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Abstract—FPGA accelerators are being applied in various
types of systems ranging from embedded systems to cloud com-
puting for their high performance and energy efficiency. Given
the scale of deployment, there is a need for efficient application
development, resource management, and scalable systems, which
make FPGA virtualization extremely important. Consequently,
FPGA virtualization methods and hardware infrastructures have
frequently been proposed in both academia and industry for
addressing multi-tenancy execution, multi-FPGA acceleration,
flexibility, resource management and security. In this survey,
we identify and classify the various techniques and approaches
into three main categories: 1) Resource level, 2) Node level,
and 3) Multi-node level. In addition, we identify current trends
and developments and highlight important future directions for
FPGA virtualization which require further work.

I. INTRODUCTION

FPGAs are being deployed in a wide variety of applications,
which range from embedded applications to large-scale data-
centres. This broad scope of requirements presents a challenge
in terms of the efficient development of applications, manage-
ment of resources, and scaling of systems, which calls for
effective virtualization of FPGAs.

The term “Virtualization” has acquired various different
meanings over time, with a common trait being the intro-
duction of an abstract layer to simplify the interface and
hide the complexity of the system. In particular, for FPGA
virtualization, the definitions and techniques have changed
over time due to the change in application requirements when
compared to an earlier survey on FPGA virtualization in 2004
by Plessl and Platzner [1]. In that work, FPGA virtualization
was classified into three categories: temporal partitioning,
virtualized execution, and virtual machine.

Temporal partitioning is used to fit large designs on rel-
atively smaller FPGAs by reconfiguring an FPGA to host a
partition of the design at a time. This was the first FPGA
virtualization approach when device capacity was often not
sufficient to host the intended netlist sizes. Temporal parti-
tioning is still used for certain applications but the majority of
applications which require more FPGA resources than a single
chip can offer also tend to require executing the application
in parallel i.e. in the spatial domain with multiple FPGAs
rather in than in time [2], [3]. Thus, temporal partitioning
is nowadays usually used at task-level for large-scale data-
centres where a task may span multiple FPGAs but may be
swapped with another task in time.

Virtualized execution in the survey [1] was used to define
the approach of splitting up applications into multiple commu-
nicating tasks (e.g., following a Petri-Net model) and using
a run-time system to manage them. The aim of this was to
support device independence within a device family. We will
see in Section IV, how such run-time systems are deployed
to support a wide range of application in recent years while
decoupling the application development from the static logic
requirements. It is now used not only for device independence
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Fig. 1: Classification of FPGA virtualization techniques and their software
equivalent.

within family but also for higher design productivity, isolation
and resource management.

Finally, Plessl and Platzner defined virtual machines to
be systems which provide complete device independence by
using an abstract architecture to describe applications. This
architecture could be translated later into native architecture
by a remapping tool or an interpreter. This approach, in par-
ticular, now falls under Overlays [4] (also called Intermediate
architecture or fabric [5]) where the abstract architecture can
be defined in many ways as discussed further in Section III-A.
The term “virtual machine” is these days used for the static
architecture which provides support for accelerators and is
often referred to as a Shell [2] or Hypervisor for virtual FPGAs
(vFPGAs) [6].

Nowadays, FPGA virtualization is starting to coincide with
techniques for software virtualization at a conceptual level,
with growing support for heterogeneous systems and concepts
such as Acceleration as a Service (AaaS) [7]. The objectives
of FPGA virtualization are similar to the core objectives that
resulted in the development of virtualization used in traditional
CPU/software systems. The main objectives are:

• Multi-tenancy: Ability to serve multiple different users
using the same FPGA fabric.

• Resource Management: Providing an abstraction/driver
layer to the FPGA fabric and means of scheduling tasks
to the FPGA as well as monitoring its resource usage.

• Flexibility: Ability to support a wide range of accelera-
tion workload i.e. from custom accelerators to framework
specific accelerators designed in a High-Level Language
(HLL) or a Domain Specific Language (DSL).

• Isolation: Providing the illusion of being a sole user of
the FPGA resources for better security, fewer dependen-
cies and correctness of the program execution.

• Scalability: The system/application can scale to multiple
different FPGAs or can support multiple different users
at relatively low overhead.

• Performance: The impact of virtualization should be
minimal on performance achievable and FPGA resources



usable by the user application.
• Security: Ensuring information of other tenants is not

leaked and for safekeeping the infrastructure from mali-
cious users.

• Resilience: Ability to keep the system/service running
despite failures.

• Programmer’s productivity: Improving the time to mar-
ket and reducing the complexity of deploying a design to
an FPGA from its software description.

Despite sharing these objectives, virtualization techniques
from the software domain cannot always be directly applied
to FPGAs in a straightforward manner. This is mostly due to
one fundamental difference between CPU/GPUs and FPGAs
i.e. applications are hardware circuits rather than a set of
commands in assembly. This leads to various differences
which need to be considered when devising a solution for
virtualization: a very high context switch penalty, space-time
sharing rather than just time, different development tools, high
development time and high heterogeneity in the system as each
accelerator represents a distinct hardware module. Thus, many
different FPGA virtualization approaches have been proposed
as summarized in Figure 1.

In this paper we survey the literature on FPGA virtualization
and provide the following contributions:

• Survey of the techniques and architectures proposed for
virtualizing FPGAs (Sections III–V).

• Classification (Section II) and qualitative analysis of the
proposed virtualization models (Sections III–V).

• Highlight current trends and developments and their im-
portant future directions for FPGA Virtualization (Sec-
tion VI).

II. CLASSIFICATION OF FPGA VIRTUALIZATION

Existing work on FPGA virtualization can be classified in
many ways for example, based on the virtualization tech-
niques, different use cases or execution models. However these
classification criteria may change with time, for example with
the advent of new applications or changes in requirements
over time. Instead, we propose a classification scheme based
on the abstraction levels of the standard computational systems
that apply virtualization, such that the same classification can
capture future changes in the field and categorize the work
at following levels (as shown in Figure 1): Multi-node level,
Node level, and Resource level:

• Resource level: A resource on an FPGA can be of two
types: reconfigurable or non-reconfigurable. Hence, for
this level, we consider architecture virtualization and I/O
virtualization. Examples at this level include Overlays [8],
[9] for architecture abstraction and transparent I/O shar-
ing in a multi-tenant system [6], [10].

• Node level: A ‘node’ is defined as a single FPGA.
Thus, infrastructure and resource management techniques
are considered for this level. Examples include VMM
support [11], [12], run-time systems [13] and Shells
(also called FPGA OS and Hypervisor-vFPGA approach)
which are used to serve multiple concurrent user accel-
erators [2], [11], [14]–[16].

• Mutli-node level: ‘Multi-node’ is defined as a cluster of
two or more FPGAs. Hence for this level, we consider
techniques and architectures used to connect multiple FP-
GAs for accelerating a job. Examples at this level include
Leap [17], MapReduce [18]–[20] and Catapult [2].

III. VIRTUALIZATION AT RESOURCE LEVEL

In contrast to standard CPU/Software virtualization, FPGAs
have to virtualize two distinct types of resources: reconfig-
urable and non-reconfigurable. These resources operate in a
fundamentally different manner from each other. The recon-
figurable resources are based on the FPGA architecture and
is the fabric onto which the accelerators are mapped. This
mapping process varies from architecture to architecture and,
thus, the accelerators require re-synthesis when used across
different systems, which can take anywhere from minutes to
days depending on the complexity of the design. Thus, the
virtualization at this level for reconfigurable resources aims to
provide portability of accelerators and rapid compilation by
mapping each accelerator to an abstract architecture and then
using a remapping tool or interpreter.

Whereas, the non-reconfigurable resources mostly represent
the I/O resources which are also found in the CPU/Software
domain. Hence, these resources require similar abstraction
and security measures to software but with hardware support
on FPGAs. This can include hard IP such as embedded
CPUs or memory controllers as well as soft-logic that is
considered not to be changed at run-time. We discuss the
virtualization techniques employed for both types of resources
in the following subsections, in more detail.

A. Overlays

Overlays provide another level of programmability that is
implemented on top of the low-level FPGA resources as shown
in Figure 2. This is commonly done to improve productivity,
allow run-time compilation, or to support portability of func-
tionality across different systems (and even different FPGA
architectures).

Overlays allow the compilation process to be split into
two parts which considerably decreases the compilation time
required for generating an accelerator when the CAD tool
part can be omitted. Note, Java Virtual Machine’s byte-code
relates to native machine code as the overlay’s application
binary relates to the configuration bitstream of the overlay
that is implemented on the FPGA fabric. Similarly, like byte-
code translation to native machine code for achieving better
performance, overlay application may be directly translated
into configurations of the underlying FPGA architecture [21],
[22].

Overlay architectures can range from multi-core systems to
custom processing elements (PE) to fine-grained look-up table
(LUT) types, depending on the application or productivity
requirements.

Jain provided a comprehensive overview on coarse-grained
FPGA overlays in his PhD thesis [23], which are pro-
grammable at the data-word/operator level. Concisely, coarse-
grain FPGA overlays can be soft-core processors, either from
academia [24] or from industrial vendors [25], [26], vector
processors [27]–[31], and connected arrays of processing
elements (PEs) [9], [32]–[35] in which programmable PEs
and interconnects are provided. The motivation behind these
soft-core processor approaches tends to be the provisioning
of a more familiar programming environment for software
developers, in contrast to the fine-tuned hardware accelera-
tor implementations which target performance. In particular,
vector processors based on multi-ALU parallelism have been
shown to achieve a significant speed-up compared to soft-core
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Fig. 2: Overlay design flow.

counterparts. Examples include DySER [35], Venice [28] and
Vegas [29].

In connected arrays of PEs (also known as coarse-grained
reconfigurable arrays CGRAs), a PE executes an arithmetic
operation and data is transferred over an interconnect network
amongst the PEs. In CGRAs, PEs and interconnect logic
can be programmed cycle by cycle as in time-multiplexed
overlays [4], [36]–[38], or kept static during PE execution
as in spatially-configured overlays [32], [33]. Most common
interconnect topologies for CGRAs include nearest-neighbour
style [9], [32], and island-style [33]–[35]. Overall, CGRAs, use
either static, dynamically changeable point-to-point connec-
tion [39], or network on chip (NoC) communication [40]–[44].
These network implementation methods provide a trade-off
between implementation cost and flexibility (e.g., for provid-
ing more or less complex communication patterns). However,
for virtualization, recent lightweight soft packet switched
Network-on-Chip (NoC) (e.g., Hoplite [43]) and especially
hard NoC [44] seem promising solutions to provide resource-
efficient and high-speed interconnects for programmable over-
lays.

The Firm-core project by Lysecky et al. [45] is an early
example of a fine-grained overlay where all programming
was carried out by user logic implemented on top of the
FPGA. ZUMA [8] reduced implementation cost by mapping
overlay LUTs and overlay multiplexers into LUT-configuration
of the hosting FPGA fabric. Koch et al. [21] improved the
implementation cost further by mapping the overlay routing
directly onto the underlying FPGA routing fabric.

Overall, the extra level of programmability through an over-
lay comes at a substantial cost that needs to be justified. An
example of this is the DRAGEN chip for DNA processing [46]
where the overlay abstraction allows domain experts (who are
not FPGA experts) to benefit from FPGAs. Another example
where overlays can be better than traditional HLS or RTL
accelerators are the situations that require rapidly changing
functionality (at a speed which cannot be met using partial
reconfiguration). For instance, VectorBox commercializes vec-
tor processor overlays where the same compute substrate is
used for various concurrently running tasks under real-time
constraints [27].

B. I/O Virtualization

I/O virtualization aims at managing I/O resources such that
multiple applications can share the same resource or access
multiple different resources with the same interface. This is
shown in Figure 3, where a virtual channel is established
between the device and the user which does not necessarily
correspond to the physical channels available for the resources.
The virtualization layer in the middle can be used to enforce
security measures (e.g., in memory virtualization [6], [15]),
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Device 1

I/O 
Device M

...

...

Virtual Channel

Physical Channel

Fig. 3: I/O virtualization architecture, where an application can access multiple
different I/O devices as if they were one or share the I/O devices transparently.

hide complexity of the I/O interface [6], monitor resource
usage and enforce QoS (e.g., in cloud systems) [11], as well
as optimizing access time (e.g., providing buffers for memory
load and stores).

Fundamentally, the virtualization support for I/O is the same
as in CPU/software systems, with the main difference being
the implementation technology. For FPGAs, the control logic
can be either implemented in a software domain (e.g., by using
a soft-core [15] or a host CPU [16], [47]) or a special hardware
module [6], [10], [14] using some reconfigurable resources.
The software approach tends to be used for high flexibility
or to save more reconfigurable resources for application logic.
Whereas, the hardware approach tends to be used for high
performance I/O access and management.

Moreover, the I/O virtualization layer can also be used to
assist a CPU for higher performance I/O access rather than
just serving the accelerators on the chip. Abbani et al. [48]
has shown how FPGAs can be used to accelerate storage
up to 6× performance improvement for data-intensive appli-
cations running on a distributed reconfigurable active solid-
state drive (SSD) platform. While Chalamalasetti et al. [49]
and Lavasani et al. [50] showed an FPGA accelerator based
solutions for Memcached. Further, Microsoft uses FPGAs to
reduce network traffic to CPU by delegating the majority of
Network-Interface-Card (NIC) requests directly to FPGAs [2].
These are just a few examples which have been applied to
accelerate I/O by offloading compute-intensive work to an
FPGA as middleware.

IV. VIRTUALIZATION AT NODE LEVEL

Virtualization support at the node level represents the
infrastructure (in both hardware and software) required to
manage the resources related to a single FPGA. It can be
split into three different categories: Virtual Machines Monitors
(VMMs), Shells, and Scheduling, as described in the following
subsections.

A. Virtual Machine Monitors (VMMs)
VMMs are a standard way of performing virtualization in

the CPU world and tackle various challenges which apply to
FPGA virtualization. Thus, it is only natural to extend them
to support FPGAs. One such attempt was by Wang et al. [12],
where the FPGA accelerator was integrated at the lower
device driver level in the Xen VMM. Their experiments
show that VMMs can be implemented with close-to-zero
overhead compared to accessing FPGA accelerator without
a VMM layer and, at the same time, share the accelerator
among multiple operating systems. This approach is a good
fit for applications which require fixed accelerator support
and tight coupling of VMMs on host CPU with an FPGA
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Fig. 4: Examples of proposed FPGA infrastructure and shells for hosting one for more reconfigurable applications with virtualization.

accelerator. The micro-kernel approach by Xia et al. [51]
takes this one step further and by providing multiple partial
regions and resource sharing mechanisms for VMMs, while
Jain et al. [52] use a micro-kernel with overlay virtualization
to provide accelerator portability. Another similar effort is
presented by Chen et al. [11] for integrating Xilinx FPGAs into
Linux-KVM with OpenStack support. Their approach suggests
decoupling the static logic (OS functionality) from dynamic
logic (applications) which is beneficial for various reasons (as
detailed in Section IV-B).

Overall, all these prototypes provide isolation between mul-
tiple processes or virtual machines, with some support for
resource allocation, and they aim at fulfilling the following
virtualization objectives: Multi-tenancy, Resource Manage-
ment, Isolation, and Security and Resilience. The dependency
between virtual machines and FPGAs can be limiting to certain
applications but this can be mitigated by co-scheduling a set
of applications which require the same accelerator function-
ality on the same FPGA (via an accelerator library); this is
discussed further in Section IV-C.

Moreover, FPGA Virtualization with VMMs integration
tends to adopt the conventional model of treating CPU as
a first-class citizen and FPGA as a special peripheral. This,
makes the incorporation of FPGAs in software domains a little
easier for the software programmers since accessing an FPGA
accelerator tends to become a simple library call with a similar
interface as a GPU. Hence, applications can be scaled to use
multiple FPGAs by employing standard software frameworks
which are used for GPUs, with minor modifications.

B. Shells

Shell is a recent term used to describe the static part of the
FPGA system/bitstream and is often referred to as FPGA OS
or Hypervisor for vFPGAs. It essentially provides the common
infrastructure required for different applications i.e. all of
the I/O virtualization support, resource management and the
drivers required to program the applications. A shell without
VMM support can be considered as the hardware equivalent
of the Container virtualization [53] where the virtualization
of application execution is done at the process level rather
than at OS level. It achieves this by providing isolation,
resource monitoring, and management along with I/O and
driver dependency resolution.

There are many ways in which this can be achieved.
Figure 4 shows some of the infrastructures proposed in recent
works which target virtualization in particular. While Table I
lists the various works in this direction where the platform
provides decoupling of application logic from the OS logic
based on the execution models they support.

At this level of virtualization, the execution models are the
prime drivers for deciding which functionality is required to
be a part of shells and these can be categorized into four types:

1) SFSA: Single FPGA Single Application
2) SFMA: Single FPGA Multiple Applications
3) MFSA: Multiple FPGAs Single Application
4) MFMA: Multiple FPGAs Multiple Applications
In most cases, multiple applications on a single FPGA are

achieved using multiple partial regions. These regions can be
asymmetric as well as symmetric in shape. The asymmetric
approach is usually taken to support multiple different sizes of
modules without having to reconfigure the entire FPGA [54].
The symmetric approach uses similar or identically sized par-
tial regions (also called ‘tiled regions’ or ‘resource slots’). A
good example of this is the Erlangen Slot Machine [55] which
was designed with flexibility in mind. Further with symmetric
approach an application can occupy one or more adjacent slots
which provides more flexibility for the resource allocation to
reduce internal fragmentation (as shown in RC2F [6]).

Each execution model requires some form of connectivity
and these can be split into three different classes: i) Host
connectivity, ii) Independent connectivity, and iii) Hybrid
connectivity. Shells which support only host connectivity, let
a host CPU handle the resource management of the FPGA
and use the majority of reconfigurable resources for the ap-
plications [16]. With the availability of embedded CPU cores
providing a rich set of peripherals (e.g., ZYNQ Ultrascale+
FPGAs), this model is now feasible as a single chip solution.
However, for data-centre/cloud environments it can lead to
under-utilization of resources as the FPGA allocation is tightly
coupled with the CPU allocation. Thus, there are proposals
which recommend independent connectivity for these scenar-
ios, which allow sharing of FPGA resources among multiple
different CPUs [10], [56] or even standalone FPGAs for the
application [2], [10], [15], [57]. This flexibility often requires
FPGA support for the network layer and other I/O resources
(e.g. Ethernet and memory controllers), which can occupy a
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[16], [59], [47], [2] [15], [6], [14], [11]
[60], [54], [61], [56] [55], [62], [60], [13]
[63], [64], [65], [66] [54], [61],
[67], [68], [3]

Multi-FPGA [56], [47], [2], [63] [15], [14], [10], [6]
[65], [67], [68], [3]

TABLE I: Hardware platforms with static and partial regions. Note that the
certain platforms may be able to scale multiple FPGAs via CPU, but without
the network support or mention in the paper, we refrained from including
them into the multi-FPGA category.

considerable amount of the available FPGA resources in some
cases (as shown in Table II). In contrast to host connectivity
and independent connectivity, the hybrid approach aims at
supporting both forms of connectivity to benefit from offload-
ing control intensive or complex resource management tasks
to CPUs but also use the special hardware on an FPGA to
accelerate I/O accesses if required (as in Microsoft’s Catapult
platform [2]).

Additionally, it is important to acknowledge that, when
using a shell, there are performance overheads due to the
layout constraints imposed by the partially reconfigurable
regions. For instance, Yazdanshenas and Betz [58] have shown
that constraining the logic placement to a particular area on
the chip for the user application can lead to high contention
for wiring during Place and Route which, in turn, leads to
longer wires, resulting in slower modules. Consequently it can
be observed that increasing the number of partial regions to
support higher multi-tenancy is likely to lead to comparatively
slower modules and static logic. Thus, finding the optimal size
and number of partial regions for virtualization support is an
interesting open direction of research.

C. Scheduling
Scheduling, in general, is a well-established topic in soft-

ware systems, specifically for multi-tenancy and for improv-
ing utilization of resources. The conventional techniques of
scheduling are preemptive, non-preemptive, and co-operative
scheduling which can be used to share the FPGA in the time
domain.

However, these techniques cannot be blindly applied for all
types of FPGA accelerators as the state information which
needs to be saved for an FPGA accelerator is in general non-
trivial if a context switch is performed at an arbitrary point

in time. This is because the state may be spread out across
Flip-Flops, Logic Cells and BRAMs. Saving and restoring the
complete state for such a case can easily take anywhere from
microseconds to milliseconds [69] in addition to partial recon-
figuration latency. Further, the hardware support required for a
preemptable hardware module tends to be rather restrictive and
very target specific. One possible way to perform this without
special hardware restriction is proposed by Rupnow et al. [70],
where a hardware task is either blocked, dropped or rolled
back to CPU if a context switch needs to be performed.
Using preemption on FPGAs entirely transparently is either
time consuming (for accessing the static information within
the configuration data) or expensive if the state access is
provided through an interface (e.g., through a scan chain).
This may be solved in future FPGA architectures or by design
technologies that reduce the cost of context switching. For
example, Bourge et al. [71] proposed an HLS extension that
includes a scan chain only for a subset of the available registers
by performing live-variable analysis for finding states where
the number of live registers to be stored is small.

The non-preemptive approach simplifies the design and
can be implemented at relatively low-cost as the accelerators
run to completion. While co-operative scheduling operates
in a conservative manner and offers context switching when
an application reaches an execution checkpoint for minimal
overhead [51].

Hardware threads have been proposed in ReconOS [72] and
HThreads [73] to integrate scheduling for FPGAs in standard
software operating systems to bring FPGAs to the software
programming world by utilizing standard software HDLs. The
technique requires a tight CPU-FPGA coupling and can be
directly applied on MPSoC platforms, as High-Level Synthesis
(HLS) is now reaching a mature state.

Most of the scheduling approaches for FPGAs are non-
preemptive and focus on optimizing in the time domain. Only
very recent research is investigating FPGA virtualization in
the spatial domain. Asiatici et al. [13] proposed dynamic
scheduling which can take advantage of the free slots available
at run-time to improve utilization and thus the performance.
This scheduling approach maximizes the number of pipeline
instances when a task is created and keeps this allocation
untouched until task completion. A dynamic scheduling tech-
nique which can potentially increase or decrease accelerator’s
resource consumption according to the workload requirements
at run-time could be particularly desirable moving forward in
multi-tenant systems.

OS infrastructure FPGA Area Multi-tenancy Scalability Flexibility Programmer Productivity Isolation Utilization
Byma et al. [15] 74% (BRAM) 3 Medium Medium Medium Low Medium
Chen et al. [11] 41% (Logic)* 3 Medium Medium High Medium Medium
IBM Zurich [10] 33% (Logic)* 3 High Medium Medium High Medium
Fahmy et al. [16] 7% (Total) 7 Low Low Medium - Low
Catapult [2] 76% (Total) 7 High High Low - Low
Network-attached [56] 32% (BRAM) 7 Medium Medium Medium - Low
Tarafdar et al. [47] 19.56% (BRAM) 7 High Medium High - Low
Feniks [14] 13% (Logic) 3 High High High High Medium
Knodel et al. [6] 42% (Logic) 3 High High Medium High Medium
Asiatici et al. [13] - 3 Medium Low Medium Medium High

TABLE II: Comparison of infrastructure present at the node level. For Scalability we consider the support of connectivity in the shell, for Flexibility support
for range of accelerator design is considered i.e. custom accelerator to HLL to DSL usage, for programmer productivity development time is considered which
would depend on component level support and accelerator generation requirements, for isolation we consider how advance support is provided by component
managers and finally for utilization we consider the amount of region which would be in use at run-time this includes support for multiple accelerators on
chip as well as level of scheduling techniques employed.
*The only reported area metric.
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Moreover, to target FPGA as a Service (FaaS) and Accel-
eration as a Service (AaaS) models, specific scheduling ap-
proaches have been proposed. One such approach is mapping
multiple users which require the same accelerator functionality
on the same FPGA such that partial reconfiguration is not
required to serve another user [74], [75]. Another approach
in this direction has been implemented for VineTalk by
Mavridis et al. [76], to provide support for sharing an FPGA
within a native server, a virtual machine, or a container in a
heterogeneous data-centre. The user can select the appropriate
accelerator type (e.g., GPU or FPGA) based on workload or
algorithm specifics through this API. With the adoption of
OpenCL as a de-facto standard for heterogeneous computing
and proposals like SparkCL [77] for bridging the gap between
Java and OpenCL, these techniques seem to be leading the way
for the heterogeneous computing paradigm. The automation
of appropriate accelerator selection based on these methods
represents an interesting new research area.

V. VIRTUALIZATION AT MULTI-NODE LEVEL

The aim of virtualization at multi-node level is to map
an acceleration job across multiple FPGAs in a transparent
manner. To provide this abstraction, a virtualization model
must connect multiple FPGAs and abstract the details of how
they are connected from the user. Applications at this level
would often run on a data-parallel piece of the problem where
each FPGA computes the whole job or alternatively where
multiple FPGAs accelerate a problem in conjugation with each
other.

Multiple FPGAs can commonly be connected in three differ-
ent ways as shown in Figure 5: i) FPGA-to-FPGA architecture
where FPGAs directly communicate with other FPGAs; ii)
a server-client architecture where a server is a remote CPU
issuing work to the independent FPGAs; and iii) the traditional
server-client architecture where both server and clients are
CPUs and an FPGA is a special hardware peripheral attached
to the client CPUs. Note that systems may combine these
models to form a hybrid architecture based on the application
requirements.

These architectures are the underlying base for the three vir-
tualization models: Custom Clusters, Frameworks, and Cloud
services. We discuss each model in further detail below.

A. Custom Clusters

In the Custom Cluster approach, the computation is split
among multiple FPGAs in terms of stages where the data
is passed after processing from one FPGA to another by
FIFO/File/Network semantics. The approach often follows a
systolic array model where each Processing Element (PE) is

an FPGA. Examples of this FPGA-to-FPGA architecture are
Leap [17], JetStream [68] and Maxeler MPC-C and MPC-
X series [3]. Leap requires the user to annotate the code
with special pragmas to create FIFOs which are latency
insensitive to communicate with a different FPGAs. These
FIFOs send data using high-speed serial transceivers and
expose the content again in FIFO buffers on the other side
of the channel. A similar approach is taken by Maxeler
when connecting multiple FPGAs using a proprietary point-to-
point connection called MaxRing. As an alternative, JetStream
connects multiple FPGAs through direct PCIe links.

Accelerators can be designed to communicate directly with
other nodes by explicitly using the network connections, such
that data movements and compute is tailored to the target
application. An example in this category is Levenshtein dis-
tance implementation for CUBE (a one-dimensional cluster of
512 FPGAs) which exploits a systolic architecture for stream
processing across multiple FPGAs [78].

B. Frameworks

The Framework model for virtualization takes a similar path
to the software world and adopts the server-client architecture
for deploying accelerators. A server CPU is responsible for
configuring the FPGAs and managing application data, while
FPGAs are responsible for performing the actual computation.
Various data management techniques have been extensively
studied before for distributed systems using CPUs and the
same techniques can potentially be reused for FPGAs. In
particular, frameworks like MapReduce can be supported with
FPGAs by implementing the map and reduce functions as
FPGA accelerators, where the data can be distributed to
FPGAs and collected after the computation in the standard
MapReduce manner [18], [19], [79]. Furthermore, frameworks
can also be used to bridge the heterogeneity between devices,
as the programmer writes the application with a fixed interface.
An example of this is Axel, where MapReduce is used to
form heterogeneous clusters providing FPGAs and GPUs [20].
However, to implement this, a JVM-based framework needs to
be extended to support FPGAs in an efficient manner. It was
shown by Chen et al. [80] that JVM-to-FPGA communication
overhead can be significant and requires a careful handling
when using frameworks such as Apache Spark.

The support for an industry standard language for hetero-
geneous computing such as OpenCL has been investigated
to virtualize FPGAs at the application source code level.
For instance, by using the SDAccel framework for OpenCL
from the vendor Xilinx, Tarafdar et al. [47] proposes using
an MMU layer to map data across multiple FPGAs (i.e.
allocating data across multiple FPGA and using a directory
to fetch/send the data transparently from/to the remote node).
Iordache et al. [75] proposed the concept of FPGA Groups
to share one or more physical FPGAs which are configured
with the same accelerator. Here the granularity of resource
allocation is a whole FPGA which may not lead to high
utilization due to fragmentation. However, an auto-scaling
algorithm allows variation of the number of FPGAs in a group
dynamically. A similar model is proposed by Huang et al. [74]
for their Blaze run-time which aims at implementing FPGA as
a Services (FaaS). Blaze not only extends Hadoop YARN (a
cluster management system) with accelerator sharing among
multiple computing tasks but also reduces the required pro-



gramming effort considerably for systems like Apache Spark
and YARN.

C. Cloud Services
The cloud service model completely abstracts the details of

where the computation is taking place from a user. The user is
only guaranteed QoS and correctness of the output thus, in the
background, an FPGA can be employed to perform computing
instead of a CPU. This approach is different from providing
FPGA as a Service (e.g., EC2-F1 service by Amazon [81]), as
it does not relate to provisioning of FPGAs but provisioning
of the application/web-service itself. This approach was taken
by Microsoft for accelerating the Bing web search ranking
algorithm [2] to achieve 95% higher performance at the cost
of 10% higher power consumption. Similar results have been
reported by Baidu for accelerating Deep Neural Networks
(DNN) [82]. Moreover, the run-time system can utilize FPGAs
as co-processors to accelerate compute-intensive kernels in a
high-performance computing environment. An example of this
is the work done by El-Araby et al. for Cray XD1 [83] where
FPGAs were used as co-processors for the Single Program
Multiple Data paradigm.

There are also hybrid architectures which can support mul-
tiple forms of connectivity based on the FPGA infrastructure
available at the node level. FPGAs with network access in
specific can support all forms of connectivity as a CPU can
be provided as a soft-core or an embedded SoC on an FPGA.
The most common technique to manage an FPGA is to use
OpenStack for provisioning of the FPGAs and letting the user
connect and program the FPGA using an IP or MAC address
of the FPGA or vFPGA [15], [47], [56]. This gives the user
the flexibility to connect to the FPGA using remote procedure
calls or socket connections. Moreover, this complexity can be
further abstracted away by using frameworks and libraries for
common applications. A good example of a hybrid architecture
is Microsoft’s Catapult project [2] which allows the accelera-
tion of tasks as a special peripheral connected to a host CPU
core but can also communicate among FPGAs directly in a
standalone fashion.

VI. TRENDS AND FUTURE DIRECTIONS

Current major directions for FPGA virtualization and OS
infrastructure include: i) multi-tenant support to share the
same compute substrate among multiple users/applications and
ii) scaling towards large networks of FPGAs in data-centres
in order to accelerate large-scale problems.

With the rise of multi-tenant support in FPGAs, the OS
infrastructure will require more support for resource manage-
ment which could not only help setting up the FPGA for user
access but also perform scheduling to meet QoS requirements
and to maximize resource utilization. Such resource managers
have been shown to be vital in the software world. An
example of this is the Borg cluster management system which
Google uses internally to manage most of its clusters [84]. It
highlighted that carefully matching different applications to be
executed on the same CPU can allow fitting the same workload
with 20% fewer machines. Note that there are currently no
reasons to believe that such benefits cannot be gained for
FPGAs as well.

At data-centre scale, elasticity has been one of the main
drivers for many users when using cloud resources and as more
data-centre workloads are currently moving to cloud (e.g., [82]

and [2]), a similar feature is needed for FPGAs. Currently,
the elasticity in FPGAs is commonly employed at the whole
FPGA device level with a constraint of running the same
accelerator for all applications running on an FPGA. However,
moving into the future with a large variety of applications for
FPGAs and the availability of larger FPGAs, these constraints
may be too limiting to optimize resource utilization in a
cloud context. Thus, providing elasticity at a more fine-grained
level (e.g., partial regions) may become a more suitable and
interesting area of work.

The trend to use a heterogeneous computing using substrates
such as CPUs, GPGPUs and FPGAs will continue to grow
in order to maximize performance and energy efficiency and
FPGA virtualization will have to incorporate this. Hence,
moving forward into the future, heterogeneous computing
with FPGAs is likely to present a challenging and interesting
direction of research.

Moreover, virtualization techniques for FPGAs need to pro-
vide security not only for network and memory access but also
for the compute substrate itself, as it opens up to new types
of attacks. For example, a malicious bitstream can potentially
damage an FPGA [85] or crash the system until power cycle
reset [86] or perform a side channel attack [87], [88]. To
mitigate these types of attacks, FPGA specific solutions need
to be designed (e.g., a configuration controller to identify
and block malicious bitstreams). Thus a special security layer
needs to be designed in parallel of virtualization moving
forward.

VII. CONCLUSION

We have provided a survey on FPGA virtualization that,
in particular, covers recent trends of deploying FPGAs in
cloud environments. This spans virtualization within an FPGA
device, virtualizing complete FPGA devices as well as vir-
tualizing networks of FPGA. With this survey, we intend
to summarize state-of-the-art work and highlight important
directions of research that are, for example, needed to use
FPGAs in multi-tenancy scenario and cloud environments in
the same way as CPUs are currently used.
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