
PREPRINT: Accepted at 28th International Conference on Field Programmable Logic & Applications (FPL), 2018PREPRINT: Accepted at 28th International Conference on Field Programmable Logic & Applications (FPL), 2018

CascadeCNN: Pushing the Performance Limits of
Quantisation in Convolutional Neural Networks

Alexandros Kouris, Stylianos I. Venieris and Christos-Savvas Bouganis
Dept. of Electrical and Electronic Engineering, Imperial College London

Email: {a.kouris16, stylianos.venieris10, christos-savvas.bouganis}@imperial.ac.uk

Abstract—This work presents CascadeCNN, an automated
toolflow that pushes the quantisation limits of any given CNN
model, aiming to perform high-throughput inference. A two-stage
architecture tailored for any given CNN-FPGA pair is generated,
consisting of a low- and high-precision unit in a cascade. A con-
fidence evaluation unit is employed to identify misclassified cases
from the excessively low-precision unit and forward them to the
high-precision unit for re-processing. Experiments demonstrate
that the proposed toolflow can achieve a performance boost up to
55% for VGG-16 and 48% for AlexNet over the baseline design
for the same resource budget and accuracy, without the need of
retraining the model or accessing the training data.

I. INTRODUCTION

While Convolutional Neural Networks (CNNs) are becom-
ing the state-of-the-art algorithm in various Machine Vision
tasks, they are challenged to deal with problems of con-
tinuously increasing complexity. The significant advances of
CNNs came with increased number of layers [1], increased
number of kernels [2] and more complex architectures [3],
which introduce substantial costs in terms of computational
and memory resources. To deploy CNNs in real-world tasks
which deal with vast amounts of data, it is necessary that the
high computation and memory requirements of such models
are alleviated. To this end, numerous compression and preci-
sion quantisation techniques have been proposed [4]–[6] which
exploit the redundancy in CNN models to enable their efficient
deployment on processing platforms.

In this context, FPGAs constitute a promising platform for
CNN inference due to their customisability which enables
the use of optimised low-precision arithmetic units to achieve
performance gains [7]. Existing FPGA-based accelerators have
produced hardware designs that span from uniform 16-bit
precision [8] [9] with minimal effect on accuracy, down to very
high-performance binarised networks [10], but at a significant
accuracy loss. In this setting, given a fixed resource budget, the
attainable performance for a given error tolerance is limited
by the shortest wordlength that meets the error bound.

In this paper, we propose CascadeCNN, a novel automated
methodology for generating a high-throughput cascade of
CNN classifiers that pushes the performance of precision
quantised CNNs. CascadeCNN exploits the fact that not all
inputs require the same level of precision to obtain a con-
fident prediction and introduces precision quantisation as a
design dimension for the deployment of CNN cascades. In
this respect, the proposed framework generates an excessively
low-precision processing unit to obtain rapid classification
prediction together with a parametrised mechanism for esti-

mating the prediction confidence. The samples that are de-
tected as misclassified are recomputed on a high-precision unit
to restore the application-level accuracy and meet the user-
specified limits. CascadeCNN considers the error tolerance
and the target CNN-device pair to select quantisation scheme,
configure the confidence evaluation mechanism and generate
the cascaded low- and high-precision processing units. The
main contributions of this work are the following:

• The introduction of the first CNN cascade in the literature
that exploits the custom arithmetic potential of FPGAs
to boost CNN inference throughput. A novel tunable
confidence evaluation unit is presented which estimates
the confidence of classification predictions at run time.
By considering the user-specified error tolerance for the
target application, the confidence evaluation unit decides
accordingly whether or not an input sample is to be
recomputed by the second stage of the cascade.

• A novel FPGA-based architecture which scales its per-
formance as the wordlength of activations and weights
decreases, by fully exploiting the available FPGA re-
sources. The proposed architecture employs both DSP
blocks and LUTs to map its compute units and demon-
strates performance gains with each bit reduction. The
architecture is able to execute both the convolutional and
fully-connected layers of CNNs and is parametrised so
that it can be configured at compile time.

• A design space exploration methodology that takes into
account the CNN-FPGA pair and a user-defined error
tolerance for the target application and optimises the
CNN cascade structure with respect to the quantisation
scheme and the hardware configuration for each stage.
Furthermore, this work employs the full reconfiguration
of the FPGA as a design option, to enable the proposed
cascade scheme on FPGAs whose resource budget does
not allow both stages to be instantiated at once, along with
appropriate batch-processing to maintain high throughput
by alleviating the performance cost of reconfiguration.

II. BACKGROUND AND RELATED WORK

A. Cascade Machine Learning Systems
Cascades of classifiers is a widely studied design approach

in machine learning [11] [12]. Such algorithms aim to min-
imise the computation time per classification by exploiting
the property that different inputs require different amount
of computation to obtain a confident prediction. A cascade
structure is typically formed by connecting classifiers of

ar
X

iv
:1

80
7.

05
05

3v
1

 [
cs

.C
V

]
 1

3
Ju

l 2
01

8

increasing complexity as a multi-stage architecture. At each
stage, based on the confidence of its prediction, a classifier can
either decide upon the classification of the current input sample
and terminate the execution or pass it to the next stage. The
deep learning community has mainly focused on the design
of CNN cascades from an algorithmic perspective targeting
diverse tasks including the detection of faces [13], pedestrians
[14] and objects [15]. In a more systems-oriented approach,
Kang et al. [16] proposed NOSCOPE, an automated framework
that generates CNN cascades optimised for high-throughput
query-based video analysis on high-end GPUs, by searching
the design space of both CNN models and cascade structures
with the objective to perform binary classification tasks.

In contrast to the existing literature, this work approaches
CNN cascade design from a different perspective. Instead of
designing one weaker and one more sophisticated model at the
training phase, CascadeCNN takes as input a model trained
at a given precision and generates one weaker but faster,
low-precision model and one slower but more accurate, high-
precision model. To decide whether to pass each sample to the
second-stage classifier, a novel tunable confidence evaluation
unit is introduced, which estimates the classification confi-
dence of the low-precision model. By taking into account the
user-specified error tolerance, the two stages of the cascade,
the corresponding hardware architectures and the confidence
evaluation unit are co-optimised to maximise performance
while lying within the acceptable user-defined error bounds.
Please note that this precision-oriented cascade approach is or-
thogonal to model cascades and can be applied independently
to each of their stages to improve their performance.

B. Precision Quantisation of CNN Models
Precision quantisation is an actively researched method

for minimising the computational and space complexity of
CNN inference. The majority of existing works apply fixed-
point quantisation to full-precision trained models and em-
ploy a retraining step as a mechanism of fine-tuning the
network’s fixed-point weights. In this direction, Gysel et al.
[17] proposed Ristretto, a framework that quantises both
activations and weights under a dynamic fixed-point scheme
with uniform wordlength and different scaling across layers.
Angel-Eye [18] is a CNN-to-FPGA framework that comprises
a quantisation method together with a CNN accelerator. Sim-
ilarly to Ristretto, Angel-Eye employs uniform wordlength
across layers and formulates the per-layer scaling search
as an optimisation problem. Zhou et al. [19] presented an
incremental scheme that focuses solely on weights and pushes
state-of-the-art networks below 6 bits with no loss of accuracy.
However, all aforementioned works [17]–[19] employ post-
quantisation retraining to address losses in accuracy while
pushing the designs to low-precision computations, assuming
the availability of training data which is not always the case.

FPGA-based CNN accelerators have been using 16-bit
fixed-point precision for both activations and weights with
minimal accuracy penalty [9] [20] with Suda et al. [21]
employing 8-bit weights. Targeting applications where a sig-

GNDLayers,
Weights,
…

LUTs, DSPs
Memory BW,
On-chip,
…

Fig. 1: CascadeCNN’s automated toolflow.
nificant error can be tolerated, optimised FPGA mappings of
binarised [10] and ternary networks [22] have been proposed.

Following a different approach to the majority of existing
quantisation methods, CascadeCNN is relieved of the need
to have access to the whole application dataset, as it does
not employ model retraining in its quantisation scheme. In-
stead, a two-stage cascade structure is generated using only a
small subset of labelled samples, where the higher-precision
processing stage is responsible for restoring accuracy to user-
defined acceptable levels. However, this cascade approach
is orthogonal to methods which employ model fine-tuning
and the proposed framework can be extended to accommo-
date a retraining step. In contrast to existing single-stage
FPGA accelerators which rely on user-specified precision,
CascadeCNN introduces an automated quantisation method
that takes into account the user-defined error tolerance and
generates an optimised two-stage cascade architecture. More-
over, by utilising both DSPs and LUTs for its arithmetic units,
CascadeCNN’s FPGA-based architecture is designed to reach
higher performance with every reduction in the wordlength.

III. CASCADECNNA. Overview
A high-level view of CascadeCNN’s processing flow is

depicted in Fig. 1. The framework is supplied with a high-
level description of a trained CNN model (i.e. Caffe model),
the available computational and memory resources of the
target platform (LUTs, DSPs, Memory BW, on-chip and off-
chip memory capacity) and an application-level error tolerance
in a user-defined metric (e.g. top1/top5 classification error),
along with a small evaluation set for the target application.
CascadeCNN searches the architectural design space and
generates a two-stage hardware architecture, optimised for the
particular CNN model and target device. The generated system
for CNN inference (Fig. 2) consists of:

• A low-precision unit (LPU) which employs low-precision
arithmetic to trade lower accuracy with high throughput.

• A high-precision unit (HPU) which guarantees the same
accuracy level as the reference model.

• A tunable Confidence Evaluation Unit (CEU) that detects
samples that were wrongly classified by the LPU and
redirects them to HPU for re-processing.

The key idea behind the proposed approach is that the LPU
will process the whole workload, while the HPU will only
process a fraction of it based on the CEU’s evaluation of
classification confidence on LPU’s predictions, reducing its
compute requirements. Moreover, the accuracy loss that is
induced due to the extreme model quantisation of the LPU
is restored to meet the user-specified error threshold.

x

…

x

x
+

+

+
x

…

x

x
+

+

+

CEU

Memory

PASS

FAIL
M
A
C
C
s-
p
e
r-
P
E x

…

x

x
+

+

+

Fig. 2: CascadeCNN’s high-level architecture.
B. Quantisation

Arithmetic precision reduction is a widely studied technique
which exploits the inherent redundancy of CNNs in order
to reduce the memory bandwidth and footprint requirements,
minimise power consumption and achieve higher performance.
CascadeCNN employs a fine-grained search space across pos-
sible precision quantisation schemes. This is formed by allow-
ing different scaling factors for the weights and activations of
each layer, which determine the ratio of integer and fractional
bits, with a uniform wordlength across all layers (Fig. 3).
The flexibility provided by this dynamic fixed-point approach
enables smaller wordlengths to achieve high classification
accuracy due to the different per-layer scaling factors, which
would otherwise suffer significant accuracy loss if uniform
scaling factors were employed across all layers. Moreover,
employing a uniform wordlength for the whole network allows
the derivation of a single hardware architecture that can be
time-shared across all layers. The selected quantisation scheme
of each layer can be described by the following tuple:

qlayer =< WLnet, SC
weights
layer , SCactivations

layer > (1)
To determine the scaling factors for every explored

wordlength of a given CNN, statistics regarding the quanti-
sation impact of each layer on the application-level accuracy
are extracted using a small user-provided evaluation set. Each
layer’s weights and activations are progressively quantised
with decreasing wordlength values, examining a wide range of
scaling factors, while computations and parameters for the rest
of the network’s layers employ floating-point representation.
Fig. 4 illustrates snapshots of CascadeCNN’s quantisation
search space. The achieved classification accuracy of VGG-16
is demonstrated across quantisation schemes on a dataset of
20 samples, for uniform scaling factors across the network (a),
and for a single layer (b). As observed in this figure, useful
conclusions about the dynamic range of each layer can be
extracted even from a very small evaluation dataset.

iN … i2 i1 f1 f2 … fM.i3 f3

0-2 -1 1 2 …… 3-3

wordlength

scale

Fig. 3: CascadeCNN’s quantisation scheme parameters.
The extracted per-layer statistics are used to guide the

exploration towards the combination of scaling factors that
achieves the highest accuracy for each wordlength. In more
detail, all quantisation schemes that exceed an accuracy thresh-
old for each layer, are combined to form a search space
for the particular network, which is heuristically searched to
determine the classification scheme that achieves the high-
est network-level accuracy for the examined wordlength. In
contrast to other frameworks, CascadeCNN selects for the

-5

Scale
00

15
10

Wordlength
5

5

10

T
op

-5
 A

cc
ur

ac
y 20

(a) Uniform

-10

Scale
0

0
15

Wordlength

10
5 10

10

T
op

-5
 A

cc
ur

ac
y 20

0

5

10

15

(b) Single Layer

Fig. 4: Top-5 accuracy across the quantisation space, for
VGG-16 examined on 20 samples of ImageNet validation set.

LPU an excessively-reduced wordlength quantisation scheme
that achieves intermediate application-level accuracy, but with
significantly higher performance when mapped on its custom
precision-optimised hardware units. At run time, all input
samples are processed by the LPU in order to obtain a
rapid classification decision, which is then fed to the CEU.
A wordlength that achieves an accuracy that complies with
the user-specified error margins is selected for the HPU.
Provided that the reduced-precision model employed by the
LPU of CascadeCNN is derived from the given CNN by
direct quantisation (without retraining), its run-time derivation
at hardware level from the HPU’s higher precision model
is feasible. As a result of this weight-sharing approach, the
model size and memory requirements of the proposed cascade
approach remain the same as in the case of a single stage
accelerator employing the precision selected for the HPU.
C. Confidence Evaluation Unit

CascadeCNN allows the exploration of extreme quantisa-
tion schemes for the LPU, by aiming to identify potentially
misclassified inputs based on the confidence of the LPU clas-
sification prediction. Low-confidence predictions, identified
at run time by the CEU, are re-processed by the HPU to
restore classification accuracy. To estimate the confidence of
a prediction, we build on the work of [23] by generalising
the proposed Best-vs-Second-Best (BvSB) metric. BvSB was
previously examining solely the distance between the two
highest probability values, which is mostly applicable to binary
classification, or when focusing exclusively on top-1 accuracy.
Our generalised BvSB (gBvSB) metric is defined as:

gBvSB<M,N>(p) =

M∑
i=1

pi −
N∑

j=M+1

pj (2)

where pi denotes the i-th element of the sorted probability
vector p ∈ C of the predictions for C classes and M and N are
tunable parameters of gBvSB. An instance of this parameter
space is illustrated in Fig. 5, indicating the gBvSB for VGG-
16 predictions (quantised with the methodology described in
Sec. III-B) across the validation set of ImageNet [24]. In this
context, a prediction is considered confident, and thus the
processing ends at the low-precision unit, when:

gBvSB<M,N>(p) ≥ th (3)
where M , N and threshold th form tunable parameters whose
values are automatically determined by the proposed toolflow,
using the provided evaluation set to meet the user-specified
error tolerance. In this manner, the degree of uncertainty of

Fig. 5: gBvSB<5,10> metric values across the ImageNet
validation set for a VGG-16 5-bit LPU.
the classification decision is based on how spiky the sorted
probability distribution of a CNN’s prediction is. As illustrated
in Fig. 5, misclassified cases are uniformly distributed across
the evaluation set. Hence, a small subset of these samples
is adequate to provide an estimate of the percentage of
misclassified cases that each CEU instance will fail to capture.
In our experiments 200 samples1 were used to tune the CEU’s
parameters to suit the user-specified error tolerance, out of the
1.2M samples consisting a typical ImageNet training set [5].

It should be noted that a trade-off exists between the number
of samples that were correctly classified by the LPU but are
forwarded for re-processing to the HPU due to low confidence
(false-negatives), and the number of misclassified samples that
the CEU failed to identify due to the CNN’s overconfident pre-
diction (false-positives). The latter cases are responsible for the
classification error that is introduced by CascadeCNN, and can
be reduced by setting the CEU parameters to a configuration
that terminates the computation only on remarkably confident
predictions (thAcc). However, this would significantly increase
the number of correctly classified inputs that are re-processed,
which comes with a performance penalty on the system. In
contrast, a configuration that only suggests re-processing on
the extremely under-confident inputs, maximises performance
at the cost of degraded classification accuracy (thPerf). This
trade-off (depicted in Fig. 5) is exploited to achieve the highest
performance satisfying the user-specified error tolerance.
D. Architecture

A scalable, fine-grained hardware architecture is designed
that is able to execute CNN inference, scale its performance
with the resources of a target FPGA and exploit higher
degrees of parallelism as the wordlengths of activations and
weights decrease. The core of the architecture is a matrix-
multiplication (MM) unit, parametrised with respect to the
tiling of each matrix dimension and the arithmetic precisions
for activations and weights. The MM unit comprises Multiply-
Accumulate (MACC) units, grouped into Processing Elements
(PEs) that perform dot-products (Fig. 2). By casting convo-
lutions as matrix multiplications and using batch processing
for Fully-Connected (FC) layers, both Convolutional (CONV)
and FC layers are mapped on the MM unit. Particularly, every
CONV layer can be described as:
CONV < H,W,NIN , NOUT ,KH ,KW , SH , SW , Z > (4)

where H and W denote the height and width of each input
feature map, NIN and NOUT the number of input and output

1This value can be adjusted to meet required confidence intervals.

feature maps respectively, KH and KW the height and width
of the layer’s kernels, SH and SW the stride size in the height
and width directions of each input respectively and Z the zero-
padding on the input feature maps. FC layers can be described
similarly to CONV layers under the following formulation:

FC = CONV < 1, 1, NIN , NOUT , 1, 1, 1, 1, 0 > (5)

For each CONV layer, a RCONV×P input activations
matrix is constructed to represent its input feature maps. The
input activations matrix is organised with each row containing
the unrolled feature map values for a single sliding window
position, concatenated for all input channels. The number of
sliding window positions of a layer can be calculated as:

RCONV =
⌈
H+2Z−(KH−1)

SH

⌉⌈
W+2Z−(KW−1)

SW

⌉
(6)

while the number of elements included in the unrolled sliding
window for all channels of the input feature map volume is
P = KHKWNIN (7). In the case of FC Layers, batching
is employed to form a similar RFC×P matrix, each row
of which contains the input feature vector of size P for a
different input sample, and hence: RFC = BatchSize (8).
Similarly each layer’s weights are unrolled to form a P×C
weights matrix, with each of the C columns corresponding
to a different kernel, expressed as a P -element vector of
concatenated unrolled values for NIN channels. Hence, the
number of columns of P×C matrix is identical to the number
of output feature maps of the layer: C = NOUT (9). As
a result of the multiplication between the R×P and P×C
matrices, a R×C matrix is produced, with each column
representing the output feature map values produced by the
different filters of the layer (Fig. 6-top).

The MM unit employs tiling across all three dimensions
(R,P,C) with tile sizes of TR, TP , TC accordingly. Input
tiles TR×TP and TP×TC are loaded from the off-chip mem-
ory employing double buffering to hide the memory latency
between the processing of different tiles. Moreover, to sustain
a high memory bandwidth utilisation in the case of quantised
weights and activations, the low-precision values are packed
into larger chunks that match the memory ports width (e.g.
4-bit values packed in chunks of 16 for 64-bit ports).

Fig. 6 shows the proposed parametrised hardware archi-
tecture. A tile of the output activations matrix (TR×TC) is
computed by accumulating the results of

⌈
P
TP

⌉
tile multiplica-

tions. Intermediate results are kept on-chip, and only the final
output tiles are transferred back to the off-chip memory. Each
tile multiplication consists of a set of dot-product operations.
The proposed architecture exploits two different levels of
parallelism to allow for a fine-grained architectural search
space. To exploit the fine-grained parallelism in dot-products,
the dot-product between TP -element vectors is fully unrolled
and mapped on a PE that contains a multiplier array followed
by an adder tree. At the same time, TC PEs are instanti-
ated concurrently, to parallelise the dot-products between all
columns of the TP×TC tile with a single row of the TR×TP

tile. Finally, the rows of the TR×TP tile are processed in a
pipelined manner in order to maximise throughput.

w

w

w

Kernel WeightsFeature Maps

x

Activations

𝑪

Off-chip memory

…

… …

…

Double Buffering

PE

PE

PE

Results

…

FPGA

w
w

w

𝑪

𝑷

𝑷

𝑻𝑷

𝑹

𝑻𝑹

…

𝑹

𝑻𝑷

𝑻𝑪

𝑻𝑹

𝑻𝑪

=

… …

𝑻𝑹

𝑻𝑷

𝑻𝑷

Fig. 6: Overview of proposed hardware architecture.

Precision-aware mapping of PEs to FPGA resources. In
contrast to the majority of the existing FPGA-based designs,
the proposed architecture utilises both LUTs and DSPs to
implement its MACC units. A similar strategy was partially
explored in [9], focusing solely on 16-bit operands. With
smaller wordlengths being less LUT-costly, employing LUT-
based arithmetic units alongside DSP-based units enables
the proposed architecture to reach higher performance by
instantiating higher number of MACC units as the wordlength
decreases. Moreover, for the LPU, we introduce a strategy that
packs a pair of low-precision MACCs (less than or equal to
5 bits) on a single 25×18 DSP, by positioning targeted zero
guard-bits between the input operands to avoid interference
on the results and, in this way, doubling the computational
capacity of the FPGA’s DSP blocks. This technique is enabled
by the extreme quantisation employed by the LPU, since larger
wordlengths would either limit its applicability only to MACC
operations with a shared operand [25], or restrict it completely.

E. Design Space Exploration
Given a CNN-FPGA pair and a particular wordlength, Cas-

cadeCNN searches the architectural design space by means of
a roofline-based performance model [26] in order to determine
the highest performing configuration of the architecture. The
configurable parameters comprise the matrix tile sizes, that
determine the number of PEs and MACCs-per-PE as described
in Sec. III-D, along with a tiled batch size, to be discussed
in Sec. III-E2. In this manner, CascadeCNN generates two
architectures, the LPU and the HPU, which are optimised for
different wordlengths for the provided CNN-FPGA pair.

1) Tile Sizes: Having parametrised the MM operation and
its underlying architecture accordingly, the design space is
explored to determine the highest performing tile size tuple

<TR, TP , TC> for each CNN-FPGA-precision instance. A
per-layer analysis is initially performed, the results of which
are combined to yield a shared architecture across all layers,
which maximises the overall throughput. To enable fast and
exhaustive DSE, a roofline model is developed that associates
the predicted performance of each architectural configuration
with its operational intensity (which provides an estimate
of the ratio between computational workload and memory
traffic), to obtain the highest performing design point.

The attainable performance of the architecture given a triplet
of tile sizes < TR, TP , TC > is calculated as:
Perf(ops/s) = workload

II = 2RPC⌈
R
TR

⌉⌈
P
TP

⌉⌈
C
TC

⌉
TR

clk(WL) (10)

where workload denotes the total number of operations for
a single input of the particular layer in ops/input, with each
MACC counting for two operations, while the Initialisation
Interval II denotes the number of cycles required to process
an input. Finally, clk(WL) is the achieved clock frequency of
the architecture, depending on the selected wordlength.

As can be seen in Algorithm 1 (describing the tiled MM ap-
proach) the rate of read and write memory transactions varies
throughout the computation. To deal with this imbalance, the
performance analysis is configured to treat each iteration of
loop2 as a single step, capturing the total memory traffic
and processing load required per output tile (TR×TC). In
order to serve the fine-grained quantisation space, the roofline
model is adjusted to employ bits, instead of bytes, as its
data measurement unit. Hence, the operational intensity of the
architecture for each such step is formulated as:
opInt(ops/bit) = ops

memAcc = 2TRPTC

(TRP+PTC+TRTC)WL (11)
where ops denotes the total amount of operations required for
the computation of an output tile (ops/tile in a single iteration
of loop2), while memAcc denotes the number of bits that
needs to be transferred between the off-chip memory and the
FPGA in bits/tile, during the same computation.

By enumerating the possible tile size combinations and cal-
culating the corresponding Perf and opInt values, the design
space is formed for the examined CNN layer and precision.
Considering the target FPGA resources, only a subspace of this
design space corresponds to platform-supported architectures.
The limiting factors of the platform are its peak attainable
performance, obtained by resource modelling for a wide range
of precisions, and memory bandwidth. Specifically, MACCs
are implemented on both DSPs and LUTs (Sec. III-D), hence:

totalOps = 2
(

availLUT
LUTMACC(WL) + availDSP ·MACCDSP (WL)

)
(12)

where availLUT and availDSP denote the number of avail-
able resources on the target device, while LUTMACC(WL)
indicates the precision-specific resource consumption of
a single MACC unit when implemented on LUTs and
MACCDSP (WL) indicates whether packing of multiple
MACCs on a single DSP is supported by the particular
wordlength. With respect to the on-chip storage, the on-chip
memory requirements for each design point is obtained as:

onChipMem(bits) = 2(TRTP + TPTC + TRTC)WL (13)
where the term 2 accounts for double buffering.

Design points exceeding the platform’s computational roof
or on-chip memory capacity are excluded from the platform-
supported design space. Additionally, for design points whose
bandwidth requirement exceeds the available, their attainable
performance is projected to meet the platform’s memory roof.

Algorithm 1 CNN Layer as Tiled Matrix Multiplication

for r = 1 to
⌈

R
TR

⌉
step TR do (loop1)

for c = 1 to
⌈

C
TC

⌉
step TC do (loop2)

RegRC ← zeros(TR×TC)

for p = 1 to
⌈

P
TP

⌉
step TP do (loop3)

RegRP ← memRead(TR×TP)
RegPC ← memRead(TP×TC)
for rr = 1 to TR step 1 do (loop4)

for cc = 1 to TC step 1 do (loop5)
RegRC(rr, cc)+=

dot product(RegRP (rr), RegPC(cc))
end for

end for
end for
memWrite(RegRC)

end for
end for

After completing the DSE for every layer of a given CNN
using a particular precision, a single tile size triplet that
maximises the overall performance across all layers needs
to be determined. Nevertheless, since significant variability is
observed in the matrix dimensions of different layers, different
tile sizes yield the highest performance for each layer. This can
be explained by the fact that deeper layers tend to have more
and smaller filters in contrast with the first layers that consist
of fewer filters, operating on larger feature maps. To calculate
the average attainable performance of a design point with fixed
tile sizes across all layers, a weighted average based on the
percentage of processing cycles each layer is contributing for
the computation of a single batch of inputs is employed:

ovrlPerf(ops/s) =

∑Nlayers

i=1
k(i)Perf(i)II(i)∑Nlayers

i=1
II(i)

, (14)

k(i) =

{
BatchSize , if Layeri is CONV
1 , if Layeri is FC

(15)

where II(i) is the number of cycles for processing a single
input sample by the i-th layer. The platform-supported design
point achieving the maximum ovrlPerf is selected for the
implementation of the examined CNN-FPGA-precision triplet.

2) Batch Size: As described in Sec. III-D, input samples
are processed by CascadeCNN in batches, given that this
work focuses on throughput optimisation. All samples of a
batch are first processed by the LPU, with the CEU estimating
the confidence of each prediction. Subsequently, the FPGA is
reconfigured with the optimised hardware architecture for the
precision employed by the HPU, which processes a fraction
of the input samples, based on the CEU’s response. The
reconfigurability of FPGAs enables highly optimised -for the
selected LPU and HPU wordlengths- processing units to alter-
nate with each other, while occupying nearly all the available
resources of the target platform to exploit more parallelism.
Nevertheless, each full reconfiguration of the device intro-
duces substantial delay that can aggravate the overall system
performance. Employing large batch sizes, so that multiple

samples are processed by each processing unit between each
reconfiguration, compensates for the cost of reconfiguring the
device (as reconfiguration time becomes negligible compared
to the overall processing time of the batch). Thus, the largest
BatchSize that can be accommodated by the off-chip memory
(considering both inputs and intermediate results) is selected.

However, large BatchSize values affect the R dimension
of FC layers’ input activations matrices, which can aggravate
the load imbalance between layers, and thus degrade the
average performance of the derived architecture. To address
this issue, tiling of the batch size is employed. A corresponding
tile size TBatch is further parametrising the design space
to ensure better load balance across layers, with TBatch

replacing BatchSize in Eq. (8). To preserve the capability
of exhaustively searching the design space, only values that
are powers of two or multiples of 1024 are examined for
TBatch. The tiling factor of the system’s batch size is selected
to maximise the average attainable performance. The resulting
system’s LPU processes the whole BatchSize in groups of
TBatch samples, before switching to the HPU, in order to
achieve better load balance between CONV and FC layers.

IV. EVALUATION
A. Experimental Setup

In our experiments, we target image classification as
our application case study, using pretrained models on the
ImageNet [24] dataset. CascadeCNN is provided with models
of AlexNet [27] and VGG-16 [1], along with a small subset
of the ImageNet validation set as an evaluation set (200
labelled samples, out of 50,000). Experiments are conducted
on a wide range of values for the user-specified parameter
of error tolerance. Matlab 2017a is used to investigate the
quantised fixed-point network behaviour and determine the
highest achieving quantisation scheme for each wordlength
as described in Sec. III-B, as well as to obtain network
predictions on the evaluation set to tune the CEU parameters.
All hardware designs were synthesised and placed-and-routed
using the Xilinx Vivado HLS and Vivado Design Suite (v17.2)
and evaluated on the Xilinx Zynq ZC706 and UltraScale+
ZCU102 boards. The ARM CPU was used to execute the
softmax layer at the output of each CNN and the CEU.
B. Architectural Performance and Accuracy

In this section, the performance and accuracy of the pro-
posed architecture implementing the CascadeCNN’s process-
ing units, is evaluated as a function of employed wordlength.
For both AlexNet and VGG-16, CascadeCNN yields a
wordlength of 4 bits for the LPU, by selecting the smallest
wordlength that did not experience catastrophic accuracy loss
during the quantisation scheme exploration. This 4-bit LPU
introduces a 14.38% and 18.65% degradation in classification
accuracy compared to a 16-bit precision respectively (Fig. 7).
It should be noted that (similarly to what has been reported
in [21]) negligible accuracy variability is observed in the
range between 16-bit and 8-bit wordlength implementations,
provided by the employed quantisation methodology. As the
resulting architectures for higher-precision units in the range
of 16 bits demonstrate degraded performance due to increased

0
250
500
750
1000
1250
1500
1750
2000
2250
2500

0
10
20
30
40
50
60
70
80
90

100

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
Wordlength (bits)

VGG-16
AlexNet
CompRoof

To
p

-5
 Im

ag
eN

et
 A

cc
u

ra
cy

 (
%

)

P
er

fo
rm

an
ce

 (
G

O
p

/s
)

Fig. 7: Achieved classification accuracy and measured perfor-
mance as a function of wordlength on Zynq ZC706.
LUTMACC requirements and lower achieved clock frequen-
cies, an 8-bit implementation is selected to act as a baseline for
CascadeCNN’s error. The CEU parameters are tuned on the
evaluation dataset to generate systems that introduce a wide
range of classification errors, compared to the 8-bit baseline.

Using the roofline performance analysis of Sec. III-E, the
design points achieving the highest performance for AlexNet
and VGG-16, for a wide range of wordlengths are extracted.
The accuracy of the developed roofline model is evaluated by
comparing the predicted to the real, measured performance
for various points across the design space, demonstrating
an average error of 6.8% (geo. mean). Fig. 7 shows the
measured performance on the ZC706 board and the achieved
accuracy across multiple wordlengths. The fine granularity
of the architectural design space allows the selected design
points for all examined precisions to approach the device’s
computational roof. The 4-bit LPU architectures achieve a
throughput improvement of 2.28× for VGG-16 and 2.48× for
AlexNet compared to the faithful, zero-error 8-bit architecture2

and a speed-up of 5.18× for VGG-16 and 5.29× for AlexNet
compared to the 16-bit counterpart, which is the most widely
used precision by existing FPGA accelerators [9] [20].

C. End-to-End Cascade Performance
To evaluate the performance gains of CascadeCNN, we

compare the generated two-stage system for different error
tolerance values with a baseline single-stage architecture.
CascadeCNN’s fine granularity of CEU search space enables it
to fully exploit the performance-accuracy trade-off supporting
arbitrary classification accuracy, in contrast with the coarser
precision-accuracy trade-off that forms the only tunable pa-
rameter of the straight-forward quantisation approach adopted
by the baseline. To address this incompatibility of design
points across the accuracy dimension, each CascadeCNN
instance is compared with a baseline HPU, optimised for
a precision that achieves the same or better accuracy as
the cascade system (ranging from 5 to 8-bit wordlengths).
CascadeCNN’s HPU adopts the same precision as the baseline,
whereas its LPU maintains the 4-bit wordlength yielded by the
toolflow. For the cascade architecture, the overall measured
processing time for a batch of inputs includes LPU’s and
CEU’s latency for the whole batch, HPU’s latency for the
re-classified samples and the FPGA’s reconfiguration time.

2 AlexNet, 4-bit: [DSPs:100%, LUTs:80.6%, BRAM:5.16%]
AlexNet, 8-bit: [DSPs:100%, LUTs:83.1%, BRAM:4.34%]
VGG-16, 4-bit: [DSPs:100%, LUTs:81.4%, BRAM:4.88%]
VGG-16, 8-bit: [DSPs:100%, LUTs:82.9%, BRAM:5.76%]

0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4
1.5
1.6

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Sp
ee

d
-u

p

Classification Error compared to a faithful 8-bit implementation (%)

VGG-16, Zynq VGG-16, UltraScale+
AlexNet, Zynq AlexNet, UltraScale+

VGG-16

AlexNet

8-bit 7-bit 6-bit 5-bit

8-bit 7-bit 6-bit 5-bit

B
as
e
lin

e

Fig. 8: CascadeCNN Speed-up as a function of error tolerance.
The achieved throughput gain is depicted in Fig. 8 across

a wide range of error thresholds on ZC706 and ZCU102
boards. When zero or extremely small error tolerance (below
0.25%) is required by the user, the CEU adopts a strict
evaluation policy that results in an excessively high percentage
of rejected samples forwarded to the HPU for re-processing.
This introduces significant computational load that results
in a slow-down of the overall cascade architecture. In such
cases, where the baseline architecture outperforms the two-
stage design, CascadeCNN generates an optimised single-
stage architecture, that meets the required error tolerance. For
intermediate error levels (0.5% - 5%) in both target platforms,
the proposed cascade system outperforms the baseline by up to
48% for AlexNet and 55% for VGG-16, for the same resource
budget and accuracy. Finally, in the case of high error tolerance
(over 5%), the speed-up becomes less significant as the gap in
wordlength between the LPU and the baseline design closes.

A persistent gain on throughput is observed across the two
target devices, which comes with the scalable performance
obtained by the highly parametrisable architecture. Moreover,
although resource-rich devices, such as ZCU102, are burdened
by larger reconfiguration time, CascadeCNN’s DSE alleviates
that cost by employing larger batch sizes, that allow more rare
reconfigurations and hence higher amortisation of their cost.

The proposed toolflow can also employ other existing
CNN accelerator architectures as a basis for its LPU and
HPU components, with variable performance gains. The CEU
component is executed together with the softmax layer on the
CPU, with their aggregate processing time being 4× faster
than the FPGA-side computations. With the FPGA and the
CPU acting as a processing pipeline across the batches of
inputs, the latency of the CPU side is hidden and the system’s
overall performance is determined by the FPGA computations.
D. Comparison with Existing FPGA Work

This section explores the performance of the proposed
framework with respect to existing FPGA work that does not
consider model retraining. This is investigated by comparing
with a set of state-of-the-art works, including the highest
performing AlexNet and VGG-16 on Zynq 7045 [20] [18], on
Arria 10 [28] [29], the Escher accelerator that optimises mem-
ory bandwidth utilisation [30] and an RTL-based automated
CNN-to-FPGA toolflow [9]. Table I presents the measured per-
formance results. The performance column lists the throughput
in GOp/s and the performance density in GOp/s/DSP (shown
in brackets). For each network, three CascadeCNN design
points are examined (C1,C3,C5), generated by the toolflow
by setting the error tolerance to 1%, 3% and 5%.

TABLE I: Comparison with Existing FPGA Work
Work FPGA WL Freq Performance1 Speed-up2 Err

AlexNet
HPU Z-7045 16-bit 131 MHz 313.48 (0.35) 1.00 0%
[20] Z-7045 16-bit 125 MHz 161.98 (0.18) 0.51 0%
[30] Virtex-7 16-bit 100 MHz 135.00 (0.06) 0.17 0%
[28] Arria10‡ 16-bit 303 MHz 1382.00 (0.45) 1.29 0%
C1? Z-7045 [4,7]bit† 150 MHz 1190.35 (1.32) 3.77 1%
C3? Z-7045 [4,7]bit† 150 MHz 1238.66 (1.37) 3.91 3%
C5? Z-7045 [4,6]bit† 150 MHz 1343.61 (1.49) 4.26 5%

VGG-16
HPU Z-7045 16-bit 131 MHz 299.07 (0.33) 1.00 0%
[20] Z-7045 16-bit 125 MHz 123.12 (0.14) 0.42 0%
[18] Z-7045 16-bit 150 MHz 136.97 (0.15) 0.45 0%
[9] Arria10‡ 16-bit 200 MHz 619.13 (0.23) 0.70 0%

[29] Arria10‡ 16-bit 385 MHz 1790.00 (0.59) 1.79 0%
HPU Z-7045 8-bit 150 MHz 680.91 (0.75) 2.27 0%
[18] Z-7045 8-bit 150 MHz 273.76 (0.30)* 0.91 0%
C1? Z-7045 [4,7]bit† 150 MHz 1140.28 (1.26) 3.82 1%
C3? Z-7045 [4,7]bit† 150 MHz 1208.69 (1.34) 4.06 3%
C5? Z-7045 [4,6]bit† 150 MHz 1450.13 (1.61) 4.88 5%
* projected, † denotes [LPU,HPU] precision pair, ‡ refers to GX115 device
? refers to a two-stage (LPU+HPU) cascade architecture generated by CascadeCNN
1. Expressed in: [GOp/s (GOp/s/DSP)] using 18×18 and 25×18 DSP configurations
2. Normalised performance over the 16-bit HPU of each network (in GOp/s/DSP)

HPU Performance. To evaluate the architecture of the
HPU, each accelerator is compared with the HPU of the
same wordlength. In this respect, the 16-bit AlexNet HPU
outperforms the existing designs of [20] and [30] in both
achieved GOp/s and GOp/s/DSP and reaches 78% of the
GOp/s/DSP of the highly-optimised, hand-tuned design of
[28]. With respect to VGG-16, the 16-bit HPU outperforms
[20], [18] and [9] and reaches 56% of the performance density
of the mixed OpenCL-RTL design of [29].

CascadeCNN Performance. The two-stage cascade archi-
tecture however, achieves up to 3.31× higher performance
density on AlexNet compared to the hand-tuned architecture
of [28], with an average of 3.1× (geo. mean) in the error
tolerance range of 1 to 5%. In the same error range, Cas-
cacdeCNN also outperforms the works of [20] and [30] by
up to 8.29× and 24.83× respectively. Similarly for VGG-16,
the full cascade architecture outperforms the mixed OpenCL-
RTL design of [29] by up to 2.73× with an average of
2.36× (geo. mean) in the error tolerance range 1 to 5%,
while demonstrating remarkable gains compared to all other
examined designs. Overall, in cases that tolerate an extra error
of 1% to 5%, CascadeCNN demonstrates significant speed-ups
with respect to the state-of-the-art existing accelerators.

V. CONCLUSION AND FUTURE WORK

CascadeCNN, an automated toolflow for CNN inference
acceleration introducing a quantisation scheme to exploit the
computation time-accuracy trade-off of CNNs, is presented.
By designing a cascaded two-stage architecture, tailored to
the target CNN-FPGA pair and user-specified error tolerance,
the proposed framework demonstrates remarkable speed-up
on both VGG-16 and AlexNet, compared to a single-stage
architecture for the same resource budget and accuracy. By
exposing the application-level error tolerance to the design
space exploration to increase the overall system throughput,
CascadeCNN outperforms the current state-of-the-art FPGA-
based CNN accelerators. Future work will focus on enhancing
the tool with a latency-driven implementation of the cascade
model, which would replace reconfiguration with resource
sharing between the LPU and HPU.

ACKNOWLEDGMENT

The support of the EPSRC Centre for Doctoral Training in High Per-
formance Embedded and Distributed Systems (HiPEDS, Grant Reference
EP/L016796/1) is gratefully acknowledged. This work is also supported by
EPSRC grant 1507723.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” ICLR, 2015.

[2] M. D. Zeiler and R. Fergus, “Visualizing and Understanding Convolu-
tional Networks,” in ECCV. Springer, 2014, pp. 818–833.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for
Image Recognition,” in CVPR, 2016, pp. 770–778.

[4] I. Hubara et al., “Quantized Neural Networks: Training Neural Networks
with Low Precision Weights and Activations,” CoRR, 2016.

[5] S. Han et al., “Deep Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding,” ICLR, 2016.

[6] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized Convolu-
tional Neural Networks for Mobile Devices,” in CVPR, 2016.

[7] S. I. Venieris, A. Kouris, and C.-S. Bouganis, “Toolflows for mapping
convolutional neural networks on fpgas: A survey and future directions,”
ACM Comput. Surv., vol. 51, no. 3, pp. 56:1–56:39, Jun. 2018.

[8] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: A Framework for
Mapping Convolutional Neural Networks on FPGAs,” in FCCM, 2016.

[9] Y. Ma, Y. Cao, S. Vrudhula, and J. s. Seo, “An Automatic RTL Compiler
for High-Throughput FPGA Implementation of Diverse Convolutional
Neural Networks,” in FPL, 2017.

[10] Y. Umuroglu et al., “FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference,” in FPGA, 2017.

[11] P. Viola and M. J. Jones, “Robust real-time face detection,” IJCV, 2004.
[12] Z. E. Xu, M. J. Kusner, K. Q. Weinberger, M. Chen, and O. Chapelle,

“Classifier Cascades and Trees for Minimizing Feature Evaluation Cost,”
Journal of Machine Learning Research, vol. 15, pp. 2113–2144, 2014.

[13] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua, “A Convolutional Neural
Network Cascade for Face Detection,” in CVPR, 2015, pp. 5325–5334.

[14] A. Angelova et al., “Real-Time Pedestrian Detection With Deep Network
Cascades,” in BMVC, 2015.

[15] A. Diba et al., “Weakly Supervised Cascaded Convolutional Networks,”
in CVPR, 2017, pp. 5131–5139.

[16] D. Kang, J. Emmons, F. Abuzaid, P. Bailis, and M. Zaharia, “NoScope:
Optimizing Neural Network Queries over Video at Scale,” Proc. VLDB
Endow., vol. 10, no. 11, pp. 1586–1597, 2017.

[17] P. Gysel, M. Motamedi, and S. Ghiasi, “Hardware-oriented Approxima-
tion of Convolutional Neural Networks,” in ICLR, 2016.

[18] K. Guo et al., “Angel-Eye: A Complete Design Flow for Mapping CNN
Onto Embedded FPGA,” TCADICS, 2018.

[19] A. Zhou et al., “Incremental Network Quantization: Towards Lossless
CNNs with Low-Precision Weights,” in ICLR, 2017.

[20] S. I. Venieris and C.-S. Bouganis, “Latency-Driven Design for FPGA-
based Convolutional Neural Networks,” in FPL, 2017.

[21] N. Suda et al., “Throughput-Optimized OpenCL-based FPGA Acceler-
ator for Large-Scale Convolutional Neural Networks,” in FPGA, 2016.

[22] A. Prost-Boucle et al., “Scalable High-Performance Architecture for
Convolutional Ternary Neural Networks on FPGA,” in FPL, 2017.

[23] A. J. Joshi, F. Porikli, and N. Papanikolopoulos, “Multi-Class Active
Learning for Image Classification,” in CVPR, 2009.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR, 2009.

[25] D. Nguyen, D. Kim, and J. Lee, “Double mac: Doubling the performance
of convolutional neural networks on modern fpgas,” DATE, 2017.

[26] S. Williams, A. Waterman, and D. Patterson, “Roofline: An Insightful
Visual Performance Model for Multicore Architectures,” Communica-
tions of the ACM, vol. 52, no. 4, pp. 65–76, 2009.

[27] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet Classification
with Deep Convolutional Neural Networks,” in NIPS, 2012.

[28] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu, “An
OpenCL™Deep Learning Accelerator on Arria 10,” in FPGA, 2017.

[29] J. Zhang and J. Li, “Improving the Performance of OpenCL-based FPGA
Accelerator for Convolutional Neural Network,” in FPGA, 2017.

[30] Y. Shen, M. Ferdman, and P. Milder, “Escher: A CNN Accelerator with
Flexible Buffering to Minimize Off-Chip Transfer,” in FCCM, 2017.

	I Introduction
	II Background and Related Work
	II-A Cascade Machine Learning Systems
	II-B Precision Quantisation of CNN Models

	III CascadeCNN
	III-A Overview
	III-B Quantisation
	III-C Confidence Evaluation Unit
	III-D Architecture
	III-E Design Space Exploration
	III-E1 Tile Sizes
	III-E2 Batch Size

	IV Evaluation
	IV-A Experimental Setup
	IV-B Architectural Performance and Accuracy
	IV-C End-to-End Cascade Performance
	IV-D Comparison with Existing FPGA Work

	V Conclusion and Future Work
	References

