resource
allocation for the corresponding hardware task if this saves
time/effort to deal with the internal state of the hardware
module. For example, if we want to preempt a hardware task
that implements a two-dimensional convolution window (as
used for several image filters and for Convolutional Neural
Network (CNN) classifiers), then it makes sense to only
preempt a module at the end of a frame. In this case, the
relatively large line buffers that normally keep a history for
the convolution window contain no state information needing
preservation and, consequently, can be discarded.

In most cases, it is relatively easy to define such dedicated
preemption points. In the case of OpenCL (the de-facto
standard for describing accelerators in a high-level manner)
this is directly dictated by the programming model where
a larger compute problem is decomposed into small chunks
(called work-groups). Here each work-group follows a run-
to-completion model, where a completed work-group (and the
corresponding hardware module) does not contain any internal
state that needs to be considered further. In this paper, we
will introduce and demonstrate resource elastic virtualization
following OpenCL (see Section IV). However, the concept of
resource elasticity can be applied in a much broader context
and there are further approaches that implement the idea of
preemption points where the state is minimal. In [1], the
concept is automated within an HLS compilation framework
where a compiler performs live variable analysis to identify
operational states with a minimum of memory elements to
store.

In a nutshell, assuming a system analogue to the one shown
in Figure 1 and a set of somehow preemptable modules,
resource elastic virtualization aims at maximizing the FPGA
resource allocation transparently to the application which calls
the hardware acceleration. This means that if a new arriving
task needs FPGA resources, we have to somehow shrink the
running module layout to accommodate this task and, if a
task terminates, we will expand the remaining tasks such
that the FPGA is kept highly utilized for delivering overall
better performance. From an application’s point of view, only
a generic accelerator call is exposed and the entire resource
allocation and hardware accelerator management (including
FPGA configuration) will be carried out by an FPGA virtual-
ization layer.

The contributions of this paper include:
• Concepts of resource elastic FPGA virtualization (Sec-

tion III)
• Implementing FPGA virtualization using OpenCL for



Fig. 1: Physical FPGA layout featuring four partial reconfiguration regions
(depicted as module slots). Hardware modules may take one or more adjacent
slots and the communication is provided through a hardware operating system
(OS) infrastructure.

resource elasticity (Section IV)
• Evaluation of resource elastic schedulers using simulation

(Section V)
• Case study on resource elastic schedulers (Section VI).

II. RELATED WORK

FPGA resource virtualization has been examined several
times before [2] and the different approaches can be classi-
fied in three major directions: overlays, preemptive module
execution and virtual FPGAs as described below.

A. Overlays
Overlays or intermediate fabrics [3] provide a layer of

programmability that abstracts the low-level details of an
FPGA. This approach is commonly used to enhance design
productivity by providing a software-like compilation flow
rather than a hardware CAD tool flow. Because of this
abstraction, overlays can also be used for virtualization.

One direction of virtualization using overlays is target-
ing portability across different FPGAs (and FPGA vendors)
and has been shown for coarse-grained ALU-based arrays
(CGRAs) [4], [5] as well as for fine-grained LUT-based
overlays [6] or even hybrid systems [7]. This method of virtu-
alization shares some ideas of a Java virtual machine where the
same bytecode can be executed on different hardware targets.

Another way to use overlays for virtualization is to apply
context switching techniques on the overlay. In its simplest
fashion, a softcore processor running an OS would implement
this technique. However, the extra layer of programmability
of an overlay comes at a substantial cost in performance.

B. Preemptive Hardware Multitasking
The idea of preemptive hardware multitasking is adopted

from software systems which virtualize CPUs in the time
domain where a scheduler allocates CPU time slots to a set of
tasks. Similarly, in the FPGA case, systems were built that can
stop a running module on the FPGA, capture its state and use
the FPGA resources for another hardware task. The preempted
task may then be resumed later in a fully transparent manner.

Unfortunately, the state of a hardware module is difficult to
capture in a general case and solutions: 1) require restrictions
on the preemptive hardware modules, 2) are very target FPGA
specific, and 3) are costly in time (e.g., when using con-
figuration readback techniques [8]–[10]) and/or in resources
(e.g., when state access is implemented inside the module’s
user logic [11]). Hardware design techniques including multi-
cycle paths, multicycle I/O transactions, pipeline registers in
primitives such as in multipliers and memory blocks, latches or
optimization such as retiming are not sufficiently applicable (if
at all) with preemptable hardware, hence making this approach
impractical for many real-world applications.

C. Virtual FPGAs
The idea of virtual FPGAs is to divide a large FPGA into

smaller logical units that can be allocated at run-time. While
some resource allocators allow picking a variable number
of virtual FPGAs with respect to the currently available re-
sources, the resource allocation is commonly not changed until
the allocated resources are released upon task completion [12].

In summary, overlays and preemptive hardware multitasking
commonly incorporate too much overhead and virtual FPGAs
do not provide enough flexibility to support a holistic solution
to FPGA virtualization. Moreover, FPGA virtualization in the
time domain alone is, for most FPGA virtualization systems, a
pitfall because it omits the spatial programming model which
is commonly used along with FPGAs. In other words, we
believe that an FPGA should ideally first be virtualized in the
space domain and (only if needed) in the time domain.

III. SPACE-TIME VIRTUALIZATION: RESOURCE-ELASTIC
HARDWARE

Consider a mostly compute bound system where some
randomly arriving and terminating tasks run in parallel. To
understand virtualization, let us start from a software scenario
where the system would run on a single CPU. In this case, a
scheduler would allocate time slots to the currently running
tasks following a scheduling policy that keeps the CPU
utilization high with useful work and that implements some
means of fairness (or quality of service).

In contrast to this, when using an FPGA, we should keep
device resource utilization high with useful work. Because
tasks with different resource requirements may arrive and
terminate over time, this implies that modules are fractionable
in resource slots that can be allocated by a run-time system.
In other words, for virtualizing FPGAs, it is desirable to have
a certain level of resource elasticity in the system which we
define as:

Hardware Resource Elasticity: the capability of a hard-
ware accelerator to change its resource allocation trans-
parently to the task that is using it. Resource elasticity
allows for trading resources for throughput at run-time.

To support resource elasticity, a scheduler has to perform
space domain multiplexing (SDM) by considering various im-
plementation alternatives and/or a variable number of acceler-
ator instances. To demonstrate how this can change utilization
and performance, let us assume the scenario illustrated in
Figure 2. Because of the ability to change the allocation and
to choose the best implementation on an event, we can see
that a resource elastic scheduler would allow maximizing the
utilization compared to conventional scheduling which only
considers fixed-size accelerators. With event we refer to a
time where scheduling and resource allocation decisions may
be taken. In this paper, events include: 1) arrival of a new
task, 2) completion of a task and 3) reaching a preemption
point, as shown in Figure 2. That example reveals that resource
elasticity includes some reconfiguration overhead but results in
better resource utilization and consecutively in faster execution
(e.g. Task B) and/or higher throughput (Task A).

A resource elastic scheduler must perform three essential
trade-offs which are commonly not considered by normal time
domain schedulers:

1) Multiple instances vs Different sized modules
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Fig. 2: Resource allocation for kernels (tasks) A, B, C and D in time when
using a) Normal fixed module scheduling and b) Resource Elastic scheduling
on a 4 slot FPGA. The circled events highlight cases where resources are
needed to accommodate new arriving tasks ( 1©, 2©, 3©) or cases where tasks
complete ( 4©, 5©).

Fig. 3: Logical slot configuration example where a) shows using multiple
instances of a single slot module, while b) shows using different sized module,
which may have super-linear speed compared to single slot module.

2) Run to completion vs Changing module layout
3) Collocated change vs Distributed change
Trade-off 1 arises at run-time when a module can utilize

additional slots for better performance. However, the penalty
of pausing the currently running module and performing
partial reconfiguration for changing to a different sized module
may not be the best option given the work remaining and the
possible speed-up achievable with a different sized module.
Figure 3 shows available possible module layout alternatives
which a space domain scheduler would have to choose from,
depending on the aim.

Trade-off 2 considers the case when the work left for the
kernel is not enough to amortize the partial reconfiguration
overhead. This holds regardless if we use reconfiguration for
shrinking and expansion of modules or for defragmenting the
module layout. In this case, a decision must be made on
whether changing the module layout to achieve better system-
level performance at the cost of performance-sacrifice for
certain modules is beneficial or not.

Moreover, the decision of selecting a multi-instance option
over a different module size may also depend on the location
of available free slots which is expressed by Trade-off 3. For
example, consider the scenario as shown in Figure 4 where
the only available resource slot is at one end of the FPGA.
In this scenario, the possible options for maximizing resource
utilization for Task A are to either replicate A or to defragment
the FPGA such that available slots are collocated to use a
larger implementation alternative for A.

Note, the scenarios used in the above description of trade-
offs are relatively simple as the focus is just on kernel A. The
complexity of the possible situation increases as we consider
multiple distinct kernels where it may be necessary to sacrifice
more performance for a particular kernel to achieve higher
overall performance at system level. Further, the aim of the
scheduler may not be performance but fairness or energy etc.
which would change policies.

Similar decisions have to be taken by traditional operating
systems and different objectives result in different policies
(e.g., an embedded real-time operating system follows more
different objectives than a Linux OS). From a distance, Fig-
ure 1 gives the impression that resource elastic FPGA virtu-
alization is similar to multicore scheduling as done by many

Fig. 4: Example scenario where there are two possible alternatives. 1) To
replicate A or 2) To perform defragmentation to use different sized module
for A.

software operating systems. However, FPGA virtualization has
to consider several very different aspects such that modules
may occupy multiple adjacent resources (slots) simultaneously
(causing fragmentation issues), that modules may have im-
plementation alternatives that may work on different problem
sizes, and that context switching is significantly expensive.

Moreover, if the available slots are not sufficient to accom-
modate all tasks even when selecting smallest implementation
alternatives, our virtualization approach uses time division
multiplexing (TDM) as kind of a fallback approach. Anal-
ogous to a virtual memory subsystem using disk swapping
for providing more than the physically available RAM at a
performance penalty, TDM transparently allows the provision
of more FPGA slots at some penalty for reconfiguration.

In this section, we highlighted the specific issues of resource
elastic FPGA virtualization; in the following section, we will
provide a concrete implementation. In this paper, we introduce
space-time virtualization for one FPGA in a single operating
system scenario. By moving the virtualization management
layer from the OS into a hypervisor, the mechanisms proposed
here could be used for virtualizing entire operating systems.

IV. FPGA VIRTUALIZATION FOR OPENCL

We selected the OpenCL execution model [13] for our case
study as it is an industry standard for High-Level Synthesis
(HLS) and heterogeneous computing in general. It is described
in the following sub-section while the design details of our
run-time resource manager for performing resource elasticity
will be revealed in Section IV-B.

A. Execution Model

An OpenCL application is made up of a host program
and kernels. A host program is responsible for submitting
computation commands and manipulating memory objects
while executing on the host machine. Kernels are the compute-
heavy functions and are executed on accelerators which are
also called compute units. When a host program issues a
command for kernel execution, an abstract index space is
defined, known as NDRange. A kernel is executed exactly
one time for each point in the NDRange index and this unit
of work is called a work-item. There is no execution order
defined by the OpenCL standard for work-items. However,
synchronization can be achieved with barriers for local mem-
ory. Work-items are collated into work-groups and executed on
computing units altogether. This provides a coarsely grained
decomposition of an NDRange and allows work-items to share
and synchronize data inside a work-group. Note that there is no
order of execution or sharing of data defined by the OpenCL
standard among work-groups. This property allows context
switches at work-group granularity since work-groups only
share global memory without any synchronization restrictions
and because all the results are written back to global memory
outside the accelerators at the end of their execution. Further,
the independence of work-groups allows launching multiple



Fig. 5: Design flow for the OpenCL kernel development (design-time) and
execution (run-time) with resource elasticity.

instances of the same accelerator for scheduling different
work-groups concurrently.

Furthermore, the implementation alternatives for OpenCL
can be synthesized by using Vivado HLS (or another HLS tool)
with different optimization pragmas to implement area vs per-
formance trade-offs. For example, a larger core for matrix
multiplication may benefit from better reuse of operands and
from more logic for arithmetic. This allows a resource elastic
system to benefit from more FPGA resources at run-time.

The complete design flow used for the development and
execution of the OpenCL kernel with resource elasticity is
shown in Figure 5. The input required by the programmer
is an OpenCL kernel with optionally different optimization
levels and host code. The only difference compared to the
standard Xilinx OpenCL flow for FPGAs [14] is the generation
of different kernel versions from the user viewpoint which can
be performed easily by selecting the relevant HLS optimization
options.

Note that OpenCL could be swapped with any other High-
Level Language supported by HLS tools given similar execu-
tion semantics with minor modifications. Moreover, it is not
a requirement that each module is implemented with different
resource/performance variants as we also allow implementing
resource elasticity by instantiating an accelerator multiple
times. Our resource manager (see Section IV-B) can arbitrarily
handle multiple accelerator instances of different size.

B. Resource Manager Design
We have implemented a resource manager that consists

of four different components: Waiting Queue, Scheduler, PR
Manager and Data Manager, as shown in Figure 6. The
Waiting Queue keeps track of kernels waiting for execution
and contributes to the implementation of a Round Robin policy
for TDM which is used if the demand for accelerators exceeds
the available resources (typically given in terms of slots).
The scheduler performs Space Domain Multiplexing (SDM)
i.e. it decides which modules to shrink or to grow and in
what manner given the meta-data (profiling information and
available bitstreams) of kernels. Further, the scheduler is also
responsible for identifying which module should be replaced
when performing TDM. The PR Manager performs the partial
reconfiguration requests issued by the scheduler. While the
Data Manager keeps track of the work-group execution for
each kernel; it is also responsible for programming the ac-
celerators for the next work-group. Note that the whole flow
only triggers when an execution command is issued from a
host program or if a kernel finishes its work-group execution.

This model shares some ideas of a cooperative operating
system that can guarantee real-time behaviour in absence of a

Fig. 6: Resource manager architecture for virtualizing the resource footprint
of the OpenCL kernels at run-time.

global (interrupt) timer. Because the execution of a work-group
requires that all data is available and because execution time of
work-items is commonly not data dependent (best practice), an
upper execution time can be defined, which allows application
of resource elasticity under real-time constraints.

Upon the scheduler wake up call, the resource manager
retrieves data from all accelerators which have completed their
work-group execution and goes through the following stages:

1) Kernel Selection: At first, the resource manager selects
the set of kernels which need to be considered for the
allocation of resources. This mainly depends on three cases
based on the waiting queue size and FPGA state. i) When
the FPGA is empty and the waiting queue is non-empty, it
extracts the maximum number of kernels which can be run
on the FPGA concurrently from the queue, based on their
minimum size modules. ii) When the FPGA is non-empty
but the waiting queue is empty, the selected kernels are the
kernels currently running on the FPGA. iii) When the waiting
queue and the FPGA are non-empty, it performs Round Robin
scheduling in the time domain by closing all the kernels
(removing them from the FPGA) which have completed their
work-group execution and inserts them back to the waiting
queue. After this, it shrinks currently running kernels by
employing a heuristic for recovering the maximum possible
slots. We implemented the heuristic to be fair to all the waiting
kernels by allocating resources to them as soon as possible. It
is possible to replace this heuristic with another to cater for
other scheduling aims such as performance or energy. Note
that at this stage of scheduling we may have kernels which
have one or more accelerators currently running and which
cannot be moved around. In this case, we select those kernels
plus the maximum number of kernels from the queue which
can be executed together, given the free slots available.

2) Generation of Layout Options: Once the kernels are
selected, we compute the module layout (i.e. the exact position
and size for each accelerator) for the selected kernels. This
problem has a large search space as each kernel may have
different implementation alternatives available (i.e. different
accelerator sizes) which may also be replicated, hence increas-
ing the number of possible combinations. However, this has
three constraints which substantially prune the search space:

i. Availability only of certain sized modules rather than
all implementation alternatives (e.g., a kernel may only
have modules which may take at least 2 slots, making it
infeasible to be used when only one free slot is available).

ii. Run-time constraints: executing kernels cannot relocate,
so may constraint available free space.

iii. Over allocation i.e. we cannot allocate more slots than
the FPGA can provide.



Fig. 7: Logical slot module layout example where a) is completely fair
but wastes one of the slots, while b) is not absolutely fair but presents an
acceptable trade-off with better utilization.

Currently, we perform this computation by enumerating all
possible combinations and removing infeasible module layouts
based on the three constraints. Note, since the number of slots
on an FPGA tends to be small, the enumeration space will be
small as well. However, one may possibly employ heuristics
for better run-time at the risk of losing the optimal solution.

3) Resource Allocation: after layout generation, the re-
source allocator evaluates module layouts based on fairness
with the adapted version of the Jain index [15] which accounts
for the utilization of slots. Note that with fairness we refer to
the resource allocation for a set of kernels only. Currently, we
do not take the time domain into consideration for fairness.
The adapted version of the Jain index is given by Equation 1,
where x is the set of kernels in a module layout, n is the
number of kernels and xk denotes the slot allocation for
kernel k in the module layout. We added the term u(x) which
states the number of slots utilized by the module layout and
which can be calculated by Equation 2. We need to consider
utilization (u(x)) for fairness because absolute fairness may
come at the cost of resource wastage. Consider the example
shown in the Figure 7: if we were to choose module layout a)
we would be completely fair in allocation between kernels by
giving each kernel a single slot, however, we would be wasting
one of the available slots. If, instead, we choose module
layout b) we would not be completely fair but would have an
acceptable trade-off for maximizing resource utilization and
performance.

The module layout with maximum score is selected by the
resource allocator which is formalized by Equation 3. Where
r(x, n) is the fairness score of the module layout x and Lf is
the set of all feasible module layouts.

r(x, n) =
(
∑n

k=1 xk)
2

n×
∑n

k=1 x
2
k

+ u(x) (1)

u(x) =
n∑

i=1

xi (2)

argmax a(x) = {r(x, n) | x ∈ Lf} (3)

4) Resource Binding: after allocation of resources for each
kernel, the resource binder identifies the best possible module
and number of instances for it, in terms of performance consid-
ering the resource constraints based on the ranking function.
We project the performance possible for each implementation
alternative by calculating the time to completion of each kernel
based on Equation 4, where xk is the number of slots allocated
to kernel k, Tc(m) is the time to completion of module m,
P (m) is the time taken by partial reconfiguration for module
m, and Lx

f is the possible combination of modules and number
of instances for kernel k with resource constraint of xk. The
time to completion for a given module can be calculated by
using the information given by the HLS tool, profiling and/or
annotated by the programmer as meta-data. For instance, an
OpenCL kernel synthesis can derive the information of the

work-group execution time (Tw(m, k)) while a programmer
can highlight work-group size (Ws). Here, the completion time
is estimated based on Equation 5, where Wl(k) is the number
of work-items left for the execution of Kernel k and is known
by Data Manager. The partial reconfiguration cost is specific to
the FPGA used and generally scales linearly with the number
of slots. It can be modelled by Equation 6, where P (m) is
the total latency for partial reconfiguration of module m, Ps

is the configuration bitstream size of a single resource slot,
Nm is the number of slots required by module m and Pt

is the throughput of the configuration port (e.g., the Internal
Configuration Access Port - ICAP) of the FPGA.

argmin p(xk) = {Tc(m) + P (m) | m ∈ Lx
f} (4)

Tc(mk) ≈ Tw(mk)×
Wl(k)

Ws(mk)
(5)

P (m) =
Ps ×Nm

Pt
(6)

Our projection of performance takes into account the accel-
eration possible with the given module (by calculating its time
to completion) and overhead of partial reconfiguration to help
tackle the Trade-offs 1 and 2 as mentioned in Section III. The
same technique is used to break the tie in favour of the first
best performing configuration when ranking by the resource
allocator. Thereafter, the resource binder requests PR Manager
to load the new module layout.

5) Partial Reconfiguration Manager: upon receiving a re-
configuration request, our current PR manager performs partial
reconfiguration for each instance one at a time based on the
module layout selected by the resource allocator and resource
binder. After reconfiguration, PR Manager instructs the Data
Manager to provide input to the new accelerator.

6) Programming Kernels: Data Manager programs the ker-
nels with new input data and also retrieves the output data
when available. Further, it handles the case when a kernel
change to a differently sized implementation alternative leads
to a change in work-group size, such that the final outcome of
the kernel still remains the same. It does this by calculating
the next work-group indices such that no work items are left
out at a new granularity, which may require certain work-
items to be re-evaluated. However, this is safe to perform as
kernels commonly write their output at a different memory
location from where the input operands are stored and as each
implementation alternative has the same functionality for each
work-item.

This section revealed that resource elasticity fits the OpenCL
programming model directly and our resource manager pro-
vides a reference implementation for the operating system
services which can consider various resource elasticity trade-
offs for running OpenCL accelerators. While other heuristics
may be tailored to meet specific system requirements (e.g.,
performance, response time, power consumption), a run-time
manager for a resource elastic system always has to provide
the space-time mapping of resources, perform reconfiguration
and has to manage the execution of kernels.



V. EXPERIMENTS

To evaluate the characteristics of the scheduling algorithm,
we conduct a series of simulation experiments to explore
how different scheduling decisions impact our resource elastic
virtualization approach. A working case study is presented
in Section VI while the following subsections describe the
simulation experiments and findings in detail.

A. Experimental setup

With simulation, we explored the effects of scheduling on
a wide variety of applications by changing the characteristics
of synthetic applications in terms of area requirements and
completion time. We also used this to investigate scheduling
effects on different sized FPGAs by varying the slots available
for scheduling.

We tested our system with 1000 different compute-bound
scheduling requirements, where randomly arriving and ter-
minating tasks run in parallel. To model a compute-bound
schedule, we generate a long running kernel of 4000 work-
groups at the arrival time zero. While the other accompanying
kernels in the schedule are generated in the range of [1,
12] for each experiment. Characteristics of each kernel are
generated randomly (except for arrival time and number of
work-groups of long-running kernel) i.e. base latency of work-
groups is in range of [10, 100], arrival time is in [1, 10000],
the minimum slot size of kernels is in [1, min(4, n-1)]
where n is the total number of slots available on the FPGA
and the maximum slot size of a kernel is [minimum slot
size, min(4, n)]. The speedup achievable with different size
kernel is in [3, 10] and the number of work-groups is in
[50, 500]. The respective parameter selection is based on a
uniform random distribution. We assume the I/O requirements
of kernels are not on the critical path of the application. The
partial reconfiguration cost is modelled linearly proportional
to the number of slots with the cost of configuring a single
slot being 5x the smallest latency possible for a work-group.
Note that the given range of work-group latency and speed up
available from configuring another kernel, it is likely that the
cost of reconfiguration would not be recovered from a single
work-group execution, as it would likely be the case in a real-
world scenario. Furthermore, restricting the kernel size to a
maximum of 4 slots allows us to study the scenario where
a user runs the kernels of the given sizes on a much bigger
FPGA. The scenario assumed here look similar to the exam-
ple in Figure 2b showing quite a fine-grained schedule and
consecutively relatively high configuration overhead. While
the configuration cost is basically the number of slots to be
reconfigured over time, the relative overhead depends on for
how long the module runs after configuration. This means that
the coarser the scheduling granularity is, the lower the relative
configuration overhead. Further, it is important to note that
our simulation workload shares some similarity with workload
traces found in Google clusters [16], with its mix of long and
short running kernels.

We ran the randomly generated schedule requirements on
five different schedulers. The first three schedulers act as a
baseline for our implementations and these are as follows:
1) Normal Scheduler (NS) which simply allocates the tasks at
a First-Fit slot and runs them to completion. This is the most
commonly used strategy [17]–[19] and is beneficial for FPGAs

as the partial reconfiguration cost is quite high. 2) Conservative
Cooperative Scheduler (CCS) is a time domain scheduler
which performs a context switch when the task voluntarily
relinquishes the control (in our case at the end of a work-group
execution). However, since the standard cooperative schedulers
do not take into account the availability of implementation
alternatives, it may always use the minimum sized module to
operate in conservative mode. This strategy aims at minimizing
the number of reconfigurations required as it would leave
maximum space available for new incoming kernels. On
the contrary, we also compare against the version labelled
3) Aggressive Cooperative Scheduler (ACS), which employs
the biggest module available for achieving maximum possible
performance at the risk of higher reconfiguration count.

Our two implementations of resource elastic scheduling
are 1) Standard Resource Elastic Scheduler (SRES) and 2)
Performance driven Resource Elastic Scheduler (PRES). The
implementation of SRES is discussed in Section IV-B. PRES
follows the same implementation but resource allocation rating
is performed with the aim of maximizing performance. Equa-
tion 7 captures the rating used for PRES by minimizing the
total completion time for the online kernels, where Tc(xi) is
completion time calculated using Equation 5, x is the module
layout and Lf is set of all feasible module layouts.

argmin a(x) = {
∑n

i=1
Tc(xi) | x ∈ Lf} (7)

B. Results

The average completion time (the most relevant perfor-
mance indicator) for each scheduler is shown in Figure 8a
and the average waiting time for each kernel is shown in
Figure 8b. Note we calculate wait time as wi = si − ai,
where ai is the arrival time of the kernel and si is the time
when it begins its execution (after partial reconfiguration). The
completion time is the lowest for NS from the baseline for
small FPGAs as it does not have to pay higher reconfiguration
penalties compared to other schedulers. Note that despite better
performance, NS has poorest wait time from all the baseline
schedulers, as it lets all kernels run to completion without
interruption. On the other hand, resource elastic schedulers
provide considerably lower completion time and similar wait
time characteristics as cooperative schedulers (Figure 8b) even
incorporating higher reconfiguration overhead. Specifically, if
we compare the performance targeting versions of schedulers
i.e. PRES and ACS, we can see that PRES can achieve higher
performance as much as 39% to 64% than ACS. However, the
performance advantage does not scale linearly with the number
of resource slots available as they become so abundant that
all kernels can run concurrently in their full sized modules
for most of the experiments without higher reconfiguration
cost when using ACS. Resource elastic schedulers achieve
this performance advantage by considering all the possible
implementation alternatives and employing them dynamically
at run-time to maximize performance.

We measured the resource utilization as the total number of
occupied slots after every scheduler wake up call as plotted in
Figure 8c after normalization. We can see the employment
of ACS leads to the highest utilization from baseline due
to the heuristic of always using the largest module for each
kernel. However, it does not tend towards the maximum



Fig. 8: Performance characteristics of the NS, CCS, ACS, SRES, and PRES
schedulers on FPGAs with slot size 2, 4, 8 and 16 where a) is completion
time, b) is average wait time, c) is average utilization of an FPGA, d) is the
number of partial reconfigurations performed and e) is the average overhead
of the scheduler’s wake up call.

possible utilization as it cannot overcome the fragmentation
repercussions of its heuristic. While on the other hand, the
ability to adjust allocation of resources and replication of
modules for higher performance helps our resource elastic
schedulers to gain almost full utilization, which is about on
average 2.3x higher utilization compared to ACS and about
2.7x better on average when compared to NS. The drop in
utilization with respect to an increase in the number of slots
available occurs because resource elastic schedulers tend to
employ the biggest module possible for a kernel to maximize
performance at the cost of fragmentation and the scenarios
where kernels did not offer smallest module size for filling

up the holes left in a particular module layout. Note that the
higher utilization is achieved at the cost of a higher number
of reconfiguration calls; the implication of this is captured in
Figure 8a and 8b, as reconfiguration time is included in the
total completion and wait times.

To quantify and contrast the overhead caused by the re-
source elastic scheduler, we measured the time taken for
execution of single wake up calls on an x86 Intel Core i7-
6850K running Ubuntu 16.04 LTS and the total number of
partial reconfiguration calls performed for schedulers across
all the experiments. The results of this are shown in Figure 8e
and 8d, respectively. The computation overhead for a resource
elastic scheduler is between 10x to 100x higher as compared to
baseline schedulers. This is mostly due to our implementation
which enumerates all the possible module layouts and uses
expensive rating functions. However, the total execution time
is still below tens of microseconds which is negligible com-
pared to the partial reconfiguration cost which is in the range
of milliseconds. Similarly, Figure 8d shows that the resource
elastic schedulers require about 12x to 100x more configu-
ration calls than NS and a similar number of configuration
calls to ACS. However, despite this, the performance of the
resource elastic scheduler is much better with lower waiting
time for the kernels, as shown in Figure 8a and 8b. This is
due to frequent partial reconfiguration for increasing resource
utilization which, in turn, improves performance.

VI. CASE STUDY

In our case study, we deploy resource elastic scheduling on a
recent Xilinx Zynq UltraScale+ platform for the same baseline
schedulers and resource elastic schedulers as analyzed in Sec-
tion V. The platform on which we conducted the experiment
is a TE8080 board featuring a XCZU9EG-FFVC900-2I-ES1
MPSoC device. Our system has been partitioned into a static
part, which includes ARM cores and AXI interfaces, and the
partially reconfigurable part, which is reserved for partially
reconfigurable modules. In detail, the partially reconfigurable
part has four regions with identical resource footprints which
serve as slots, to host partially reconfigurable modules, as
shown in Figure 9. In our design, the reconfigurable part
occupies approximately 50% of the whole chip resources, and
a slot takes around 3 ms for partial reconfiguration.

OpenCL applications are implemented in one or more
reconfigurable slots. They can be relocated at run-time using
a configuration controller based on the tool BitMan [20]. This
allows reusing the bitstreams for different slots and reduces
the total number of bitstreams which needs to be stored
considerably, as compared to the standard Xilinx PR flow. The
workload is offloaded to these kernels from the ARM cores
which share the main memory with them.

We conducted the scheduling experiments on this platform
with applications from communication, arithmetic and ma-
chine learning: CRC32, matrix multiplication (mmult), and
Euclidean distance (e-dist) for k-means. The matrix multipli-
cation kernel has two different physical implementations of
slot sizes 1 and 4. Where the 4 slot version offers 5× the
performance of a 1 slot module due to better reuse of the data
and a bigger work-group size. CRC32 and Euclidean distance
kernels occupy 1-slot each.

The scheduling requirements for our case study models
matrix multiplication as a long-running kernel which needs
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Fig. 10: Execution trace of the scheduler where a) is PRES, b) is SRES, c)
is ACS, and d) is NS and CCS

to run 20480 work-items with an arrival time of zero. While
CRC32 and Euclidean distance are modelled as short running
kernels with 16384 work-items of low latency each and an
arbitrarily chosen arrival time of 60 ms, such that it would
interrupt the long-running kernel. The overall decisions taken
by different schedulers are shown in Figure 10 and their
respective performance characteristics are captured in Table I.
We can see that ACS provides highest performance and utiliza-
tion among the baseline schedulers. However, with the ability
to grow and shrink modules, SRES and PRES effectively
maximize the utilization and provides 36% and 26.5% better
performance than ACS with similar waiting time, respectively.
In this particular scenario, SRES outperforms PRES due to
the lack of looking ahead in PRES, which leads to a greedy
decision of accelerating matrix multiplication over CRC32 and
hence, a higher total completion time.

SRES PRES ACS CCS/NS
mmult wait time 12 ms 12 ms 12 ms 3 ms
CRC32 wait time 4 ms 4 ms 4 ms 3 ms
e-dist wait time 7 ms 7 ms 7 ms 6 ms
Total completion time 320 ms 368 ms 501 ms 1221 ms

TABLE I: Wait time of kernels and completion time of schedule for the case
study. Where, A/B denotes that scheduling policies A and B provides the
same results.

VII. CONCLUSION

In this paper, we introduced the concept of resource elastic-
ity as a novel run-time resource management solution to allow
dynamic allocation of reconfigurable resources for FPGAs. We
demonstrated how a resource manager can be designed for
OpenCL to virtualize reconfigurable resources for a variable
number of running kernels in order to improve utilization, and
consequently, performance. Our evaluation against classical
resource allocation strategies on a simulator and a physical
implementation found that resource elasticity can provide
about 2.3x higher utilization and 49% better performance on
average while also delivering lower waiting times for the
kernels.

Our results are a strong indicator that future FPGA operat-
ing systems and virtual machines need to consider mapping
accelerators firstly in the spatial domain. We demonstrated that
co-operative scheduling is a potentially better fit for FPGAs
due to its trade-off between overhead and ability of resource
reallocation, compared to state-of-the-art preemptive and run-
to-completion approaches.
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