
A Highly-Portable True Random Number Generator
based on Coherent Sampling
Adriaan Peetermans, Vladimir Rožić and Ingrid Verbauwhede

imec-COSIC, KU Leuven, Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
Email: {adriaan.peetermans, vladimir.rozic, ingrid.verbauwhede}@esat.kuleuven.be

Abstract—True Random Number Generators (TRNGs) are
indispensable in modern cryptosystems. Unfortunately, in order
to guarantee high entropy of the generated numbers, many
TRNG designs require a complex implementation procedure,
often involving manual placement and routing. In this work,
we introduce a dynamic calibration mechanism for the Coherent
Sampling Ring Oscillator based TRNG (COSO-TRNG) enabling
easy integration of the entropy source into complex systems.
The TRNG setup procedure automatically selects a configuration
that guarantees the security requirements. In the experiments,
we show that the proposed mechanism is capable of assuring
correct TRNG operation even when an automatic placement is
carried out and when the design is ported to another FPGA
family. We generated random bits on both a Xilinx Spartan
6 and a Microsemi SmartFusion2 implementation that, without
post processing, passed AIS-31 statistical tests at a throughput
of 3.30 Mbit/s and 1.47 Mbit/s respectively.

Index Terms—Security, Entropy, TRNG, AIS-31, NIST SP 800-
90B, Coherent Sampling

I. INTRODUCTION

TRUE Random Number Generators (TRNGs) are used
in cryptographic applications to create random keys,

parameters in challenge-response protocols, padding values
and masks. Implementing TRNGs on Field-Programmable
Gate Arrays (FPGAs) is challenging due to limited TRNG-
specific resources and techniques available to the designer.
Due to the availability of only digital resources in FPGAs,
these TRNGs are usually based either on the unpredictability
of metastable memory elements [1], [2] or on the timing jitter
present in free-running oscillators [3], [4].

The output of a TRNG should pass statistical tests, such as
NIST SP 800-22 [5], NIST SP 800-90B [6] or FIPS 140-2 [7].
However, simply passing statistical tests is not sufficient to
guarantee the security of a TRNG. According to the AIS-31 [8]
and NIST SP 800-90B [6] recommendations, the security of a
TRNG should be justified by a stochastic model of the entropy
source.

From an implementation aspect, TRNG designers need to
consider the feasibility of the entropy source on an FPGA,
portability across different FPGA families and vendors, design
constraints, and design effort. Unlike most digital designs,

This work was supported in part by the Research Council KU Leuven:
C16/15/058. In addition, this work is supported in part by the Hercules
Foundation AKUL/11/19, and by the European Commission through the
Horizon 2020 research and innovation programme Cathedral ERC Advanced
Grant 695305. Adriaan Peetermans is funded by an FWO fellowship and
Vladimir Rožić is an FWO postdoctoral researcher.

TRNGs usually require some manual setup or placement
and routing constraints. For example, designs based on Self-
Timed Ring oscillators (STRs) [9], and delay chains [10], [11]
require placement constraints that have to be set up for each
FPGA family, thus limiting the portability of these designs.
In addition, some entropy sources [4] don’t work correctly on
all locations on an FPGA. Therefore, a search procedure is
required for each individual device until a suitable placement
is found.

This work focuses on the COherent Sampling ring Oscillator
based TRNG (COSO-TRNG) [12]. A stochastic model of this
entropy source was first developed by [13] for Phase-Locked
Loop (PLL) based implementations. A more general stochastic
model, proposed in [14], doesn’t specify the source of the
random jitter, as this model is based on the period difference
between two oscillators of any type.

The existing COSO-TRNG implementations can achieve
a throughput of the order of 1 Mbit/s, requiring only min-
imal chip area. The entropy source consists of a structure
that generates two oscillating signals with similar periods.
In practice, a generic way of creating these two signals is
by using two identically designed Ring Oscillators (ROs).
Process and interconnect delay variations, however, make it
very challenging to match the periods of the two ROs in an
FPGA [15]. For this reason, a search procedure has to be
applied until two well matched ROs are found. This high effort
renders the COSO-TRNG implementation unpractical as this
procedure has to be repeated for every device, even from the
same FPGA family.

In this paper, we propose a highly-portable, easy-to-use
architecture of a COSO entropy source without requiring any
device-specific blocks such as PLLs, carry-chains or DSPs,
without any placement and routing constraints, and without the
need for a manual search procedure. The main contributions
are the following:

• We propose a new entropy source with reconfigurable
ring oscillators, which enables matching two oscillating
periods with a precision of a few picoseconds. The pro-
posed source uses only LookUp Tables (LUTs) without
requiring device-specific resources, making the design
portable across different families and vendors.

• We provide experimental confirmation that this matching
is possible even without placement and routing con-
straints. The Verilog source code of this TRNG is open

TABLE I
NOTATION.

Symbol Definition

E[·]

Expected value, defined as: E[X] =
∫∞
−∞ xfX(x)dx for

a continuous random variable X with probability density
function: fX(x) or E[X] =

∑∞
i=1 xipi for a discrete

random variable X with probability masses:
Pr(X = xi) = pi.

Var[·] Variance, defined as: Var[X] = E[(X − E[X])2].

N (µ, σ2)

The normal probability distribution, describing a
continuous random variable X with probability density
function: fX(x) = 1√

2πσ2
exp (− (x−µ)2

2σ2). It can be
shown that: E[X] = µ and Var[X] = σ2.

D Q

RO 1

RO 0

Entropy source Digitisation

CLR
Counter

CTRL
req

ack

CSCnt

Sbeat

Fig. 1. Architecture of the COSO-TRNG.

source and publicly available1.
• We design a control circuit that monitors the TRNG

health, dynamically adjusts the matching conditions, and
notifies the user if suitable matching could not be ob-
tained.

II. BACKGROUND

The Coherent Sampling (CS) designs use two oscillators in
the entropy source. Their periods should satisfy one of the two
conditions: either the ratio of the periods is equal to a known
rational fraction, which is the case in PLL-based designs, or
this ratio is tuned to a value very close to one, which is the
case when they are generated by ROs. Here, we focus on the
latter case because we want to avoid using any device-specific
components such as PLLs. The notation used in this text is
summed up in Table I.

A. Stochastic model

Figure 1 shows the architecture of the COSO-TRNG. A
Data Flip-Flop (DFF) performs the sampling and outputs a
low frequency beat signal (Sbeat). The period of this signal is
measured using a counter clocked by the sampling signal, reset
every period of Sbeat. The output of this counter (CSCnt)
is a discrete random variable due to the independent random
jitter that is present in both oscillators. According to the model
in [14], the mean and the variance of this random variable are:

E[CSCnt] =
E[TRO0]

E[∆]
, (1)

Var[CSCnt] = E[CSCnt]
Var[∆]

E[∆]2
. (2)

1https://github.com/KULeuven-COSIC/COSO-TRNG

Fig. 2. Estimated min-entropy and HTP versus E[∆] and E[CSCnt] for a
Spartan 6 implementation.

Fig. 3. Estimated min-entropy and HTP versus E[∆] and E[CSCnt] for a
SmartFusion2 implementation.

Where TRO0 and TRO1 denote the oscillator period lengths.
Mean and variance of the period difference, ∆, are given by:

E[∆] = |E[TRO1]− E[TRO0]|, (3)

Var[∆] = Var[TRO0] + Var[TRO1]. (4)

The Least Significant Bit (LSB) can now be used from the
output of the counter to generate random bits.

B. Entropy rate optimisation

To calculate the entropy per generated bit, knowledge of
the exact distribution of CSCnt is required. Derivation of
an analytical expression for this distribution starting from the
stochastic model is a difficult problem. Yang et. al. in [14]
mitigate this problem by assuming that the resulting distribu-
tion is Gaussian. This assumption reduces the stochastic model

https://github.com/KULeuven-COSIC/COSO-TRNG

ROSel
[1:0]

ROSel
[3:2]

ROSel
[2n-1:2n-2]Enable

R
O

ou
t

ROSel
[1:0]

Fig. 4. Architecture of the configurable RO.

to the elementary RO-TRNG model presented by Ma et. al.
in [16]. However, our results show that the approximation used
by Yang et. al. [14] doesn’t hold in case when the oscillators
are very well matched, i.e. when the period difference is the
same order of magnitude as the jitter. For this reason, we
estimate the distribution of CSCnt by running an event-driven
simulation of the COSO-TRNG in MATLAB.

Variables for this model are:
• The sampled signal’s average period length: E[TRO0]
• The average period length difference: E[∆]
• The jitter strength: Var[TRO0]/E[TRO0]

In the model, we assumed both random variables TRO0 and
TRO1 to be independent and Gaussian distributed:

TRO0 ∼ N (E[TRO0],Var[TRO0]), (5)

TRO1 ∼ N (E[TRO1],Var[TRO1]). (6)

Another assumption is made by equating the variance of both
oscillating signals:

Var[TRO0] = Var[TRO1]. (7)

It can be justified by the fact that both ROs are implemented
in the same technology (have the same jitter strength) and the
period difference (E[∆]) is small.

From the estimated CSCnt-distribution, we estimate the
probability of a zero/one (p0/p1) as:

pi =

∞∑
j=0

Pr(CSCnt = 2j + i), with i ∈ {0, 1}. (8)

The min-entropy is then calculated as:

H∞ = − log2(max
i∈{0,1}

pi). (9)

The throughput is equal to:

T =
1

E[CSCnt] · E[TRO1]
. (10)

These equations enable us to estimate the min-entropy-
throughput product (HTP). Figures 2 and 3 show the simula-
tion results for variables obtained for a Spartan 6 and Smart-
Fusion2 implementation respectively. The upper part depicts
the min-entropy, which should be higher than 0.91 according
to AIS-31 [8] as indicated by the shaded region. The point with
minimal CSCnt that meets this requirement is indicated by
the vertical line and all values of CSCnt or ∆ to the right of
it give configurations that comply with the AIS-31 standard.
This region is indicated by a shade with gradient, because
configurations further to the right have reduced throughput
and are therefore less desired. To maximise throughput, a
configuration as close as possible to the vertical line is wanted.
The lower part shows the HTP. It shows a maximum for certain
values of E[∆]. This maximum is a trade-off between long
accumulation time to provide sufficient entropy and keeping
the throughput high.

III. ARCHITECTURE

To be able to control the matching of two ROs with a few
picoseconds of precision, a configurable design is necessary.
We propose the architecture, shown in Fig. 4. Each RO stage is
implemented as a combination of four multiplexers (MUXs) in
the same vertical column. For each of the stages, the controller
is able to choose one MUX from every column. In this way an
RO is obtained with n+1 number of stages, where n equals the
number of columns containing a MUX. An additional column
containing only NAND gates is necessary to disable/enable
the RO.

This topology enables 4n possible combinations, each with
a slightly different oscillation period due to on-chip delay
variability. Both the ROs that make up the entropy source,
shown in Fig. 1, are implemented using this architecture to
increase matching symmetry resulting in (4n)2 combinations
in total.

Simplified pseudocode describing the controller is depicted
in Alg. 1. Its function is monitoring if the CSCnt-signal is
still within predefined boundaries (L and H in the algorithm,
representing the lower and upper bound respectively) and
selecting a new RO combination (ROSel) if necessary. This
E[CSCnt] is directly related to the matching of the two
ROs (E[∆]) via Eq. (1). The controller sequentially goes
through the possible combinations until a suitable one is
found. Optimal boundaries have to be chosen to maximise the
throughput and provide sufficient entropy from Fig. 2 and 3.
A smaller range [L,H) enables finer control, but increases the
controller latency to find a suitable configuration.

This controller activates at start-up to find a configuration
that validates the stochastic model. After start-up, the con-
troller remains actively checking the produced CSCnt values
and dynamically recalibrates the ROs when necessary.

IV. EXPERIMENTAL RESULTS

In this section, we prove the following claims:
• The architecture is feasible, it can obtain a wide range of

CSCnt values.

Algorithm 1 Controller
Input: CSCnt[7:0], req
Output: ROSel[2n-1:0], matched
Global constant: L, H

1: goodSamples[6:0]← 0
2: sampleCnt[6:0]← 0
3: ROSel[2n-1:0]← 0
4: matched← 0
5: while true do
6: if req then
7: if L ≤ CSCnt[7:0] < H then
8: goodSamples[6:0]← goodSamples[6:0] + 1
9: matched← 1

10: if sampleCnt[6:0] == 27 − 1 then
11: if goodSamples[6:0] == 0 then
12: ROSel[2n-1:0]← ROSel[2n-1:0] + 1
13: matched← 0
14: goodSamples[6:0]← 0

15: sampleCnt[6:0]← sampleCnt[6:0] + 1

• Global Placement (GP) or searching for an optimal loca-
tion is not required.

• Local Placement (LP) or relative placement constraints
are not required.

• The architecture is portable.
Each of these claims is verified in the following subsections.
First the experimental set-up is further clarified and at the end,
we also explore the optimal number of RO stages.

All the figures depicting a CSCnt distribution have a shade
with gradient representing the configurations with high enough
entropy per bit.

A. Experimental set-up

We first implemented the proposed entropy source and
digitisation as depicted in Fig. 1 on a Xilinx Spartan 6 FPGA.
The number of configurable stages (n) is set to four, which
gives a total of 256 combinations for each RO. Every four-
input MUX fits inside a six-input LUT, the NAND gates
are also implemented by one LUT each. As for realistic
values of Var[TRO] and E[∆], E[CSCnt] is below 256, an
8-bit asynchronous counter can be used in the digitisation,
but initially we used a 16-bit counter in the experiments.
This counter is reset every period of Sbeat and read by the
controller. The LSB of this counter is used as the generated
random bit.

B. Feasibility of the architecture

We first implemented the entropy source and digitisation,
with manual placement on a Xilinx Spartan 6 FPGA. The
LUTs containing the RO stages are placed in a symmetrical
way to facilitate matching the two ROs. The upper part of
Fig. 5 shows a box plot of the frequencies for both ROs, each
for the 256 possible configurations. A box plot visualises the
data distribution, where 50 % of the data is contained within
the box. A data point is considered as an outlier (marked with

Fig. 5. Obtainable CSCnt values for a fixed placement on Spartan 6.

a cross in the plot) if it is situated further than 1.5 times
the interquartile range from the closest quartile. In the lower
part of the figure, a box plot is given for the 2562 = 65536
obtained average CSCnt realisations. A wide range up to 104

is achievable (∆ ranging down to 0.4 ps), which enables the
controller to find a configuration close to the optimal HTP.

C. Global placement

To prove that this design is capable of matching the ROs
independent from GP, the previous experiment is carried out on
25 locations, manually chosen to cover the entire chip. The LP
constrains are maintained to improve matching. Figure 6 shows
a box plot for each of the tested locations. The CSCnt values
in this and subsequent experiments are calculated based on the
measured RO frequencies, instead of testing every possible
RO pair, to reduce measurement time. This experiment shows
that indeed sufficient matching can be obtained at every tested
location, which is in strong contrast with previous designs that
use coherent sampling with ROs [14], [15], [17], where a large
design effort was needed to manually find an FPGA location
with sufficient matching between the ROs.

D. Local placement and portability

The next experiment shows that even the LP constraints
are not required for the correct operation of the TRNG. Fig-
ure 7 depicts the RO frequencies and corresponding calculated
average CSCnt values for an implementation on the Xilinx
Spartan 6 FPGA, without any specified placement constraints.
The figure shows that matching can still be obtained.

To prove the portability, this experiment is repeated on a
Microsemi SmartFusion2 FPGA. Figure 8 shows the results,
which are similar to those obtained on the Spartan 6 FPGA.
The SmartFusion2 FPGA only features four-input LUTs, while
the Spartan 6 FPGA has six-input LUTs. The smaller LUTs
mean that after porting, one four-input MUX does not fit into
one LUT anymore. The design is slightly adapted by redefining
the used primitives (only DFFs and LUTs) to account for
the change in library naming at different FPGA vendors. The
synthesis tool automatically constructs the four-input MUXs
using multiple four-input LUTs. These results show that the
portability claim is valid.

Fig. 6. Calculated CSCnt values at different locations on Spartan 6.

Fig. 7. Calculated CSCnt values for omitted LP constraints on Spartan 6.

Fig. 8. Calculated CSCnt values for omitted LP constraints on SmartFu-
sion2.

E. Optimal number of stages

As a last experiment, we varied the number of stages and
monitored the achievable CSCnt values. More stages offer
a greater number of configurations and increase the chance
of finding sufficient matching. Figure 9 shows the results
of this experiment on a Spartan 6 with omitted placement
constraints. Indicated next to the box plots are the number of
configurations that obtain a CSCnt higher than 73 and the
percentage with respect to the total number of configurations.
The topologies with one or two stages show none or only a
few CSCnt values that fall into the shaded region. These with

Fig. 9. Calculated CSCnt values for different number of RO stages on
Spartan 6.

three or more stages show a large amount of CSCnt values
in this region and are therefore preferred. A topology with
three stages consumes less area and produces higher oscillation
frequencies than one with four, therefore it is optimal.

The start-up time required by the controller to obtain a
CSCnt value in the range of [74, 127] on a Spartan 6
implementation is on average 1.5 ms over 100 experiments.

V. RESULTS AND COMPARISON

To get a theoretical estimate of the entropy per bit, the mag-
nitude of the jitter strength (Var[TRO0]/E[TRO0]) is needed.
We use the values obtained in [15], as similar FPGA devices
are used there. To get a conservative entropy estimate, we take
the minimal jitter strength over all frequencies tested in [15].
The obtained jitter strength value is 1.6 fs, which gives a
period jitter equal to approximately 3 ps for frequencies in
the range [160 MHz, 264 MHz]. At this jitter strength, the
acceptable CSCnt range is given by the shaded area in the
lower part of Figs. 2 and 3.

Both the Spartan 6 and SmartFusion2 implementations
obtain a configuration with an average CSCnt value in this
range, close to the maximal HTP: 81.12 and 107.85 respec-
tively, producing a throughput of 3.30 Mbit/s and 1.47 Mbit/s.
The Shannon entropy should be larger than 0.997 per bit
as required by [8]. Converted to min-entropy, it should be
higher than 0.91 per bit. Calculated from the model at a
measured oscillation frequency of 160 MHz and 264 MHz,

TABLE II
COMPARISON WITH OTHER WORK.

Architecture FPGA family Area [DFFs/LUTs] Throughput [Mbit/s] Statistical test Design effort

This work Spartan 6 39/1082 3.30 AIS-31 T6-T8 -
SmartFusion2 38/1112 1.47 AIS-31 T6-T8 -

Spartan 6 3/18 0.54 AIS-31 T8 MP
Original COSO [15] Cyclone V 3/13 1.44 AIS-31 T8 MP

SmartFusion2 3/23 0.328 AIS-31 T8 MP

COSO: one bit per half cycle [17] Actel Fusion AFS600 7/241 2 NIST SP 800-22 MP & MR
Spartan 3 7/181 1.6 NIST SP 800-22 MP & MR

COSO: mutual sampling [17] Actel Fusion AFS600 14/291 4 FIPS 140-2 MP & MR
Spartan 3 14/231 3.2 FIPS 140-2 MP & MR

COSO: parameter adjustment [14] Virtex-5 109 slices 4.08 NIST SP 800-22 MP & MR

DC-TRNG [18] Spartan 6 128 slices 1.1 AIS-31 T6-T8 MP
Cyclone V 273 ALMs 1.116 AIS-31 T6-T8 MP & MR

PLL-TRNG [18] Spartan 6 190 slices3 1.0416 AIS-31 T6-T8 PLL required
Cyclone V 273 ALMs 1.04 AIS-31 T6-T8 PLL required

ES-TRNG [11] Spartan 6 5/10 1.15 AIS-31 T0-T5 MP
Cyclone V 6/10 1.067 AIS-31 T0-T5 MP

TERO [15]
Spartan 6 12/39 0.625 AIS-31 T8 MP & MR
Cyclone V 12/46 1 AIS-31 T8 MP & MR

SmartFusion2 12/46 1 AIS-31 T8 MP & MR

STR [15]
Spartan 6 256/346 154 AIS-31 T8 MP & MR
Cyclone V 256/352 245 AIS-31 T8 MP & MR

SmartFusion2 256/350 188 AIS-31 T8 MP & MR
1 Values calculated using shown circuit diagram.
2 Values calculated for three-stage ROs, controller hardware included.
3 Including embedded tests and data interface.

the obtained min-entropy is 0.95 per bit and 0.93 per bit for
the Spartan 6 and SmartFusion2 respectively. The bit streams
pass test procedure B (T6 - T8), described in AIS-31 [8] using
120 Mbit of generated data and have an estimated entropy
of 0.999 per bit and 0.997 per bit, using the results from
test T8. Both implementations are therefore PTG.3 compliant
if cryptographic post processing is added. We utilise CBC-
MAC post processing as specified in the NIST SP 800-90B
standard [6]. After post processing, the throughput is lowered
by a factor of two and both pass the NIST SP 800-22 tests.

A comparison to previous COSO-TRNGs and other designs
that comply with the AIS-31 standard is given in Table II.
Compared to other designs, this work offers a throughput
higher than 1 Mbit/s and a larger area, but still a lot smaller
than the design proposed in [14]. However, this design comes
with a built-in on-line test which alarms the user in case
that no sufficient matching can be found. According to both
standards [6], [8], an on-line testing module is a necessary
requirement for certification and therefore increases the area
usage of the other designs. The design effort is also lowered in
this design. Previous work required at least Manual Placement
(MP) and often also Manual Routing (MR). This effort had to
be repeated every time when the design is implemented on an
other device, even from the same FPGA family.

If higher throughput is required, the techniques proposed
in [17] can still be utilised with our proposed entropy source.
These techniques boost the throughput by a factor of four.
However the stochastic model has to be extended to provide
a valid entropy estimation when using mutual sampling.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed a new entropy source for the
COSO-TRNG that significantly reduces the design effort.
We experimentally verified the feasibility of the architecture
and showed that it is always possible to meet the entropy
requirements from the stochastic model even when placement
constraints are omitted or the design is ported to another
FPGA family. This property renders the TRNG highly suitable
for integration into larger cryptosystems. Random bits are
generated with a throughput of 3.30 Mbit/s and 1.47 Mbit/s on
a Spartan 6 and a SmartFusion2 FPGA respectively and are
able to pass the statistical tests. The design only has a modest
area requirement, but comes with a cost of increased latency
when the controller is searching for an optimal configuration.

Future work will focus on investigating whether this
methodology is also applicable to other TRNG designs that
require a large design effort, optimising the searching strategy
of the controller to improve the induced latency, and observing
the behaviour of this entropy source under active manipulation
attacks.

REFERENCES

[1] J. L. Danger, S. Guilley, and P. Hoogvorst, “High speed true random
number generator based on open loop structures in FPGAs,” Microelec-
tronics journal, vol. 40, no. 11, pp. 1650–1656, 2009.

[2] P. Z. Wieczorek and K. Golofit, “Dual-metastability time-competitive
true random number generator,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 61, no. 1, pp. 134–145, 2014.

[3] M. Baudet, D. Lubicz, J. Micolod, and A. Tassiaux, “On the security
of oscillator-based random number generators,” Journal of cryptology,
vol. 24, no. 2, pp. 398–425, 2011.

[4] M. Varchola and M. Drutarovskỳ, “New high entropy element for FPGA
based true random number generators,” in International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2010, pp.
351–365.

[5] L. E. Bassham III, A. L. Rukhin, J. Soto, J. R. Nechvatal, M. E. Smid,
E. B. Barker, S. D. Leigh, M. Levenson, M. Vangel, D. L. Banks et al.,
“A statistical test suite for random and pseudorandom number generators
for cryptographic applications,” NIST Special Publication 800-22 rev.
1a., 2010.

[6] M. S. Turan, E. Barker, J. Kelsey, K. A. McKay, M. L. Baish, and
M. Boyle, “Recommendation for the entropy sources used for random
bit generation,” NIST Special Publication 800-90B, 2018.

[7] NIST, “Security requirements for cryptographic modules,” FIPS PUB
140-2, 2001.

[8] W. Killmann and W. Schindler, “A proposal for: Functionality classes
for random number generators,” https://cosec.bit.uni-bonn.de/fileadmin/
user upload/teaching/15ss/15ss-taoc/01 AIS31 Functionality classes
for random number generators.pdf, 2011, [Online; accessed 22-May-
2019].

[9] A. Cherkaoui, V. Fischer, L. Fesquet, and A. Aubert, “A very high
speed true random number generator with entropy assessment,” in
Cryptographic Hardware and Embedded Systems - CHES 2013 - 15th
International Workshop, Santa Barbara, CA, USA, August 20-23, 2013.
Proceedings, 2013, pp. 179–196.

[10] V. Rožić, B. Yang, W. Dehaene, and I. Verbauwhede, “Highly efficient
entropy extraction for true random number generators on FPGAs,” in
Proceedings of the 52nd Annual Design Automation Conference, San
Francisco, CA, USA, June 7-11, 2015, 2015, pp. 116:1–116:6.

[11] B. Yang, V. Rožić, M. Grujić, N. Mentens, and I. Verbauwhede, “ES-
TRNG: A high-throughput, low-area true random number generator
based on edge sampling,” IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, vol. 2018, no. 3, pp. 267–292, 2018.

[12] P. Kohlbrenner and K. Gaj, “An embedded true random number gen-
erator for FPGAs,” in Proceedings of the 2004 ACM/SIGDA 12th
International Symposium on Field-Programmable Gate Arrays. ACM,
2004, pp. 71–78.

[13] F. Bernard, V. Fischer, and B. Valtchanov, “Mathematical model of phys-
ical RNGs based on coherent sampling,” Tatra Mountains Mathematical
Publications, vol. 45, no. 1, pp. 1–14, 2010.

[14] J. Yang, Y. Ma, T. Chen, J. Lin, and J. Jing, “Extracting more entropy
for TRNGs based on coherent sampling,” in International Conference
on Security and Privacy in Communication Systems. Springer, 2016,
pp. 694–709.

[15] O. Petura, U. Mureddu, N. Bochard, V. Fischer, and L. Bossuet, “A
survey of AIS-20/31 compliant TRNG cores suitable for FPGA devices,”
in 2016 26th International Conference on Field-Programmable Logic
and Applications (FPL). IEEE, 2016, pp. 1–10.

[16] Y. Ma, J. Lin, T. Chen, C. Xu, Z. Liu, and J. Jing, “Entropy evaluation for
oscillator-based true random number generators,” in International Work-
shop on Cryptographic Hardware and Embedded Systems. Springer,
2014, pp. 544–561.

[17] B. Valtchanov, V. Fischer, and A. Aubert, “Enhanced TRNG based on the
coherent sampling,” in 2009 3rd International Conference on Signals,
Circuits and Systems (SCS). IEEE, 2009, pp. 1–6.

[18] J. Balasch, F. Bernard, V. Fischer, M. Grujić, M. Laban, O. Petura,
V. Rožić, G. van Battum, I. Verbauwhede, M. Wakker, and B. Yang,
“Design and testing methodologies for true random number generators
towards industry certification,” in 2018 IEEE 23rd European Test
Symposium (ETS), vol. 2018. IEEE, 2018, pp. 1–10.

https://cosec.bit.uni-bonn.de/fileadmin/user_upload/teaching/15ss/15ss-taoc/01_AIS31_Functionality_classes_for_random_number_generators.pdf
https://cosec.bit.uni-bonn.de/fileadmin/user_upload/teaching/15ss/15ss-taoc/01_AIS31_Functionality_classes_for_random_number_generators.pdf
https://cosec.bit.uni-bonn.de/fileadmin/user_upload/teaching/15ss/15ss-taoc/01_AIS31_Functionality_classes_for_random_number_generators.pdf

