
HAL Id: hal-02148129
https://hal.science/hal-02148129

Submitted on 5 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extracting INT8 Multipliers from INT18 Multipliers
Martin Langhammer, Bogdan Pasca, Gregg Baeckler, Sergey Gribok

To cite this version:
Martin Langhammer, Bogdan Pasca, Gregg Baeckler, Sergey Gribok. Extracting INT8 Multipliers
from INT18 Multipliers. International Conference on Field-Programmable Logic and Applications,
Sep 2019, Barcelona, Spain. �hal-02148129�

https://hal.science/hal-02148129
https://hal.archives-ouvertes.fr


Extracting INT8 Multipliers from INT18 Multipliers
Martin Langhammer

Intel
Bogdan Pasca

Intel
Gregg Baeckler

Intel
Sergey Gribok

Intel

Abstract—With the advent of machine learning as perhaps
the most high-profile application area for FPGAs, there is a
compelling reason to improve the provision of smaller precision
arithmetic on these devices. INT8 is commonly used for AI
inferencing, and along with some additional soft logic for expo-
nent handling, can be an effective solution for training as well.
This paper describes techniques for efficiently extracting INT8
multipliers from commonly available INT18 multipliers found in
many modern FPGAs. A small amount of soft logic - as little
as 7 ALMs per INT8 multiplier - is required to provide pre or
post multiplier correction to calculate two INT8 multiplies from
a single 18x18 multiplier. We present two configurations for both
signed and unsigned representations where two multiplications
share one input operand. In addition to the individual INT8
variants, we present full device cases of 22,400 INT8 multipliers
organized as DOT32 product arrays, with the soft logic tightly
bound to the INT18 based DSP Blocks. A majority of the soft
logic and routing in the device is left untouched, and available
for application development.

I. INTRODUCTION

Earlier Altera Stratix devices contained DSP Blocks where
18x18 multipliers were decomposable into INT9 multipli-
ers [1], [2]. In the past, application areas like video and
broadcast were important markets for FPGA, and these pre-
cisions aligned with the required widths for video and image
processing [3], [4]. With newer, much larger FPGAs being
introduced, the hardware cost and complexity of designing and
providing smaller multipliers was largely made redundant by
the provision of many thousands of 18x18 multipliers. These
could act down as INT8 or INT9 multipliers, or alternately,
allow for local wordgrowth within a series of calculations.

In [5], Xilinx showed methods to extract two INT8 multipli-
ers from the Ultrascale and Ultrascale+ DSP48E2 Blocks [6],
which contain a 27x18 multiplier. Both signed and unsigned
representations are described, but in all cases, the two multi-
pliers share an input. The application note explains that many
AI inferencing implementations would not be disadvantaged
by this restriction. Only multiplier pairs are described, and
systems (where many multipliers would be used) are not
implemented, and only presented by calculation. One of the
main assertions of the document is that a minimum of a 27x18
multiplier precision is required to support two INT8 multi-
pliers. Implementing multiply-accumulate (MACC) operations
(up to 7 for each of the two INT8 multipliers) could be done
inside the DSP48E2 Block, and other DSP Blocks can be used
to support more accumulations.

In contrast, we describe two methods to extract smaller mul-
tipliers from larger multipliers, where the smaller multipliers

are not fully arithmetically separated in the larger multiplier.
We use the extraction of INT8 multipliers from the 18x18
multiplier as our motivating example. Normally, if the four
input operands of the INT8 multipliers are arranged so that
they are mapped to the two inputs of the 18x18 multiplier,
the overlap in the partial products leads to considerable errors
(cross contamination) in the two smaller multiplier outputs,
making the results unusable. We introduce two methods for
correcting these using a modest amount of soft logic.

One advantage of our approach is that virtually all of the
datapath of the larger multiplier contribute to the calculated
result. This will result in increased system computational
density, and considerably reduced power consumption on a
multiplier by multiplier basis. (In cases where arithmetic
seperation is used [5], most or all of the multiplier datapath
switches, but a considerable portion of the output must be
ignored).

The 18x18 multiplier is relatively more gate efficient that
the 18x27 multiplier - a large contribution of this is that the
carry-propagate adder (CPA) on the output side is smaller. The
internal compressors, being in redundant form, have relatively
the same efficiency. The 18x18 multiplier is less than 60% the
gate count of the 27x18 multiplier (also taking into account
the weaker gate drive requirements for timing closure of the
shallower logic of the smaller multiplier, and the much smaller
span of the CPA), so using the 18x18 yields a 50% greater
computational density and 50% improved power density in
the hard logic portion of our system. In addition, we describe
several further methods to mitigate the cost of the soft logic
correction, such as when used in a DOT product, as is typically
the case for many AI implementations.

We describe two cases: (1) the extraction of two unsigned
INT8 multipliers with a shared operand, using some post
processing correction, and (2) the extraction of two signed
INT8 multipliers with a shared operand, using both pre-adders
embedded in the DSP Blocks, along with some additional post
correction soft logic. We analyze the resource utilization of our
proposed multipliers in isolation, and also in the context of
dot-product - where correction operations can be delayed and
merged with the dot-product adder tree. Finally we extend our
study to chip-filling designs where we show the scalability of
our multipliers by packing 700 32-element dot-products (97%
of the total DSPs) in a Stratix 10 device, and we obtain push-
button a frequency of over 350MHz, and over 400MHz with
a small amount of direction.



c7 c6 c5 c4 c3 c2 c1 c0

23 22 21 20 19 18 17 1625 24 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

b7 b6 b5 b4 b3 b2 b1 b0

a7 a6 a5 a4 a3 a2 a1 a0

y15 y14 y13 y12 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0

z15 z14 z13 z12 z11 z10 z9 z8 z7 z6 z5 z4 z3 z2 z1 z0

o23 o22 o21 o20 o19 o18 o17 o16o25 o24 o15 o14 o13 o12 o11 o10 o9 o8 o7 o6 o5 o4 o3 o2 o1 o0

00

00 00000000

Bit weight

P

Q

O=PxQ

Fig. 1: Two unsigned 8x8 multiplier with one shared input connection patterns

LSB mult
6x6

{o25,...,o10}

mult
18x18

P Q

{z5,...,z0}

subtractor

{z15,...,z6,y15,...,y10}{y9,...,y0} {z5,...,z0}

{a5,...,a0}

{b5,...,b0}

Fig. 2: Architecture of two unsigned 8x8 multipliers using one
shared input

II. MULTIPLIER METHODS

All of the four following methods assume that an embedded
18x18 multiplier is available in the FPGA. Later in this
paper, we will report results for Intel Stratix 10 [7], where
a DSP contains either two 19x18 signed multipliers, or two
18x18 unsigned multipliers. Our methods only require 18x18
functionality, which will allow this method to be ported to a
wide variety of commercial and academic FPGA architectures.
In the case of Intel FPGAs, the two embedded multipliers per
DSP can be accessed completely independently; four INT8
multipliers can therefore be extracted from a single DSP
Block.

Most of our correction methods will use what we refer to
as an LSB multiplier. We will need an n-bit LSB result from
an n · n multiplication. This will be inexpensive, in terms of
both area and depth: first, the LSB multiplier will only operate
on a small precision, typically in the range of 3 to 6 bits, and
secondly, calculating only the LSBs will require a small subset
of the full multiplication. We do not discuss the structure of
these multipliers in this paper, but they can be built by several
methods: (i) the smallest precisions can be mapped directly
to look up tables, (ii) standard soft multiplier IP can be used,
relying on the synthesis tools to optimize away the unneeded
portions of the operation, or (iii) specific multiplier circuits
can be designed, knowing that carries into the upper bits will
never be needed, giving more optimization points to consider.

We use several types of operations in our methods: Create,
which generates input vectors to the circuits, usually by ap-
pending smaller vectors and individual bits together, Multiply,
using the 18x18 or specified LSB multipliers (e.g. Multiply

6LSB6, the self-explanatory Subtract and Add, and finally
Assemble, which generates the output values by concatenating
smaller processed vectors and individual bits.

The methods are presented purely combinatorially. Typi-
cally, pipelining (and additional balancing registers) would be
used in a real-world application. The resource cost of registers
will be included in the reported results in the next section.

A. Unsigned INT8, Correction Method (Shared Inputs)

Here we compute the two products Y = A ·C and Z = A ·
B using an 18x18 multiplier, a 6x6 LSB multiplier, and a
soft logic subtractor. All three inputs A, B and C are 8-bit
unsigned numbers, and the 18x18 multiplier is configured as
an unsigned multiplier as well. The 8 bits corresponding to
each of the 3 inputs (A, B and C) are applied on the input ports
P and Q of the 18x18-bit multiplier, which then generates the
result O = P×Q. Figure 1 depicts the connection patterns.
We can then extract Y and Z, which are shown as virtual
internal DSP Block signals in the figure. We obtain the bits
{y9, ...,y0}= {o9, ...,o0} directly. In order to recover the bits
{y15, ...,y10} we use make the observation:

{o25, ...,o10}= {y15, ...,y10}+{z15, ...,z0}
= {z15, ...,z6,y15, ...,y10}+{z5, ...,z0}

Therefore:

{z15, ...,z6,y15, ...,y10}= {o25, ...,o10}−{z5, ...z0}

Summarizing, the steps of this algorithm are as follows:
• Create two 18 bit input vectors P and Q.

– Q = {a7, ...,a0} (zero extended)
– P = {c7, ...,c0},”00”,{b7, ...,b0}

• Multiply
– O = P×Q

• Multiply LSB6:
– Use an LSB multiplier to obtain the lower 6 bits of

z. {z5, ...,z0}= {a5, ..,a0}{c5, ..,c0}[5 : 0]
• Extract

– The lower 10 bits of y are obtained directly from the
18x18 multiplier: {y9, ..,y0}= {o9, ..,o0}

• Subtract

{z15, ...,z6,y15, ...,y10}= {o25, ...,o10}−{z5, ...,z0}

• Assemble Y = {y15, ...,y10},{y9, ...,y0}.



o23 o22 o21 o20 o19 o18 o17 o16o25 o24 o15 o14 o13 o12 o11 o10 o9 o8 o7 o6 o5 o4 o3 o2 o1 o0

c6 c5 c4 c3 c2 c1 c0c7b7 b6 b5 b4 b3 b2 b1 b0

0

a7 a6 a5 a4 a3 a2 a1 a0

00 0 0 0 0 0 0

c7 c7

c7 0

a7a7a7a7a7a7a7a7a7a7

0000000

z14 z13 z12 z11 z10 z9 z8 z7 z6 z5 z4 z3 z2 z1 z0z15

y14 y13 y12 y11 y10 y9 y8 y7 y6 y5 y4 y3 y2 y1 y0y15y15y15y15y15y15y15y15y15y15y15

0 0 0 0 0 00 0 0 0

23 22 21 20 19 18 17 1625 24 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

c6 c5 c4 c3 c2 c1 c0c7b7 b6 b5 b4 b3 b2 b1 b0

0

a7 a6 a5 a4 a3 a2 a1 a0

00 0 0 0 0 0 0

c7 c7

c7 c7 c7 c7 c7 c7 c7 c7 0

a7a7a7a7a7a7a7a7a7a7

CONFIGURATION 1

operation

(P+Q)R

CONFIGURATION 2

operation

(P−Q)R

P

Q

R

P

Q

R

Fig. 3: Connection Patterns for two signed 8x8 multipliers with one shared input

• Assemble Z = {z15, ...,z6},{z5, ...,z0}
The architecture is depicted in Figure 2. The vectors P

and Q feed the 18x18-bit unsigned multiplier, with an out-
put {o25, ...,o0}. The bottom 10 bits {o9, ...,o0} correspond
directly to {y9, ...,y0}, and are therefore forwarded to the
output. The LSB multiplier (which produces the correct 6
LSBs of Z) operates in parallel with the 18x18 hardened
multiplier. The computed correction bits {z5, ...,z0} are then
subtracted from {o25, ...,o10} to produce both the upper bits
of Y , {y15, ...,y10} and the upper bits of Z, {z15, ...,z6}. The
correction bits then form the 6 lower bits of Z.

B. Signed INT8, Correction Method (Shared Inputs)

The calculations Y = A ·C and Z = A ·B use the three inputs
A, B and C as 8-bit signed numbers. The 18x18 multiplier
is now configured as a signed multiplier, with one of the
inputs connected to the pre-adder. Refer to Figure 3 for the
connection patterns. The algorithm steps are given below:

• Create
– R= {a7, ...,a0}, (sign extended). Connect this to one

multiplier input directly.
– P = {b7, ...,b0,c7,c7,c7, ...,c0} and connect to one

pre-adder input.
– There are two possible configurations of the Q vector

depending on the pre-adder configuration:
1) Configuration 1:

Create Q = {8′c7,10′b0}. The pre-adder is con-
figured as an adder.

2) Configuration 2:
Create Q = {7′b0,c7,10′b0} The pre-adder is
configured as a subtractor.

– There are two possible configuratitons for the multi-
plication, depending on the pre-adder:
1) Configuration 1: Multiply O = (P+Q)R
2) Configuration 2: Multiply O = (P−Q)R.

• Multiply 6LSB:
– Use an LSB multiplier to obtain the lower 6 bits of

z.

{z5, ..,z0}= {a5, ..,a0}{b5, ..,b0}[5 : 0]

• Extract
– The low 10-bits of y can be read directly on the

multiplier output.

{y9, ...,y0}= {o9, ...,o0}

• There are two possible output subtract/add types:
– Type 1: Subtract

{z15, ..,z6,y15, ..,y10}={o25, ..,o10}−
{10′y15,z5, ..,z0}

– Type 2: Add

{cOut,y15, ...,y10}= {0,o15, ...,o10}+{0,z5, ...,z0}
{z15, ...,z6}= {o25, ...,o16}+{y15, ...y15}+ cOut

• Assemble:
– Y = {y15, ...y10},{y9, ...,y0}
– Z = {z15, ...,z6},{z5, ...,z0}

In the first type of output subtraction, bit y15 at the output
of the subtractor is fed forward to all more significant inputs
of the subtractor. This architecture is shown in Figure 4a, with
the feedback connections of y15 detailed in Figure 5.

Figure 4b shows the second add type, which is instead
expressed as a chaining of operations, which converts the
feedback of y15 into a feedforward - using two adders, each
with about half the precision as the other subtraction. The
overall cost of the post processing is therefore approximately
the same in both cases, although additional pipelining may be
required for the second one.

As in the unsigned case, the LSB multiplier computes the
low 6 LSBs of Z = A ·B.

III. RESULTS

We will analyze the area and performance at three levels.
First, the relationship between individual INT8 multipliers,
DSP Blocks, and soft logic will be examined. Next, we will



LSB mult
6x6

mult
18x18

add/sub

P Q R

{a5,...,a0}

{b5,...,b0}

H
al

f 
D

S
P

{y9,...,y0}

{o25,...,o10}

subtractor

{z15,...,z6,y15,...,y10}

10 {y15}

{z5,...,z0}

(a) a

LSB mult
6x6

{z5,...,z0}mult
18x18

add/sub

P Q R

{a5,...,a0}

{b5,...,b0}

H
al

f 
D

S
P

{y9,...,y0}

adder

{o15,...,o10}

{o25,...,o11}

{z15,...,z6}

adder

{!y15,...,!y15}

{y15,...,y10}

{z5,...,z0}

(b) b

Fig. 4: Extraction Architecture for two signed INT8 multipliers with one shared input

FAFA FAFAFAFAFAFA FA FA FA FAFA FA FA FA

o10
1z0

o11
z1

o12o13
z2z3

o14
z4

o15
z5

y15 y14 y13 y12 y11 y10

o16o17o18o19o20o21o22o23o24o25

z15 z14 z13 z12 z11 z10 z9 z8 z7 z6

Fig. 5: Application of the Y15 bit for Figure 4a.

construct a single DOT product for a performance baseline,
and understand the additional soft logic required. Finally, we
will show some large system designs, where a large FPGA
is filled with DOT products. This should give the reader
confidence that our methods scale, maintaining a reasonable
full chip performance, and managing routing stress so that
additional functions can also be implemented in the remainder
of the device.

A. Multiplier Sizes

The soft logic cost of an INT8 multiplier can be considered
in multiple ways: first, the cost of an individual multiplier
- or in this case, a pair of multipliers, second, the cost
of extracting 4 multipliers per DSP Block, and finally the
average cost of implementing a typical use-case kernel, such
as a INT8 DOT32 function. As the number of multipliers in
a local group increases, the correction circuit can itself be
extracted, and shared between all operators in the group. This
amortization of the correction circuit can lead to significant
average logic savings. We will illustrate this by analyzing Case
A from Section II (Unsigned INT8, Correction Method, Shared
Inputs).

There are two soft-logic components of the multiplier pair
structure: the LSB multiplier, and the subtractor to apply it
to the left multiplier in the pair. The LSB multiplier requires
8 ALMs, and the 16 bit subtractor also needs 8 ALMs. In
most cases, however, several (or many) multipliers are summed
together, and the correction can be amortized over the entire
reduction operation. Only the correction to the upper bits
of a · c is needed at the output of the embedded multiplier,

and the correction to a ·b can be accumulated separately, and
subtracted as a single value at the end of the DOT product. The
immediate, or local cost of this method is therefore 12 ALMs
(8 for the LSB multiplier and 3 for the ac correction). An
ALM is required to calculate the carry in to the a · b upper
bit correction, and on average, another ALM to bring this
value forward to the next level, by adding it to the adjacent
carry forward. For a typical application, 7 ALMs are needed
to extract an INT8 multiplication from an 18x18 embedded
multiplier. For high performance (i.e. high clock frequency)
designs, we also need to pipeline appropriately. This requires
additional balancing registers. These add another 19 ALMs
per DSP Block.

Table I shows the resource utilization for all our proposed
shared-input multipliers, both for signed and unsigned config-
urations. Since we were unable to find multipliers built with
comparable techniques, we list independent-input soft-core
multipliers constructed for the same sizes. We use information
from [8] since it normalizes the data for Virtex6 [9] on the
architectures from [8], [10] and [11]. We also list [12] which
gives the cost of an 8x8 soft-logic multiplier for LUT6-
based FPGAs and [13] which shows area for a soft-logic 8x8
multiplier on Stratix 10.

B. DOT Product Sizes

We used a pair of 16-element INT8 dot-products (pair-
of-dot16s) as an instance for our system-level designs. A
simplified structure for a pair-of-dot4s using two DSP Blocks
is illustrated in Figure 6. The compute kernel is that of Figure 2
but with changes for making the dot-product more efficient -



~
Z1

~
Z2

~
Z3

~
Z4

P

b2 c2

18x18

Q

106

o[9:0]

6
o[25:16] o[15:10]

61

brw

10

P

18x18

Q

106

o[9:0]

6
o[25:16] o[15:10]

61

brw

10

P

18x18

Q

106

o[9:0]

6
o[25:16] o[15:10]

61

brw

10

Y1

P

b1 c1

18x18

Q

a1

106

o[9:0]

6

E1

o[15:10]

1

brw

10

11
11

17 17

8 8

18

12 lsb6

a1b1+a2b2+a3b3+a4b4
18

a1c1+a2c2+a3c3+a4c4

o
[2

5:
16

]

016

E2 Y2 E3 Y3 Y4E4

6

69

9
msb3

+

brw

a2 b3 c3 a3 b4 c4 a4

Fig. 6: Two 4-element shared dot-products using eight 8x8u multipliers

Arch. Case Type 18x18
(two)

DSP
(four)

ALMs/
int8

ours
II.A

Standalone 16 ALMs 32 ALMs 8
Local 12 ALMs 24 ALMs 6
Scaled 14 ALMs 28 ALMs 7

II.B (a) Standalone 16 ALMs 32 ALMs 8
II.B (b) Standalone 17 ALMs 34 ALMs 8.5

[8] 8x8 Standalone 15 SLICES, 0 DSPs 60
LUT6/int8

[10] 8x8 Standalone 18 SLICES, 0 DSPs 72
LUT6/int8

[11] 8x8 Standalone 21 SLICES, 0 DSPs 84
LUT6/int8

[12] 8x8 Standalone 43/44 LUT6, 0 DSPs 43/44
LUT6/int8

[14] 8x8 Standalone 36 LUT6, 0 DSPs 36
LUT6/int8

[13] 8x8 Standalone 36 ALMs, 0 DSPs 36
[5] 8x8 Standalone 2 8x8 per 27x18 DSP 0

TABLE I: Resource utilization of our proposed architectures.
[8], [10], [11] give results for 8x8 multipliers on Xilinx Virtex6

these will be explained below. The reduction flow consists
of three adder trees, which are then combined at the output
level. The first adder tree (pink) sums the potentially polluted
upper 10 bits of Zi = aibi that we denote by Z̃i. These bits are
available directly at the 18x18 multiplier output. The second
adder tree (blue) sums the Yi = aici products. The lower 10 bits
of Yi correspond to bits {o9, ..,o0} from the 18x18 multiplier
output. The upper 6 bits of Yi are obtained by subtracting the
overlapping {z5, ..,z0} bits from {o15, ..,o10} (see Figure 2).
The borrow bit that is potentially produced by this subtraction
indicates that the overlap has contaminated Z̃i. This bit has
weight −26 ·brw and should added to Z̃i. We show next how
this can be integrated with the third adder tree with a minimal
cost. Finally, the third adder tree (red) sums the bottom 6
bits of Zi which are computed using the LSB multiplier. We
integrate the brw-bit to each Zi by concatenating it to the

left of this 6 bits to produce a 2s complement value (on 7
bits). One additional adder is required to sum the overlapping
contribution of the red tree over the pink tree (the alignment
is shown on the left of Figure 6, bottom left).

We compiled the pair-of-DOT16s into an Intel Stratix 10
1SG280LN2F43E1VG, and achieved 581 MHz for exactly 600
ALMs (and 8 DSP Blocks, as expected). We can analyze the
expected resource count using the architecture of Figure 6.
There are three reduction trees, starting with 16, 10, and 7
bits respectively, each with 8, 4, 2, and 1 adders per level.
Each adder level does grows the adder size by 1 bit. The
number of bits per individual tree are: 251 for blue, 161
for pink and 116 for red - which translates to 264ALMs
using 1ALM=2bits. Additionally, we count 3.5x16=56ALMs
for the 6-bit subtracters with borrow, and 7 ALMs for the
final subtracter required for ∑Zi. These total 327 ALMs and
the remaining logic up to 600 ALMs is used for pipelining
registers.

C. Chip Scale Application Examples

To be efficient, these small cores must scale to system level.
We demonstrate this by instantiating many into a larger device
while maintaining a usable operational frequency. We also
show that the remaining logic and routing are left untouched,
and are available for other functionality.

Our first design fit 500 DOT32 cores into the Stratix 10
1SG280LN2F43E1VG device. We used the Quartus 18.1 tool
flow, with the Fractal Synthesis directive turned on (in order
to pack the arithmetic logic as tightly as possible). We used a
completely pushbutton approach, with no floorplanning. This
required 4000 DSP Blocks out of the 5760 available (16000
INT8 multipliers). Maximum clock frequency was 457.9 MHz.
Not including the virtual pins used for fitting, the 300,347
ALMs represent 32% of the available logic - in other words,
the logic required for the arithmetic datapaths as a ratio of



(a) 500 DOT32 Floorplan (b) DOT32 Routing Heatmap (c) 700 DOT32 Floorplan

(d) Detail of 500 DOT32 Design (e) Detail of 700 DOT32 Design

Fig. 7: Floorplan of various-size dot-product densities

the multiplier count is less than half of the logic available. In
arithmetically dense use cases such as machine learning, where
we may need the maximum capability of the device, datapath
(consisting of a mix of DSP Blocks and logic) compared to
application and control (logic only) percentage of the design
may be 80% to 20% [15]. This INT8 method will therefore
be suitable for these type of designs, with a modest amount
of logic required compared to what is available.

Figure 7a shows a floorplan of the 500 DOT32 design.
Figure 7d zooms into show the detail of a small number of
DOTs. The unused logic is clearly visible, and large groups
of contiguous LABs are completely untouched. The routing
heatmap of Figure 7b shows that there is no routing required
outside the immediate area of any DOT, with only some
routing congestion over some of the DSP Blocks.

We then increased the number of DOT32s to 700, which
required 5600 out of the 5760 DSP Blocks on the device
(97%). A first pushbutton compilation yielded 356MHz, which
was largely due to a small number of routes spanning dis-
continuities (I/O regions) on the device. We then added a
single level of registers immediately after the DSP Blocks, and
introduced a floorplanning constraint to force each dot product
to stay within a sector boundary. While this undoubtedly added

to local routing stress and congestion, performance increased
to 416.1 MHz. The additional registers increased the size of
each DOT to 645 ALMs, for a total logic use of 452K ALMs
on the device - still less than half the logic available. High
density AI applications should therefore be easily realizable.
We believe that with more careful floorplanning, 500MHz
performance is readily achievable. Figure 7c shows the device
floorplan with 700 DOTs, and Figure 7e a local detail of this
design. Empty LABs are visible. Note that about 20% of the
used LABs contain virtual pins, which in an actual design
would be available for logic.

IV. CONCLUSION

We have demonstrated that INT8 multipliers can be very
efficiently extracted from commonly available FPGA 18x18
multipliers, using only a small amount of soft logic. This soft
logic, which can be as little as 7 ALMs per INT8 on average,
is much smaller than the die area required for the additional
multiplier datapath logic - a 50% increase - to support a direct
INT8 extraction. In a typical application scenario, where DOT
products are assembled with soft logic, the 7 ALMs forms only
a small portion of the total resources required. In terms of
flexibility, power consumption, and cost, the error correction



methods can be considered the best for INT8 implementations
in current FPGAs.

REFERENCES

[1] StratixV Device Handbook, 2011, http://www.altera.com/literature/hb/
stratix-v/stratix5 handbook.pdf.

[2] StratixIV Device Handbook, 2011, http://www.altera.com/literature/hb/
stratix-iv/stx4 5v1.pdf.

[3] A. Corporation, “Broadcast video infrastructure implementation using
FPGAs,” Altera White Paper, Mar. 2007, https://www.intel.com/content/
dam/www/programmable/us/en/pdfs/literature/wp/wp-brdcst0306.pdf.

[4] ——, “Video and image processing design using FPGAs,” Al-
tera White Paper, Mar. 2007, https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/wp/wp-video0306.pdf.

[5] Deep Learning with INT8 Optimization on Xilinx Devices,
2017, https://www.xilinx.com/support/documentation/white papers/
wp486-deep-learning-int8.pdf.

[6] UltraScale Architecture and Product Data Sheet: Overview,
2018, https://www.xilinx.com/support/documentation/data sheets/
ds890-ultrascale-overview.pdf.

[7] Intel Stratix 10 GX/SX Device Overview, 2018, https:
//www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/
hb/stratix-10/s10-overview.pdf.

[8] M. Kumm, S. Abbas, and P. Zipf, “An efficient softcore multiplier
architecture for xilinx fpgas,” in 2015 IEEE 22nd Symposium on
Computer Arithmetic, June 2015, pp. 18–25.

[9] Virtex-6 FPGA Configurable Logic Block User Guide, 2009, http://www.
xilinx.com/support/documentation/user guides/ug364.pdf.

[10] H. Parandeh-Afshar and P. Ienne, “Measuring and reducing the per-
formance gap between embedded and soft multipliers on FPGAs,” in
2011 21st International Conference on Field Programmable Logic and
Applications, Sep. 2011, pp. 225–231.

[11] LogiCORE IP Multiplier v11.2, 2011, https://www.xilinx.com/support/
documentation/ip documentation/mult gen ds255.pdf.

[12] E. G. Walters, “Partial-product generation and addition for multiplication
in FPGAs with 6-input LUTs,” in 2014 48th Asilomar Conference on
Signals, Systems and Computers, Nov 2014, pp. 1247–1251.

[13] M. Langhammer and G. Baeckler, “High density and performance
multiplication for FPGA,” in 25th IEEE Symposium on Computer
Arithmetic, ARITH 2018, Amherst, MA, USA, June 25-27, 2018,
2018, pp. 5–12. [Online]. Available: https://doi.org/10.1109/ARITH.
2018.8464695

[14] E. G. Walters, “Array multipliers for high throughput in xilinx FPGAs
with 6-input LUTs,” Computers, vol. 5, no. 4, 2016. [Online]. Available:
http://www.mdpi.com/2073-431X/5/4/20

[15] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo,
S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel,
A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt, A. M.
Caulfield, E. S. Chung, and D. Burger, “A configurable cloud-scale
DNN processor for real-time AI,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), June 2018,
pp. 1–14.


