
DOI 10.1109/FPL.2019.00032  ©  2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any 

current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale 

or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 

   

 

A Data-Center FPGA Acceleration Platform for 

Convolutional Neural Networks

Xiaoyu Yu, Yuwei Wang, Jie Miao, Heng Zhang, Yu Meng,   

Bo Zhang, Biao Min, Dewei Chen, Jianlin Gao    

Tencent Shenzhen, China 

{kevinxiaoyu, derickwang, austingao}@tencent.com 

Ephrem Wu,  

Xilinx, Inc., San Jose, CA 95124, USA 

ephrem.wu@xilinx.com 

Abstract—Intensive computation is entering data centers with 

multiple workloads of deep learning. To balance the compute 

efficiency, performance, and total cost of ownership (TCO), the 

use of a field-programmable gate array (FPGA) with 

reconfigurable logic provides an acceptable acceleration capacity 

and is compatible with diverse computation-sensitive tasks in the 

cloud. In this paper, we develop an FPGA acceleration platform 

that leverages a unified framework architecture for general-

purpose convolutional neural network (CNN) inference 

acceleration at a data center. To overcome the computation bound, 

4,096 DSPs are assembled and shaped as supertile units (SUs) for 

different types of convolution, which provide up to 4.2 TOP/s 16-

bit fixed-point performance at 500 MHz. The interleaved-task-

dispatching method is proposed to map the computation across 

the SUs, and the memory bound is solved by a dispatching-

assembling buffering model and broadcast caches. For various 

non-convolution operators, a filter processing unit is designed for 

general-purpose filter-like/pointwise operators. In the experiment, 

the performances of CNN models running on server-class CPUs, 

a GPU, and an FPGA are compared. The results show that our 

design achieves the best FPGA peak performance and a 

throughput at the same level as that of the state-of-the-art GPU in 

data centers, with more than 50 times lower latency.   

I. INTRODUCTION 

Developing a hardware computing platform for 
convolutional neural network (CNN) based deep learning 
inference in a modern data center is a significant challenge [1–
2]. The introduction of AlexNet has enabled the creation of 
very deep CNNs with hundreds of layers that improve the 
accuracy [3–5]. Subsequently, most research has focused on 
reducing the redundancy and improving the efficiency to lower 
the computational cost in applications, such as low-bit 
representation [6–8], parameter pruning and sparsification [9], 
Winograd/Fast Fourier Transform (FFT)-based optimization, 
and implementation of novel layer types such as squeeze and 
shuffle [10]. Hence, in terms of the total cost of ownership 
(TCO), a reconfigurable accelerator with homogeneity on the 
hardware level is desirable, particularly when models are still 
in fast evolution. The field-programmable gate array (FPGA) 
is an ideal choice for maintaining the same infrastructure and 
provides customized computing architectures for different 
solutions. However, three aspects of the FPGA architectures 
for online CNN inference still need to be discussed: achieving 
a higher throughput to lower the inference cost per image in 
CPU-FPGA-based servers, efficiently supporting diverse CNN 

workloads, which show quite different input image sizes, 
model topologies and basic operators, and exploring 
architectures that could be transplanted from one model to 
another from hours to minutes. 

In this paper, an FPGA acceleration platform based on 
supertile methods is proposed for general-purpose CNNs in a 
data center. The principal contributions are as follows: 

1. A unified and scalable framework is proposed for a CNN 
accelerator for applications in a data center, in which basic 
supertile units (SUs) are scaled up with an interleaved task 
dispatch to achieve maximum performance and efficiently 
support different types of convolution. 

2. A dispatching-assembling buffering model with 
broadcast cache (BC) sets is designed for a multi-SU 
architecture and to scale up the reading and writing bandwidth. 

3. Postprocessing architectures with logic sharing are 
proposed to support various operations and simplify the design. 
A two-dimensional filter processing unit (FPU) for a class of 
filter-like and pointwise operations is discussed to balance 
design complexity and performance. 

The remainder of this paper is organized as follows: Section 
II discusses the related works. Section III provides the 
supertile-based design for the convolution computation. 
Section IV focuses on the design for non-convolution operators. 
Section V discusses the memory organization and 
implementation of the system. After a comparison with CPUs, 
a GPU and related works in Section VI, Section VII concludes 
the paper. 

II. RELATED WORKS 

FPGAs have been adopted by most cloud service providers, 
such as Amazon, Microsoft, Tencent, Baidu, Alibaba, and 
Huawei, as a reconfigurable heterogeneous computing 
resource. NN-based inference solutions on an FPGA have also 
been discussed in [8, 11–16]. Project Catapult and Brainwave 
from Microsoft are the most widely deployed examples of 
FPGAs in data centers on both the infrastructure and 
application levels [14] for search ranking, network acceleration 
low-latency LSTM [11], and CNN processing [15, 16]. The 
solutions also provide interconnection across chips, cards, and 
servers and organize FPGAs at the data center scale into an 
acceleration pool. Baidu [12] developed a software-defined 
accelerator  for  matrix  multiplication  on an   FPGA,  and  the 

http://www.google.com/search?q=reconfigurable+logic+(FPGA)


 

 

   

 

EPE31

EPE21

EPE11

EPEm1

EPE32

EPE22

EPE12

EPEm2

EPE33

EPE23

EPE13

EPEm3

EPE34

EPE24

EPE14

EPEm4

EPE3n

EPE2n

EPE1n

EPEmn

in 

m

m

EPE

m1

a

ad

m

bd

m

cfm

+

Output 

Buffer

+Reduce 

Adder

DSP

M
U

X

M
U

X

DSP

Arithmetic

Unit

(DSP48)

Arithmetic

Unit

(DSP48)

CLB-M

CLB-M

CLB-M

CLB-M

CLB-M

CLB-M

CLB-M

CLB-M

CLB-M

CLB-M

CLB

CLB

CLB

CLB

CLB

Buf A Buf B

Buf C Buf D

Buf A Buf B

Buf C Buf D

M
U

X

M
U

X

Weight Cache

Weight Cache

Weight Cache

Weight Cache

in

 
Fig. 1. Convolution with an input feature map tile (IFT) and 2n kernel groups on one SU. 

active functions were reconfigurable depending upon different 
cases to fit more models. 

In the recent literature, studies have proposed CNN 
accelerators on high-end FPGAs that enhance the processing 
abilities of inference for cloud services. [17] and [18] used an 
OpenGL-designed architecture to accelerate AlexNet and 
VGG on Arria 10. A reusable CNN engine with a unified 
framework and a scalable PE array was proposed in [19], which 
provided an end-to-end solution for deploying CNN models 
from Caffe onto an FPGA. The motivation matches well with 
the gap between deep learning researchers and hardware, but 
there is still space to improve the performance and resource 
utilization. [20] proposed a layer-based pipeline structure built 
by automated tools for both edge and cloud applications, which 
provided a deeply optimized architecture for different models. 

Previous solutions on high-end FPGAs have the following 
drawbacks: 

1) Limited architecture scalability: A number of studies 
have discussed solutions on middle/low-end FPGAs with 
dedicated off-chip memory. When on-chip resources, such as 
digital signal processors (DSPs), change from hundreds to 
thousands and the off-chip bandwidth remains, the scalability 
of the processing elements and memory system has not been 
sufficiently discussed. 

2) Limited types of operators: Various kinds of convolution 
and non-convolution operators are emerging in CNN-model 
design, and only a few types of operators have been given 
significant attention in FPGA-based architecture design. 

3) Higher deployment cost: Instead of a specific model, 
inference tasks involve many types of CNN networks. 
Deploying a new model onto an existing CNN architecture 
without general-purpose orientation design would cost extra 
development time. Although exploration methods with 
automatic tools may perform well for bottleneck analysis and 
resource scheduling, the time cost associated with re-synthesis 
in the deployment remains. 

In this paper, we focus on the drawbacks above and discuss 
a scalable solution both for the computation and memory 
architecture on high-end FPGAs and reduce the deployment 
cost for different models with a general-purpose design. 

III. UNIFIED COMPUTING ENGINE FOR CONVOLUTION 

Like multi-pumping used in [21], the supertile method 
proposed in [22] runs the DSP systolic array at twice the clock 
rate of the surrounding system logic. This approach has three 
benefits: 1) extensive use of built-in DSP cascades enables the 
systolic array to operate at maximum throughput while 
consuming little fabric resources; 2) the DSP is efficiently used 
as both a multiplier and an adder; and 3) the same input data is 
reused and multiplied by at least two different weights from the 
local weight buffer in each DSP supertile. However, [22] 
focused on the supertile model and computing behavior from 
the DSP to a 2D processing array. Cross-array processing, task 
mapping and scheduling, various types of convolution adaption, 
and on-chip memory design are still under discussion. In this 
section, we focus on the challenges of scaling up a supertile 
unit (SU) to multiple units and employing different types of 
convolution. 

A. Supertile Unit 

Fig. 1 (b) shows the structure of the enhanced processing 
element (EPE), which is designed to fit the physical resource 
layout of the Xilinx Ultrascale FPGA in Fig. 1 (a) for better 
timing performance. An EPE running at the double clock rate 
would increase the bandwidth demand both for activations and 
weights. Therefore, in each EPE, small distributed RAMs 
cache weights in ping-pong mode for fast responses. When one 
of the weight caches supplies weights for computing, the other 
waits for weight update to overlap the weight transfer with the 
computation. The weight cache also contains ping-pong 
buffers running at twice the clock speed to provide weight data 
to the DSP. The activation input is not only shared in the local 
EPE but also shared with all EPEs within the same row. When 
the EPEs are spread in the form of an m × n array, this array 
becomes an SU as shown in Figs. 1(c) and (d). 



 

   

 

When the data from a 𝑘𝑥 × 𝑘𝑦 sliding window of a feature 

map are streamed into a row of EPEs as a 1D vector, the 
corresponding weights are fetched from the weight caches for 
dot-product operations. The weight-activation products in the 
same position of the sliding window from different channels in 
the EPEs along the same column are summed and then 
produced at the top of each column. Because EPEs run at the 
double clock rate, two results from two kernel groups are stored 
into two output buffer blocks at every 𝑘𝑥 × 𝑘𝑦 cycles. 

B. Scaled-up SU 

We organize the DSPs into two levels, with the first level 
being the SU and the second level crossing the SUs. Different 
from [22], we set n = 16 and m = 32 for each SU containing 
512 DSPs for two reasons: For a model-based consideration, 
the number of channels of most input and output feature maps 
is a multiple of 32 in [3-5, 25-26, 28], and for the hardware 
design, the input and output data paths prefer a matched data 
bit width in the loop. Two challenges exist when putting SUs 
into practice. First, directly deploying individual batch-based 
tasks onto SUs would introduce more resource cost both in 
terms of memory and bandwidth. A proper method for the task 
partition should be explored to fully use SUs simultaneously 
and efficiently. Second, the input and output data bandwidth 
would be multiplied when multiple SUs are applied. Dedicated 
design for data buffering should be discussed. We propose the 
interleaved task dispatching method and a dispatching-
assembling buffer model to solve these problems, as shown in 
Fig. 2. 

Input buffer 

SU 0

Broadcast cache 

OB set 0 Output buffer

BC set 0

Assemble reader

Supertile units

SU 0

SU 1

SU 2

SU 3

W0 W2
W1 W3

W0, W4, …

Kernel size 3*3  Stride=1

W1, W5, …

W2, W6, …

W3, W7, …
Input 

feature map
(a)

(b)

SU 1

OB set 1 

BC set 1

SU 2

OB set 2 

BC set 2

SU 3

OB set 3 

BC set 3

 

Fig. 2. (a) Interleaved task dispatch based on sliding windows to the SUs and 
(b) dispatching-assembling buffering model with the BC. 

Interleaved task dispatching explores column-based 
parallelism for fine-grained task partitioning, as shown in Fig. 
2(a). The same 2n kernel groups are loaded into four SUs for 
weight sharing before the convolution. Initially, the vectors 
from successive sliding windows are sent to four SUs. The 
activation from the same IFT feeds into the SUs, but the 
window locations are different. The convolutions of the four 
sliding windows are processed simultaneously, which provides 
parallelism in one row’s processing.  

Each SU calls for its exclusive reading and writing 
memory bandwidth, and a dispatching-assembling buffer 
model is proposed, as shown in Fig. 2(b). With the case of four 
processing paths, the data buffered in the input buffer (IB) are 
shared among the paths. Each path contains a broadcast cache 
(BC) set as the local data cache, an SU as the processing unit, 
and an output buffer (OB) set providing writing bandwidth and 
buffering temporary convolution results. Under the control of 
interleaved task dispatching, the four paths work 
synchronously, focusing on the same convolutional task. When 
the output tensor is ready after convolution, an assemble reader 
reads the data distributing across the OB sets, reorders the data, 
and writes back to the IB for the next convolution. Note that 
the IB provides only one-fourth of the total input bandwidth for 
the SUs. To meet this discrepancy, multi-BC sets are used to 
buffer the same temporary tensor dispatched from the IB and 
output the data from different sliding windows for the SUs, 
which are further discussed in Section V. 

In this way, sliding-window-based tasks are dispatched 
onto multiple SUs, and the memory bottleneck in data reading 
and writing is avoided. Finally, up to 4096 DSPs are organized 
as 8 SUs and are shaped as 3D tensor processing units of 2 
CNN engines on 2 die of KU115. The four SUs in each engine 
share the same IB, kernel load controller, and kernel data, thus 
allowing the deployment of more DSPs on one convolution 
layer and reducing the time cost of processing by a factor of 
four. 

C. Tile-Based Slice-Loop-Hiding Cross Input Feature Map 

The definition of the tile is a sub tensor, with a smaller size 
in H and W but the same size in Cin compared with the original 
tensor (Fig. 1 [C]). The slice is a sub tensor with the same H 
and W but that contains only a few of channels on Cin, like the 
IFT with m channels in Fig. 1 (d). Instead of separated slice 
processing with respective commands, a slice-loop controller 
is placed between the command decoder and SUs’ controller, 
handshaking with them, controlling the slice loop and updating 
a few address parameters automatically with the following 
benefits: 1) The on-chip memory is used efficiently, and no 
extra storage capacity would be introduced to buffer the results 
between slices. 2) The command efficiency is improved and 
the total command length, command loading and decoding 
times are reduced. 3) The idle time of the SUs are minimized, 
and the next-slice processing is triggered immediately in the 
local controller instead of via talking and handshaking with the 
global controller. 

D. Efficient Processing for Different Types of Convolutions 

on SUs 

A standard convolution with different parameters, together 
with various types of convolutions, appears in CNN-model 
evaluation, wherein the utilization and real performance vary 
significantly [20, 34]. We will discuss methods to map the 
convolutions onto this unified SU-based architecture 
efficiently, which include the following special cases. 

The first layer of a standard convolution has only three 
channels, and only 3/m DSP-rows of each SU can be used 
without optimization. We partition the data within a sliding 
window of a channel into pieces and send them into different 



 

 

   

 

EPE rows with the help of the parameters window_pos_begin 
and window_pos_end. Thereafter, the partition results of a 
sliding window are added together with cascade adders 
between the EPEs in a column. The number of pieces (NP) is 
defined as 𝑁𝑃 = max{𝑘𝑠, 𝑘𝑠 × 3, 𝑘𝑠 × 𝑘𝑠} , where 𝑁𝑃 ≤ 𝑚. 
For example, when m = 32 and the kernel size (ks) of the first 
layer is 7 × 7 with 3 channels, the computation proceeds as 
𝑘𝑠 = 1 × 7 with 21 channels to improve the utilization of the 
SUs from 3/32 into 21/32. 

Kernel fusion for the non–first layer of a standard 
convolution with ks = 1: A convolution with 1 × 1 kernels 
usually accompanies with lower reusability of activation and 
changing bound from computation to memory. In contrast to 
the kernel partition, kernel fusion is applied. When the kernel 
group number is Cout and when 𝐹𝑢 = ⌈𝐶𝑜𝑢𝑡 2𝑛⁄ ⌉, where 𝐹𝑢 ∈
[1,16], each weight buffer with a depth of 16 can buffer the 
weight with the number of Fu. For example, when n = 16 and 
when the kernel tensor with the size 1 × 1 × 𝐶𝑖𝑛 × 384  is 

convolved with an input tile tensor, e.g., 𝐹𝑢 = ⌈
384

32
⌉ = 12 , 

weight buffer A at EPEij in Fig. 1 (d) caches 12 kernels with 
the indices {𝐶𝑖𝑛 = 𝑖, 𝐶𝑜𝑢𝑡 = 𝑗 + 𝑆𝑛 × 32} , where Sn is the 
slice index with a value of 0, 1,..., 11. When processing is 
enabled, the activation sent into the SUs is updated every 12 
clock cycles and shared with 12 weights in each weight buffer 
at each EPE. After accumulation with the cascaded adder, the 
data at the end of each EPE column are updated every clock 
cycle and written into the OB with the corresponding OFT 
address. 

Nonstandard convolution types comprise the transposed 
convolution [35], dilated convolution [36], and depthwise 
convolution [27]. Both transposed and dilated convolutions can 
be computed as a standard convolution layer, except up-
sampling should be performed before the transposed 
convolution. Depthwise convolution is performed in an FPU, 
which will be discussed in Section IV A. 

IV. POSTPROCESSING DESIGN 

The convolution consumes most of the computation in the 
CNN model with only a few types, whereas non-convolution 
operations have low computational costs and comprise most 
types of operators in the opposite manner in different models 
(e.g., pool, normalization, activation function, and element-
wise operations between branches [23-26].). We divide these 
operations into three classes: 2D filter-like operations with the 
sliding window traverse height (H) and width (W) of a channel 
of the feature map, operations across channels (C) and 
operations that can fuse with convolution to reduce the memory 
access. We design a general-purpose processing unit for the 
first category and a custom module for operators (such as LRN) 
in the second category because they do not frequently appear 
in current inference tasks. The operations in the third category 
are processed with operator fusion. 

A. 2D Processing Unit for Filter-Like Operations 

When designing the circuit for 2D filter-like operations, we 
consider the following aspects: The first is compatibility and 
configurability to support the current and potential operators. 
Simplifying the complexity of the hardware is the second 

consideration to avoid multi-module scheduling, maintain a 
large parameter field, and provide a dedicated data load and 
storage path with a complex multiplexor for each module. The 
third aspect is the resource limitations. SUs consume most of 
the resources of a specific physical region after mapping, as 
shown in Figs. 1 (a) and (b), and only a few resources outside 
the region are available. The resource limitation calls for more 
functional logic sharing. In this case, an FPU is proposed. 

We observe that there are common computing and data 
access styles in filter-like non-convolution operators that 
traverse the feature map within a sliding window (kernel) on 
each channel, and no operations exist across channels, such as 
max/average pool. Most of the parameters also have 
similarities, such as the parameters of the source address 
reading like StartAddr/Stride/Pad/WindowSize/FeatureMap-
Size/ChannelNum and the parameters of destination address 
writing like StartAddr and FeatureMapSize. Pointwise 
operations, such as relu/relu6/linear-transformations, can be 
considered special cases when the kernel size is equal to 1. A 
depthwise convolution [27] could also be performed on the 
proposed FPU because no cross-channel addition is needed. 
Better performance can be achieved when standard and 
depthwise convolutions are interweaved [27–28], which can be 
performed with the SUs and FPU, respectively, in parallel. 

U
cm

d
 f

et
ch

U
cm

d
 d

e
co

d
e

Sl
ic

e
 lo

o
p

 c
tl

A
d

d
re

ss
 g

e
n

ALUALUALU

+

×

>

×

K
e

rn
e

l l
o

a
d

 c
tl

Ucmd buf Kernel buf

Output buf (OB)

Fi
lt

e
r 

p
ro

ce
ss

in
g

 u
n

it
2n

Function sharing part Worker part
 

Fig. 3. Architecture of the FPU. 

Fig. 3 shows the micro-architecture of the FPU. It is mainly 
divided into the function sharing part (FSP), which contains the 
common functional modules in the processing for different 
operators, and the worker part (WP), which can be changed or 
integrated into more processing modules depending on the 
needs. The FSP fetches the micro-commands from the ucmd 
buffer [37], decodes them into parameters including the 
parameter categories of DataLoad/DataStore/FuncSet/Scalar-
Value. Then, the tensor are read by the address generation 
module from OB continuously, streamed into WP for 
processing, and finally written back into the OB. When the 
channel number is more than 2n, the slice-loop-control module 
is enabled for better command efficiency as slice-loop-hiding 
for convolution. In the WP, 2n channels of ALUs process the 
data stream in SIMD mode. The reconfigurable ALU is 
designed with a cascaded pre-multiplier, mid-
adder/comparator, and final multiplier, which can be enabled 
or bypassed depending on the function setting by the micro-
command. To improve the efficiency and save memory 
bandwidth, they work in pipelines and provide a maximum of 
three operations per clock. Note that the module for the kernel 



 

   

 

load control is located next to slice-loop controller, providing 
the weights when depthwise convolution is enabled. For max-
pool, the mid-comparator is enabled, and the others are 
bypassed. In mid-comparator, the maximum value is saved into 
the register after each comparison, and the window-end signal 
triggers the output and resets the register. The final multiplier 
is used for the division of avg-pool, and the adder is also 
enabled in this case. 

B. Operator Fusion 

Each operation across the tensor would introduce extra 
memory access, which would suspend other memory-access-
dependent operations. This is the reason we fuse some 
pointwise operators with the convolution even though they 
have already been supported by the FPU. Fig. 4 shows a 
cascade of four kinds of operations at the end of the column of 
each SU. The first adder adds the output of the SU with the 
temporary results of the OB from the previous slice. The 
second adder is for element-wise addition across the branches, 
which is widely used as a residual block [23]. Relu is then 
performed, and dynamic precision data quantization [7] 
follows. Finally, the results are written into the OB. These 
operations can be individually enabled or bypassed with 
control instructions. 

Ele_add with temp 

cov_rlts/bias

To the 

OB
From the 

SUs

Ele_add with 

branch tensor
Relu

Dynamic precision 

data quantization
 

Fig. 4. Operator fusion in postprocessing. 

V. IMPLEMENTATION OF THE ACCELERATOR 

Server

CPU

PCIE & DMA MEM controller

DDR

Data & control bus

                                                      CNN Engine on Die 1  (Role)

C
ro

ssb
a

r 0

C
ro

ssb
a

r 1

C
ro

ssb
a

r 2

C
ro

ssb
a

r 3

In
p

u
t 

B
u

ff
e

r 

SU 2

Filter processing unit 

LRN module

LRN module

LRN module

LRN module

Broadcast 
cache set 0

SU 1

SU 0

SU 3

Int_ack Int
                                AXI connector

MEM

CMD Buffer
CMD Decoder & 

Controller

                                                           CNN Engine on Die 0 (Role)

SU
 0

SU
 1

SU
 2

SU
 3

CMD 
buffer

CMD decoder & 
controller

CMD buffer

CMD decoder 
& controller

DDR

Shell

Program 
updater

A
X

I_
lite

A
X

I_
s0

A
X

I_
s1

A
X

I_
m

Broadcast 
cache set 1

Broadcast 
cache set 2

Broadcast 
cache set 3FPGA(a) (b)

OB 1
OB 0

OB 1
OB 0

OB 1
OB 0

OB 1
OB 0

Fig. 5 System implementation: (a) the overall system and (b) CNN engine in 

one die. 

A. System Overview 

Fig. 5 shows a heterogeneous server architecture with the 
CPU + FPGA, including a server system with the CPU and 
memory, two channels of DDR4 on an FPGA-PCIE card, and 
two CNN engines in the FPGA. The memory/buffer is shown 
in green, and the control/processing logic is shown in blue. 
Here, 2048 DSPs shaped as four SUs running at the double 
clock speed provide enough computing capacity in each engine, 
while FPU and operator fusion at the output of each SU 
integrate most of the non-convolution operators and simplify 
the design. Only the modules customized for LRN remain. 

B. Memory Organization 

The on-chip memory is mainly divided into IB and OB sets 
as shown in Fig. 5(b). The IB is shared globally among multiple 
SUs. The OB sets are placed at the output of each SU and each 
set consists of 2n components. Each component provides an 
exclusive read and write port for one SU’s column. The OB 
sets are designed in the form of a ping-pong structure so that 
when n = 16, a 64 GB/s on-chip reading and writing bandwidth 
can be provided for both SUs and the FPU, allowing them to 
run in parallel to overlap the convolution and filter-like 
operations. 

C. Broadcast Cache 

When four SUs operate together, each consumes the input 
bandwidth of 16 × 32 × 𝑓𝑙𝑜𝑔𝑖𝑐  bit/s in Fig. 2(b), where 𝑓𝑙𝑜𝑔𝑖𝑐  

is the frequency of non-EPE logic, and up to 4 × 512 × 𝑓𝑙𝑜𝑔𝑖𝑐 

bit/s of bandwidth is needed. However, the output bandwidth 
of the IB is only 512 × 𝑓𝑙𝑜𝑔𝑖𝑐 bit/s. The BC is designed to meet 

this discrepancy and buffer the same input feature maps but 
output the data from different sliding windows for column-
based parallelism. The BC at the input port of each row of the 
SU is a circular buffer that updates the data continuously. The 
data used will be overwritten with the data from the next row. 
The window in each BC continues to slide with a step size of 4 
× Convolution-Sride along the row but starts at different 
positions for different SUs. Fig. 6 shows the behavior of one 
BC with a 3 × 3 sliding window inside and with Convolution-
Stride=1. 

KernelSize = 3*3, Stride = 1

D
a

ta
 b

u
ff

e
ri

n
g

 in
 

b
ro

a
d

ca
st

 c
a

ch
e

Sliding 
window

WindowStride = Stride * 4

Row  ID
1

2

3

4

5

6

7

8

9

10
 

Fig. 6. The behavior of the BC for sliding window sequence sampling. 

In this case, the data within rows 3 to 7 are buffered in the 
cache, and the window moves with the central position on row 
4 and Window-Stride = 4. After the computation for the last 
sliding window position of row 4, the window center moves to 
the first position of row 5, and the BC starts to load the data of 
row 8 to overwrite the data of row 3. To accommodate enough 
rows to fit the sliding window and leave an extra row as the 
margin, the cache should buffer at least Kernel-Size + 1 rows 
of data. On the basis of the tile partition method in Section III 
C, the width of the tile of the input feature map can be flexibly 
narrowed to buffer more rows when a larger kernel size is used. 

VI. EXPERIMENT AND PERFORMANCE 

    The performance of the implemented platform is evaluated 

in this section. We setup the system on the server and perform 



 

 

   

 

three CNN models on it. After that, the performance of the 

proposed system is compared with those of the other CNN 

acceleration solutions in the data center, including high-end 

FPGAs, CPUs, and a GPU. 

A. Experimental Setup 

The proposed CNN engines are implemented on KU115 
with Vivado 2016.4. Table I lists the resource utilization for 
AlexNet/GoogLeNet. Each type of resource exceeds 70% of 
the total, thus making it difficult to reach the maximum 
frequency of 661 MHz in [22]. Finally, at the peak performance 
of 4.2 TOP/s with 16-bit quantization, 500 MHz is used for the 
EPEs, and 250 MHz is used for the others. The system is built 
on Semptian’s FPGA card with a PCIe interface, and the size 
of the card is half height and half length (Fig. 7, left side). 
SUPERMICRO 6028UX-TR4 (Fig. 7, right side) is used as a 
server with two Intel Xeon E5-2680V4 CPUs and 16 GB × 16  
of DDR3 SDRAM. 

TABLE I. FPGA RESOURCE UTILIZATION 

 LUT FF BRAM Blocks DSP 

Used 469091 967577 1540 4214 

Available 663360 1326720 2160 5520 

Utilization 70.7% 72.9% 71.3% 76.3% 

 

 

Fig. 7. Hardware platform of the experiment. 

B. Acceleration for Different CNN Models 

The experiments are performed with three models (Table 
II). AlexNet is well discussed in most of the literature on 
accelerator design, and 92% and 8% of the computations are 
performed on the FPGA and CPU, respectively. The 
performance reaches 2.3 TOP/s with a latency of 2.3 ms. The 
second model is GoogLeNet. We adjust the batch size to 2 and 
achieve approximately 1.6 TOP/s with a 3.8 ms latency. We 
select the high-concurrency network (HCNet) as the third 
model, which is a customized compact CNN model to lower 
the classification cost per image at Tencent. This model 
achieves almost the same accuracy as GoogLeNet but three 
times the throughput upon testing on an Intel Xeon E5-2620v3. 
Inspired by ResNet [5] and ShuffleNet [10], the HCNet begins 
with the convolution and pooling layers changing the input 
image from 224×224 into 56×56 with 32 channels. Three 
stages follow until the end of the model with avg-pooling and 
FC layers. There are four, eight, and four basic residual blocks 
(see Fig. 8) in three stages, respectively. 

The 1 × 1 convolution and fewer channel convolutions are 
largely used in the HCNet. Although kernel fusion for 1×1 is 
performed, fewer output channels decrease the reusability of 
the activation, and frequent data transfer lowers the SU 
utilization, which increases the power cost. Furthermore, when 
one-tenth of the layers are those with 16 channels, the SUs are 
not fully used. Although a performance of 3.44× is achieved 
compared with P4 with a 7 ms time constraint [2], its 

throughput is limited to 650.5 GOP/s at 225/450 MHz. A 
higher frequency and platform with the same design as 
AlexNet/GoogLeNet could be used if the limitation on the 
PCIE power supply could be ignored. Owing to the efficient 
model structure, 2.8 times the throughput of GoogLeNet is 
achieved, and the TCO is significantly reduced. By comparing 
the performance with Nvidia TESLA P4, which is the state-of-
the-art GPU for deep learning inference in data centers, the 
speedup ratios of the FPGA in these three tests are 1.35, 3.91 
and 3.44, respectively, with a 7 ms response time limitation. 

Previous Layer

Conv

1×1+1(S)

Conv

3×3 1(S) 2（G）

Conv

1×1+1(S)

Elewise Sum

Previous Stage

Conv

1×1+1(S)

Conv

3×3 2(S) 2（G）

Block Unit

(a) (b)
 

Fig. 8. The residual blocks shown in (b) are used as the basic building block 
for the HCNet. Each block consists of three convolutional layers, where two 1 
× 1 convolutional layers are used for feature squeezing and unsqueezing, and 
a 3 × 3 convolutional layer with group 2 is used for spatial convolution. Down-
sampling is performed at the beginning of each stage, where the 3 × 3 
convolution with stride 2 is used, as in (a). The kernel group numbers of these 
layers in three stages are [32, 32, 128], [64, 64, 256], [128, 128, 512]. 

TABLE II ACCELERATION FOR THREE CNN MODELS. 

 AlexNet GoogLeNet HCNet 

Data precision 16-bit 16-bit 16-bit 

Clock (MHz) 250/500 250/500 225/450 

Batch size 4 2 4 

CNN size (MOPs) 1331.6/1448.8 3081.0/3083.1 444 

Throughput (FPS) 1753.8 527.7 1465.1  

Performance (GOP/s) 2335.4 1625.9 650.5  

Latency (ms) 2.3 3.8 2.7  

Power (watts) 62.6 56.6 57.6 

Speedup VS P4 (7 ms) 1.35 3.91 3.44 

Energy efficiency 

(GOP/s/W) 
37.3 28.7 11.3  

TABLE III. COMPARISON WITH FPGA-BASED CNN ACCELERATORS. 
 [18] [19] [20] Ours 

FPGA chip 
Arria10-

1150 

Virtex7-

690t 
KU115 KU115 KU115 

Network VGG AlexNet VGG GoogLeNet AlexNet 

CNN size (GOPs) 30.8 1.4 30.8 3.1 1.3 

Freq (MHz) 385 150 235 250/500 250/500 

Precision Fix16 Fix16 Fix16 Fix16 Fix16 

DSPs (used/total) 2756/3036 2833/3600 4318/5520 4214/5520 4214/5520 

Peak performance 

(TOP/s) 
2.1 0.8 2.1 4.2 4.2 

Real performance 

(TOP/s) 
1.79 0.6 2 1.63 2.3 



 

   

 

C. Comparison with FPGA-based Accelerators 

Table III shows the comparison among different high-end 
FPGA-based CNN accelerators for potential cloud computing 
applications with the precision of fix16. We deliver the best 
peak performance of 4.2TOP/s, which is more than twice that 
of the others. In addition, real performance reaches 2.3 TOP/s 
in the AlexNet test benefiting from efficient task dispatching 
across multiple SUs, overlapping between computation and 
data-move, and minimizing the time cost in scheduling by 
slice-loop-hiding. 

D. Comparison with CPU and GPU 

Table IV lists the available processing solutions that can be 
deployed in the data center for CNN inference. The Intel Xeon 
E5-2680V4 is a high-performance CPU and is also used as a 
host in the server for the FPGA/GPU. MKL 2018.0.0 is used 
for the optimization. The Nvidia TESLA P4 is a 16 nm GPU 
with 2560 CUDA cores and a 1 GHz clock speed and reaches 
5.5 TeraFlops with the boosting of 192 GB/s memory 
bandwidth. CUDA 8.0.44 and Cudnn 6.0.21 are used to 
improve the performance. In the CPU test, two CPUs have 28 
cores represented as 56 threads. Each thread binds with one of 
the batches with the corresponding batch size to keep all the 
cores busy. In the GPU test, a single process is used as a 
scheduler that sends the tasks to the GPU with different batch 
sizes. In the FPGA test, eight threads are used, and each binds 
with a physical core. Fig. 9 shows the results. 

TABLE IV. BENCHMARKED SERVERS USING THE CPU, GPU, AND FPGA. 

Processor 
Processor 

per server 

TOP/s  
nm MHz 

On-chip 

memory 

(MB) 

Off-chip 

memory 

BW (GB/s) 

Power 

(Watts) 
Release  

16bit FP32 

Intel E5-

2680V4 
2 - - 14 2400 35 × 2 76.8 × 2 120 

2016 

Q1 

NVIDIA 

P4 
1 - 5.5 16 1000 10 [38] 192 50-75 

2016 

Q3 

Xilinx 

KU115 
1 4.2 - 20 

250/ 

500 

11.8 38.4 50-66 
2014 

Q4 

 

Running with a fixed batch size, the FPGA presents a 
steady performance, providing the lowest latency of 3.8 ms for 
GoogLeNet. The FPGA also shows the highest throughput 
until the batch size exceeds 32 for the GPU. Finally, the GPU 
achieves the highest throughput of 684 FPS at a batch size of 
128 (it is out of memory at a batch size of 256). The situation 
is slightly different when the task moves to the HCNet. When 

the batch size ≥ 4, the FPGA reaches its highest performance 

and maintains a constant batch size of 4. A comparison of the 
FPGA and GPU shows that the FPGA runs at a higher frame 
rate before the batch size of the GPU reaches 64. The gap does 
not change significantly until a batch size of 256 is reached. 
When P4 achieves its peak performance, the FPGA provides 
an 89% throughput with 1/57 latency compared with the GPU. 

The performance of the FPGA is remarkable even when 
limitations exist. An FPGA with a simpler fabrication process, 
approximately 20% of the off-chip memory bandwidth, and 
one-fourth of the frequency of P4 can achieve superior 
performance in low-latency circumstances. For a larger batch 

size test, which higher data reuse is performed in the GPU, the 
performance improvement of the GPU over the FPGA is no 
more than 20%. The performance can be further improved 
when the proposed architecture is implemented with the next 
generation of FPGAs, e.g., UltraScale+ VU9P (16 nm), by 
using the same fabrication process of P4. 

 

           (a)    (b) 

 

                           (c)                     (d) 

Fig. 9. Performance comparison with the CPU, GPU, and FPGA. (a) and (b) 

are the comparisons of the throughput and latency for GoogLeNet; (c) and (d) 

are the comparisons of the throughput and latency for HCNet. Note that the 

batch size in the FPGA is constant after the values of 2 and 4 for GoogLeNet 

and HCNet, respectively, because of the on-chip memory limitation. 

VII. CONCLUSION 

In this paper, an FPGA acceleration platform with a 
supertile-based design is introduced for general-purpose CNNs 
and for performing various image/video inference tasks in data 
centers. Basic supertile EPEs are scaled up and shaped as 
multiple SUs to maximize the performance with the 
interleaved-task-dispatching method for the processing of 
types of convolution, and the increased bandwidth is provided 
by a dispatching-assembling buffering model. A configurable 
FPU is proposed due to the resource limitations to simplify the 
design and support different types of non-convolution 
operators, which makes it possible to run different CNN 
models on the same platform and reduce the deployment cost. 
We implement the design and make comparisons with high-
end FPGAs and data-center-scale CPU/GPU. The experiment 
shows that the proposed architecture on KU115 achieves the 
best peak performance and throughput on FPGAs, and it 
performs at the same level as state-of-the-art GPU with more 
than 50 times lower latency. Compared with TCO, the FPGA 
enhances the throughput of the server by 149.2% with a 31.5% 
cost increase. The system is now deployed in a data center to 
serve over one billion people every day. 

ACKNOWLEDGEMENT 

The authors acknowledge the people who contributed to 
our project and paper: Zhenyu Guo, Jianping Zhu, Qi Ju, 
Guanghui Wang, Jiaxi Li, Zhiqiang Cao, Zhuo Li, George 
Wang, Hu Zhao, Zexiong Ye and Jun Zhang. 



 

 

   

 

REFERENCES 

[1] L. Ceze, M. D. Hill, and T. F. Wenisch. “Arch2030: A vision of computer 
architecture research over the next 15 years,” arXiv preprint 
arXiv:1612.03182, 2016. 

[2] N. P. Jouppi, et al. “In-data center performance analysis of a tensor 
processing unit,” Computer Architecture (ISCA), 2017 ACM/IEEE 44th 
Annual International Symposium on. IEEE, pp.1–12, 2017. 

[3] K. Simonyan and A. Zisserman. “Very deep convolutional networks for 
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014. 

[4] C. Szegedy, et al. “Going deeper with convolutions,” Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition, 2015. 

[5] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image 
recognition,” In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, 2016, pp.770–778. 

[6] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. “Xnor-net: 
Imagenet classification using binary convolutional neural networks,” 
European Conference on Computer Vision. Springer, Cham, 2016, pp. 
525–542. 

[7] J. Qiu, et al. “Going deeper with embedded FPGA platform for 
convolutional neural network,“ Proceedings of the 2016 ACM/SIGDA 
International Symposium on Field-Programmable Gate Arrays. ACM, 
2016. 

[8] Chung, E., Fowers, J., Ovtcharov, K., Papamichael, M., Caulfield, A., 
Massengil, T., ... & Boehn, C. (2017, August). Accelerating persistent 
neural networks at datacenter scale. Hot Chips (Vol. 27). 

[9] S. Han, et al. “Ese: Efficient speech recognition engine with sparse lstm 
on Fpga,” Proceedings of the 2017 ACM/SIGDA International 
Symposium on Field-Programmable Gate Arrays. ACM, 2017. 

[10] S. Vivienne, Y.H. Chen, T.J. Yang, and J.S. Emer. “Efficient processing 
of deep neural networks: A tutorial and survey,” Proceedings of the 
IEEE105.12 (2017), pp. 2295–2329. 

[11] J. Fowers, et al. “A configurable cloud-scale DNN processor for real-time 
AI,” 2018 ACM/IEEE 45th Annual International Symposium on 
Computer Architecture (ISCA). IEEE, 2018. 

[12] J. Ouyang. “SDA: software-defined accelerator for large-scale deep 
learning system,” VLSI Design, Automation and Test (VLSI-DAT), 
2016 International Symposium on. IEEE, 2016, pp. 1–1. 

[13] A. Putnam, et al. “A reconfigurable fabric for accelerating large-scale 
data center services,” ACM SIGARCH Computer Architecture News, vol. 
42, pp.13–24, 2014. 

[14] A. M. Caulfield, et al. “A cloud-scale acceleration architecture,” The 49th 
Annual IEEE/ACM International Symposium on Microarchitecture. 
IEEE Press, 2016, p. 7. 

[15] K. Ovtcharov, O. Ruwase, J. Y. Kim, J. Fowers, K. Strauss, and E. S. 
Chung. “Accelerating deep convolutional neural networks using 
specialized hardware,” Microsoft Research Whitepaper, vol. 2, 2015. 

[16] K. Ovtcharov, O. Ruwase, J. Y. Kim, J. Fowers, K. Strauss, and E. S. 
Chung. “Toward accelerating deep learning at scale using specialized 
hardware in the data center,” Hot Chips 27 Symposium (HCS), 2015 
IEEE. IEEE, 2015, pp. 1–38. 

[17] U. Aydonat, S. O'Connell, D. Capalija, A. C. Ling, and G. R. Chiu. “An 
OpenCL™ deep learning accelerator on arria 10,” Proceedings of the 
2017 ACM/SIGDA International Symposium on Field-Programmable 
Gate Arrays. ACM, 2017. 

[18] J. Zhang, and J. Li. “Improving the performance of opencl-based fpga 
accelerator for convolutional neural network,” Proceedings of the 2017 
ACM/SIGDA International Symposium on Field-Programmable Gate 
Arrays. ACM, 2017. 

[19] C. Zhang C, et al. “Caffeine: towards uniformed representation and 
acceleration for deep convolutional neural networks,” Proceedings of the 
35th International Conference on Computer-Aided Design. ACM, 2016, 
p. 12. 

[20] X. Zhang, et al. “DNNBuilder: An automated tool for building high-
performance DNN hardware accelerators for FPGAs,” Proceedings of the 
International Conference on Computer-Aided Design. ACM, 2018. 

[21] A. Canis, J. H. Anderson, and S. D. Brown. “Multi-pumping for resource 
reduction in FPGA high-level synthesis,” Proceedings of the Conference 
on Design, Automation and Test in Europe. EDA Consortium, 2013. 

[22] E. Wu, X. Zhang, D. Berman, and I. Cho. “A high-throughput 
reconfigurable processing array for neural networks,” In Field 
Programmable Logic and Applications (FPL), 2017 27th International 
Conference on (pp. 1–4). IEEE. 

[23] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image 
recognition,” Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition. 2016. 

[24] C. Szegedy, et al. “Going deeper with convolutions,” Proceedings of the 
IEEE conference on computer vision and pattern recognition. 2015. 

[25] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna “Rethinking 
the inception architecture for computer vision,” Proceedings of the IEEE 
conference on computer vision and pattern recognition. 2016. 

[26] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi. “Inception-v4, 
inception-resnet and the impact of residual connections on learning,” 
AAAI. vol. 4. 2017. 

[27] F. Chollet. “Xception: Deep learning with depthwise separable 
convolutions,” arXiv preprint (2017), pp. 1610–02357. 

[28] A. G. Howard, et al. “Mobilenets: Efficient convolutional neural 
networks for mobile vision applications,” arXiv preprint 
arXiv:1704.04861 (2017). 

[29] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L. C. Chen. 
“Mobilenetv2: Inverted residuals and linear bottlenecks,” 2018 
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 
IEEE, 2018. 

[30] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang. “A high 
performance FPGA-based accelerator for large-scale convolutional 
neural networks,” Field Programmable Logic and Applications (FPL), 
2016 26th International Conference on. IEEE, 2016. 

[31] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. “Optimizing 
FPGA-based accelerator design for deep convolutional neural 
networks,“ Proceedings of the 2015 ACM/SIGDA International 
Symposium on Field-Programmable Gate Arrays. ACM, 2015. 

[32] R. Zhao, H.C. Ng, W. Luk, and X. Niu. “Towards Efficient 
Convolutional Neural Network for Domain-Specific Applications on 
FPGA,” 2018 28th International Conference on Field Programmable 
Logic and Applications (FPL). IEEE, 2018. 

[33] X. Zhang, X. Zhou, M. Lin, and J. Sun. (2017). “Shufflenet: An 
extremely efficient convolutional neural network for mobile devices,” 
arXiv preprint arXiv:1707.01083. 

[34] Y. Song, S. Liang, J. Wang, et al. The evolution of accelerators upon deep 
learning algorithms, Hot Chips 2018. 

[35] A. Dosovitskiy, J. Tobias Springenberg, and T. Brox. “Learning to 
generate chairs with convolutional neural networks,” Proceedings of the 
IEEE Conference on Computer Vision and Pattern Recognition. 2015. 

[36] F. Yu, and V. Koltun. “Multi-scale context aggregation by dilated 
convolutions,” arXiv:1511.07122, 2015. 

[37] Moreau, Thierry, et al. "VTA: An Open Hardware-Software Stack for 
Deep Learning." arXiv:1807.04188, 2018. 

[38] Jia, Zhe, et al. "Dissecting the NVIDIA Volta GPU Architecture via 
Microbenchmarking." arXiv:1804.06826, 2018. 

[39] Chen, Yu-Hsin, Joel Emer, and Vivienne Sze. "Eyeriss: A spatial 
architecture for energy-efficient dataflow for convolutional neural 
networks." ACM SIGARCH Computer Architecture News. Vol. 44. No. 
3. IEEE Press, 2016. 


	I. INTRODUCTION
	II. Related Works
	III. Unified Computing Engine for Convolution
	A. Supertile Unit
	B. Scaled-up SU
	C. Tile-Based Slice-Loop-Hiding Cross Input Feature Map
	D. Efficient Processing for Different Types of Convolutions on SUs

	IV. Postprocessing Design
	A. 2D Processing Unit for Filter-Like Operations
	B. Operator Fusion

	V. Implementation of the Accelerator
	A. System Overview
	B. Memory Organization
	C. Broadcast Cache

	VI. Experiment and Performance
	A. Experimental Setup
	B. Acceleration for Different CNN Models
	C. Comparison with FPGA-based Accelerators
	D. Comparison with CPU and GPU

	VII. Conclusion
	Acknowledgement
	REFERENCES

