
DynaBurst: Dynamically Assemblying DRAM
Bursts over a Multitude of Random Accesses

Mikhail Asiatici
Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH–1015 Lausanne, Switzerland

mikhail.asiatici@epfl.ch

Paolo Ienne
Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH–1015 Lausanne, Switzerland

paolo.ienne@epfl.ch

Abstract—The effective bandwidth of the FPGA external mem-
ory, usually DRAM, is extremely sensitive to the access pattern.
Nonblocking caches that handle thousands of outstanding misses
(miss-optimized memory systems) can dynamically improve band-
width utilization whenever memory accesses are irregular and
application-specific optimizations are not available or are too
costly in terms of design time. However, they require a memory
controller with wide data ports on the FPGA side and cannot
fully take advantage of the memory interfaces with multiple
narrow ports that are common on SoC FPGAs. Moreover, as their
scope is limited to single memory requests, the access pattern
they generate may cause frequent DRAM row conflicts, which
further reduce DRAM bandwidth. In this paper, we propose
DynaBurst, an extension of miss-optimized memory systems that
generates variable-length bursts to the memory controller. By
making memory accesses locally more sequential, we minimize
the number of DRAM row conflicts, and by adapting the burst
length on a per-request basis we minimize bandwidth wastage.
On a multiple, narrow-ported DDR3 controller, we provide
28% geometric mean and up to 3.4× speedup compared to a
traditional nonblocking cache of the same area, while the prior
single-request approach would not have been cost-effective. On
a controller with a single, wide port, we can further improve the
performance of miss-optimized systems by up to 2.4×.

I. INTRODUCTION

FPGAs provide acceleration by implementing massively

parallel, application-specific compute engines. However, such

an approach breaks down if the performance is limited by

the throughput of the memory system rather than that of the

datapath—i.e., when the application is memory bandwidth-

bound. Applications that perform irregular and narrow memory

accesses, such as graph analytics and sparse linear algebra,

are especially prone to be bandwidth-bound if accesses are

performed directly on DRAM. This happens, for example,

whenever the footprint of irregular accesses is too large to be

efficiently cached by on-chip SRAM. Usually, problems admit

application-specific optimizations, but they are expensive in

design time and hard to integrate with accelerators generated

from high-level synthesis unless the access pattern is perfectly

known at compile-time [1], [2].

A. DRAM Performance Under Irregular Access Patterns

Under irregular access patterns, two mechanisms significantly

degrade the DRAM bandwidth, as suggested in Fig. 1a. Firstly,

both DDR3 and DDR4 operate on bursts of eight beats,

FPGA DRAM

(a)

(b)

(c) FPGA DRAM

FPGA DRAM

Fig. 1. Total availability and utilization of DRAM bandwidth under short
irregular access patterns. White boxes: eight-beat bursts transferred from
DRAM to the FPGA. Gray: portions of data actually used by an accelerator
on the FPGA. Dashed lines: cycles where no transfers occur due to a DRAM
row conflicts. If requests from the accelerators are forwarded directly to the
DRAM controller (a), most of the burst beats will be wasted and frequent row
conflicts make the interface frequently idle. Miss-optimized memory systems
(b) improve the utilization of each bursts but do not reduce row conflicts. Our
proposed architecture (c) combines burst reuse with row conflict minimization,
which further increase the effective bandwidth accessible to the accelerators.

normally of 64 bits each [3], [4]: if accesses are narrower

than the burst size (which is common for scalar operands),

the remaining data returned from memory will be discarded,

wasting memory bandwidth and energy. The second mechanism

relates to the organization of bits in DRAM: a few banks (8

and 16 for DDR3 and DDR4 respectively), each consisting of

a two-dimensional array of capacitors. Reading data involves

first copying the respective row to the row buffer (typically

1 KB [3], [4]), which has to be written back to memory

before accessing another row in the same bank. Since both

operations are time-consuming, the actual bandwidth decreases

when accesses require switching row frequently (row conflicts).

DRAM controllers reorder memory requests to reduce the

number of DRAM row conflicts [5]; however, general-purpose

controllers must also minimize latency, which means that

the internal request queues are relatively shallow and the

optimization is possible only for accesses close in time.

B. Reorder and Reuse is the Key

Our previous work [6] showed that miss-optimized memory

systems represents a general, dynamic solution to boost per-

formance of latency-insensitive, bandwidth-bound applications

that read data irregularly. The key idea is to reuse the same

wide memory response to serve multiple narrow requests from
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the accelerators (Fig. 1b) on-the-fly, without relying on long-

term storage in cache. This improves bandwidth utilization and

is equivalent to reordering narrow requests such that those that

hit on the same wide memory response are handled together.

By supporting thousands of outstanding misses, this reordering

occurs across a very large request window, which maximizes

the chances of data reuse at a lower area cost than an equivalent

cache. However, the approach relies on memory controllers

exposing the DRAM through a single wide interface and is

not directly applicable to controllers with multiple narrow

ports, common on FPGA SoC platforms [7], [8]. Moreover,

the approach operates only at the granularity of single memory

requests: such requests are sent to the memory controller in an

arbitrary order, with no special care given to minimize DRAM

row conflicts.

C. Increasing the Scope for Dynamic Memory Access Opti-
mization

In this paper, we propose DynaBurst, which builds on top

of our miss-optimized memory system to handle bursts of

variable length on the memory side. When possible, we make

bursts longer and exploit more of a DRAM row without being

limited to the controller width; else, when spatial locality is

insufficient, we keep burst short and minimize contention in

the controller. Without loss of generality, we used a set of

sparse matrix-vector multiplication benchmarks to evaluate the

performance of our system under vastly different access patterns

that can occur in realistic latency-insensitive, bandwidth-bound

applications. We will show that supporting bursts is required

for miss-optimized memory systems to be beneficial behind

external memory interfaces with multiple narrow ports and

can further boost read throughput when behind a single wide

memory port.

II. MISS-OPTIMIZED MEMORY SYSTEMS

Nonblocking caches can handle a given number of outstand-

ing misses without stalling. On the first miss to a given cache

line C (primary miss), the cache 1) allocates a new miss status
holding register (MSHR) which stores the address of C, 2)

allocates a subentry within that MSHR to store the offset of

the request within C, and 3) sends out a memory request for

C. Misses on a cache line that has already been requested

(secondary misses) only require an additional subentry on

the respective MSHR. All pending misses are served when

the cache line returns from memory. Increasing the number of

outstanding misses that can be tolerated has two benefits: (1) by

reducing stalls memory-level parallelism (MLP) increases and

(2) by having more in-flight cache lines, misses will have more

chance to be secondary rather than primary, which increases

the average number of requests that will be served with the

same data returned from memory. In practice, both factors

increase memory bandwidth utilization, especially when the

cache hit rate is low.

A miss-optimized or MSHR-rich memory system is a

multi-banked nonblocking cache that handles thousands of

outstanding misses—two orders of magnitude more than

tag min

max

(a) (b) (c)

tag tag

memory
space

Fig. 2. MSHR memory range and structure. Portions of cache lines that have
been requested by some accelerators are shown in gray. MSHRs usually refer
to single cache lines (a). Increasing the memory range covered by each MSHR
to a set of cache lines that will be requested as a burst (b) reduces DRAM row
conflicts but may result in data wastage as the size of the burst increases. By
dynamically adjusting the range of the burst (c), we make memory accesses
more sequential than in (a) while minimizing data wastage.

conventional nonblocking caches [6]. It does so by (1) storing

MSHRs in cuckoo hash tables in BRAM instead of fully asso-

ciative register files and (2) dynamically allocating subentries

depending on the needs of each MSHR, instead of statically

allocating a fixed number of subentries per MSHR and stalling

whenever any MSHR runs out of subentries. When applications

are latency-insensitive and have a low hit rate, repurposing some

BRAMs to MSHRs and subentries often increases throughput

[6].

III. GENERALIZING MSHRS FROM SINGLE CACHE LINES

TO VARIABLE-LENGTH MEMORY AREAS

In nonblocking caches, including miss-optimized memory

systems [6], MSHRs have the granularity of single cache lines

(Fig. 2a). Since cache lines are handled fully independently

from each other, there are no guarantees that cache lines that are

close in the address space, most likely on the same DRAM row,

will be requested close to each other in time. If the separation

between the requests is larger than the reorder window of the

DRAM controller, unnecessary row conflicts will occur.

A simple way to make use of larger portions of DRAM

rows would be to increase the granularity of each MSHR to

multiple cache lines (Fig. 2b). Burst transfers can then be used

to request such cache lines efficiently. However, any cache

line within the burst that is not actually needed will cause

bandwidth and energy wastage. As we show in Section VIII-A,

this often results in lower performance than operating with

single memory requests.

To strike a balance between DRAM row utilization and

bandwidth wastage, we propose to have each MSHR covering
multiple cache lines but to dynamically adjust the bounds
of the burst requested to memory based on the cache lines

that are actually needed (Fig. 2c). In particular, each MSHR

collects misses to 2N cache lines, which corresponds to

the maximum burst length. Two additional fields in the

MSHR, minBurstOffset and maxBurstOffset, store

the indexes of the first and last cache line that have at least one

pending miss. These indexes define the bounds of the shortest

contiguous burst that can serve all the pending misses.

IV. DYNAMICALLY ADJUSTING BURST BOUNDS

On a primary miss, a new MSHR is allocated and a memory

request is inserted in the output queue; its burst initially
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Fig. 3. Burst update policies. Requests that fall within the current burst range
(a) do not require any updates; otherwise, burst bounds can be updated if the
burst memory request is still in the output queue (b). If the memory request
has already left the queue (c), the current burst is invalidated and a new burst
of maximum length is requested.
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Fig. 4. Burst bounds update circuit. The updated MSHR on the right overwrites
the current MSHR on the left in the following cycle; tag and queuePtr are never
modified after MSHR allocation. Considering that realistic burst offsets and
queue pointers are on 1–4 bits and 9–12 bits respectively (c.f. Section VIII),
the policies shown in Fig. 3 can be implemented with a relatively lightweight
circuit.

covers only the primary miss’ cache line. To enable future

updates of the request, we store its address in the output queue

(queuePtr) in the MSHR; queuePtr is initialized to the

queue’s enqueue pointer, enqPtr. Secondary misses handling

is described in Fig. 3 and implemented by the circuit in Fig. 4.

Secondary misses that are covered by the current burst bounds

(Fig. 3a) require no updates to the MSHR. If the current burst

does not cover the new miss, burst offsets can be adjusted as

long as the memory request is still in the output queue—i.e.,

it has not been sent to memory yet (Fig. 3b). We compare

queuePtr to the current enqPtr and deqPtr to determine

whether the request can still be updated.

Once the request has been sent out to memory, its burst

bounds cannot be updated any more (Fig. 3c). To handle

secondary misses that fall in this case, we could, in principle,

request an additional burst only for the new cache line. However,

if the second burst is not guaranteed to cover the entire burst

range, the problem may appear again once the second burst has

also been sent out to memory. In practice, up to 2N memory

requests per MSHR may be needed. Since each burst would

need a separate minBurstOffset and maxBurstOffset,

the size of each MSHR would dramatically increase. Moreover,

since we would also need to look up all the bursts associated

to a given MSHR to determine whether any of them covers

the new secondary miss or whether any of them can still be

updated, the circuit in Fig. 4, often already on the critical path

of the entire system, would become even more complex.

To handle the cases shown in Fig. 3c with an acceptable

impact on the critical path, we take the pragmatic tradeoff of

marking the in-flight request as invalid and we ask again for the

full memory region—essentially, we take this for an indication

of sufficiently high spatial locality. As discussed in Section VII,

this policy allows us to achieve the same operating frequency

as our previous work [6]. However, discarding responses cause

bandwidth wastage and should be reduced to a minimum, which

is achieved by having MSHRs spend the largest fraction of their

lifetime in the output queue rather than in the memory controller.

If (1) accelerators generate more memory requests than the

memory controller can sustain and (2) there are more MSHRs

than maximum in-flight requests in the memory controller, this

happens naturally, as the next section will show.

V. MINIMIZING BURST INVALIDATIONS

Consider a memory controller that can sustain nmem memory

requests per cycle, accelerators that overall can generate nacc

requests per cycle and a memory system that has nb banks

to handle nb requests per cycle, with nb ≥ nacc > nmem.

Without loss of generality, we consider the hit rate to be

negligible, thus all requests will be misses: if not, nacc is

replaced by nmiss = (1−H)nacc, where H is the hit rate. At

startup, the MSHR buffer is empty; therefore, all requests are

primary misses. This means that each accelerator request will

allocate an MSHR and generate a memory request; therefore,

the number of allocated MSHRs will increase by nacc−nmem

per cycle. In other words, as long as nacc > nmem, accelerator

requests naturally tend to accumulate inside the MSHR and

subentry buffers without having to forcefully stall them. As

the number of allocated MSHRs grows, so does the probability

for future misses to be secondary rather than primary, which

in turn increases the average number of accelerator requests

that each memory response will serve. As a result, the MSHR

allocation rate decreases to (nacc − ns)− nmem per cycle, ns

being the secondary misses per cycle. If MSHRs and subentries

were unlimited, the system will tend to ns,eq = nacc − nmem,

i.e., each memory response is reused nacc

nmem
times on average

and the number of MSHRs remains constant at some value

NMSHR,eq. If the system runs out of MSHRs or subentries

before reaching equilibrium, it will start to stall incoming

requests: this reduces nacc to nacc′ and moves the equilibrium

point to ns,eq′ = nacc′−nmem < ns,eq . The larger the MSHR

and subentry buffers, the closer ns,eq′ will be to the ideal ns,eq .

An application with good locality will reach ns,eq very

quickly with few MSHRs; the poorer the locality, the higher

NMSHR,eq . If Nmem,IF is the total number of in-flight requests

that the memory controller can sustain, then each memory

request will spend
Nmem,IF

NMSHR,eq
of its lifetime inside the memory

controller and the rest inside the MSHR buffer output queue.

Therefore, the higher NMSHR,eq, the more likely the burst

bounds of an MSHR can still be adjusted without having to

invalidate the first burst, and NMSHR,eq will naturally tend to

be higher for applications with poor locality where most of

the full burst will likely not be used.
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Fig. 5. Top level view of the proposed memory system. We highlighted the
main differences compared to our previous memory system [6]: variable-length
(VL) MSHR buffer, updatable queue, data buffer, and multi-ported memory
interface.

To reduce invalidations on regular applications that tend to

have a low NMSHR,eq, we tried to artificially stall memory

requests until a minimum number of used MSHRs was reached

or a timeout since the last received request expired. In practice,

excessive stalling was usually more harmful than invalidations

unless extensive application-specific fine tuning of the minimum

MSHR occupation and the timeout were performed, which

is incompatible with the desired generality of the proposed

memory system.

VI. SYSTEM ARCHITECTURE

Fig. 5 shows the top-level organization of DynaBurst, which

we implemented by extending our previous memory system

[9]. Within each bank, the variable-length (VL) MSHR buffer

extends the previous buffer based on cuckoo hashing with

stash by including the logic to maintain burst offsets and

response invalidation discussed in Section III. Entries in the

new output queue include burst bounds along with the tag

and the queue must now allow updates of existing entries. In

practice, the queue remains a dual-ported BRAM except that

the write address is not restricted to the enqueue counter. Its

depth corresponds to the size of the MSHR buffer: even if each

MSHR can generate an additional memory request with the

full burst, it does so only if the partial burst has already left

the queue, so the queue will never host more than one request

per MSHR at a time. Subentries, which previously contained

request ID and offset within the cache line, are augmented with

a burst offset, i.e., the offset of the corresponding cache line

within the burst. To handle memory controllers with multiple

narrow ports, we generalized the memory system to handle up

to nmem memory ports, where nmem is a divisor of nb. We

did so by replacing the single output arbiter/demultiplexer (for

requests/responses respectively) with one arbiter/demultiplexer

per memory port, each connected to nb

nmem
banks. Therefore,

each bank is statically assigned to a memory port, each of which

currently uses a round-robin arbiter to pick requests from its

banks. This simple solution works well if ports are symmetric

(as in our experimental system) and requests are reasonably

well distributed among banks. The memory interface can be

easily modified when these assumptions do not hold.

On the response path, we introduced a data buffer to store the

data read from memory. In our previous work, the cache lines

data buffer pointer
burst
lengthID

burst offset

1 27E
subentry

response
token

3

cache line offset

data
buffer

Fig. 6. Retrieval of responses from the data buffer. The response token,
generated once the entire burst has been received, locates the response data
inside the data buffer (yellow). Responses to the individual pending misses
can be generated by iterating over all subentries and extracting the relevant
word (purple) based on burst and cache line offsets.

were sent directly to the MSHR and subentry buffer pipelines

alongside their tag. This approach is not viable any more as

each MSHR can refer to a variable number of cache lines and

sizing each pipeline register for the maximum burst length (up

to a few kilobits) results in large area wastage. Instead, we

store the burst in the data buffer and only send its starting

address (pointer), size (burst length), and tag to the pipeline

as a single token for the entire burst. The MSHR buffer will

first use the tag to retrieve its subentries, which contain all the

information required to serve the respective pending miss as

shown in Fig. 6. When all pending misses have been served,

burst pointer and size are used to deallocate the burst data

inside the data buffer. Because responses are treated in-order

inside the pipeline, the data buffer can be implemented as a

simple circular buffer. Moreover, as the data is accessed via

pointers and used in a single place at the end of the pipeline,

it can be packed more efficiently into BRAM or LUTRAM

instead of spreading it into the more scarce flip-flops in the

pipeline.

VII. EXPERIMENTAL SETUP

DynaBurst has been implemented in Chisel 3 with Vivado

2017.4 and evaluated on a Xilinx ZC706 board with an xc7z045

FPGA, 1 GB of DDR3 memory on the processing system (PS)

side, and 1 GB of DDR3 on the programmable logic (PL)

side. The PS DDR is connected to the ARM’s hard memory

controller and is exposed to the FPGA through five 64-bit ports

(HP0–HP3 and ACP); the PL DDR is accessed through the

single 512 bit AXI interface of the MIG soft controller. Both

controllers perform access reordering [10], [11]. Based on our

measurements, the PS DDR achieves its peak bandwidth of

3.9 GB/s at 150 MHz with the four HP ports, while the PL

DDR provides 9.0 GB/s at 150 MHz and 12.0 GB/s at 200

MHz.

We use the single-precision floating point compressed sparse

row SpMV accelerators (CSR SpMV) from our previous

work [6]. Such accelerators read three vectors sequentially—

column index and value of the non-zero matrix entries and

row pointers—and the dense vector irregularly, behind a

8192-entry reorder buffer and our memory system. Each

multiply-accumulation (MACC) consumes two 32-bit words

from sequential vectors (non-zero column index and value)
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Using bursts of a suitable size is beneficial to both systems and minimizing
each burst’s length is always better than using bursts of fixed length.

and one irregularly accessed word from the dense vector. One

row pointer (sequential) is additionally consumed at the end

of each row.

We consider two different configurations, which we take

as representative of realistic use cases in commercial FPGA

systems. In the PL system, the same used in our previous work

[6], the dense vector is stored in the PL DDR while sequential

vectors are read from the PS memory; the opposite is done in

the PS system. In the PL system, it is the highest performing

memory, exposed through a single, wide port, that is accessed

irregularly. Since the PL DDR is often the system bottleneck

due to the irregular accesses, we maximize its bandwidth by

operating at 200 MHz. Ultimately, the system throughput is

limited to ≈2.4 multiply-accumulations (MACC) per cycle by

the bandwidth of the PS memory that hosts the sequential

vectors. Therefore, four accelerators and four banks are enough

to saturate it. On the PS system, the sequential accesses on

the PL DDR allow up to ≈8 MACC/cycle, while the PS DDR

limits the throughput to ≈6.5 (150 MHz) or ≈4.9 (200 MHz)

MACC/cycle if each 32-bit word returned by the PS DDR is

used exactly once (which, we found, is often an optimistic

assumption). Since the performance is always limited by the

PS DDR whose bandwidth does not increase past 150 MHz,

we ran the system at 150 MHz. This eases timing closure and

allowed us to implement eight accelerators and eight banks

connected to the four 64-bit HP ports.

We use a superset of the SuiteSparse [12] sparse matrices

used in our previous work [6] as benchmarks. We summarize

their properties in Table I. Note that we propose a generic

architecture that can dynamically extract locality without any

assumptions on the application, hence the absence of SpMV-

specific optimizations. For this reason, even though we use a

single type of accelerator, we striven to cover a broad range of

possible workloads by picking matrices from different domains

(e.g., web/transport/social networks, linear programming) that

have very different sparsity patterns.

benchmark
vector
size
(MB)

rows
(M)

non-zero
elements
(M)

stack distance percentiles

75% 90% 95%

amazon-
2008

2.81 0.735 5.16 6 6.63k 19.3k

cit-Patents 14.4 3.78 16.5 91.1k 129k 151k
cont11 i 7.48 1.47 5.38 2 2 3
dblp-2010 1.24 0.326 1.62 2 348 4.68k
eu-2005 3.29 0.863 19.2 5 26 69
flickr 3.13 0.821 9.84 3.29k 8.26k 14.5k
in-2004 5.28 1.38 16.9 0 4 11
ljournal 20.5 5.36 79.0 19.3k 120k 184k
mawi1234 70.8 18.6 38.0 20.9k 176k 609k
pds-80 1.66 0.129 0.928 26.3k 26.6k 26.6k
rail4284 4.18 0.004 11.3 0 13.3k 35.4k
road usa 91.4 23.9 57.7 31 601 158k
webbase 1M 3.81 1.00 3.10 2 19 323
wikipedia-
20061104

12.0 3.15 39.4 47.3k 105k 137k

youtube 4.33 1.13 5.97 5.8k 20.6k 32.6k

TABLE I
BENCHMARK MATRICES USED IN THE EXPERIMENTS [12]. STACK

DISTANCE PERCENTILES ARE A METRIC FOR THE TEMPORAL LOCALITY OF

A MEMORY TRACE: HIGH STACK DISTANCE PERCENTILES MEANS THAT THE

ACCESS PATTERN DURING SPMV WITH A GIVEN VECTOR HAS POOR

TEMPORAL LOCALITY [13]. WE FOUND THESE PERCENTILES TO BE A

BETTER PREDICTOR OF PERFORMANCE THAN, E.G., SPARSITY. ALL

VECTORS ARE OF SINGLE-PRECISION FLOATING POINT VALUES.

VIII. RESULTS

For both PS and PL system we consider three configurations

in terms of MSHRs and subentries. All systems have six

subentries per row.
The PS systems use a 512-entry, 64-bit wide data buffer per

bank. We considered (1) one, (2) two, and (3) four 512-entry

MSHR cuckoo hash tables with (1) 512, (2) 1,024, and (3)

2,048 subentry rows per bank. To each configuration, we add

8, 16, 32, 64 KB of cache per bank (4-way set associative,

except for the 2-way 8 KB), or no cache. Finally, variants with

maximum burst length of (i) 2, (ii) 4, (iii) 8, and (iv) 16 beats

are generated for each of those 15 architectures.
Similarly, the 60 PL systems have (1) one 512-, (2) three

512-, and (3) four 1024-entry MSHR cuckoo hash tables per

bank; 32–256 KB of cache per bank or no cache, and the

maximum burst lengths from 2 to 16. PL systems have a

32-entry, 512-bit wide data buffer per bank.
We will compare each of these architectures to alternative

generic memory systems: (1) our previous memory system

[6]—with unit-length burst—with same amount of MSHRs,

subentry rows, and cache and (2) a traditional nonblocking

cache with 16 associatively-searched MSHRs, each with 8

subentries, with the closest BRAM utilization. Systems (2) are

the same baselines used in our previous work [6] and contain

the maximum number of MSHRs and subentries that ensure

timing closure at 200 MHz (PL systems) and that result in

a slice utilization similar to the miss-optimized architectures

(both systems).

A. Benefits of Dynamically Adjusting the Burst Length and
Impact of Maximum Burst Length

Fig. 7 shows the speedup of DynaBurst compared to our

prior single request memory system [6]. Adjusting burst bounds
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nonblocking cache with the closest area. Moreover, when memory interfaces are wide (PL), bursts bring further speedups to most data points where the
single-request system was already reasonably effective.

is always useful, on all design points. On the PS system, four

beats of 64 bits (256 bits) corresponds to the PS DDR burst

size (8×32 bits), which makes even fixed bursts of up to four

beats beneficial compared to single requests which waste 75%

of the burst content. Still, trimming bursts yields even higher

speedups as contention among the memory controller ports is

minimized. This effect does not appear on the PL system as

single responses already consist of full DRAM bursts.

The maximum burst length controls the tradeoff between

using larger parts of DRAM bursts/rows and wasting bandwidth

due to requesting unnecessary data, either between pending

misses on distant cache lines or due to frequent burst invali-

dations (c.f. Fig. 2 and 3). This tradeoff explains the bitonic

speedup curve on both systems.

Overall, the PS system gains the most from using bursts.

Indeed, restricting to single 64-bit memory requests leaves few

opportunities for reuse among 32-bit accelerator requests. PL

systems benefit from bursts only through DRAM row conflict

minimization, which still brings significant speedup on specific

design points as discussed in the next section.

B. Architectural Exploration

We further analyze the architectures with the ideal maximum

burst length for the respective system—4 and 8 for PL and PS

systems respectively. Fig. 8 explores the benefit of DynaBurst

for different cache sizes and MSHR count.

If the memory controller has multiple narrow ports

(PS system), repurposing some BRAMs from cache to

MSHRs/subentries never pays off unless bursts are used. The

speedup increases with the number of MSHRs and at four

cuckoo hash tables becomes comparable to our original results

[6] on the PL system. Even there, bursts provide additional

speedup on most of the architectures, especially where single-

request architectures were the most useful. This includes the

most lightweight system, whose baseline with the closest area

has no cache at all, and on intermediate configurations with

3×512 MSHRs/bank and moderate cache size.

C. Detailed Speedup Profile

Fig. 9 shows the speedup on individual benchmarks provided

by the best-performing architecture on each system (excluding

the peculiar case with no cache and 1×512 MSHRs/bank on

the PL system). Small and/or regular benchmarks, characterized

by high cache hit rate, benefit more from a larger cache than

from more MSHRs, which is reasonable. Where caches are

less effective, bursts make MSHR-rich architectures useful

also on the PS system, achieving up to 3.4× speedup. On

the PL system, burst architectures improve the performance

of miss-optimized systems on 10 benchmarks out of 15, in

six cases by more than twice. The trend is confirmed by the

absolute performance on the traditional nonblocking cache: the

speedup is the highest on the benchmarks where the traditional

nonblocking cache was performing worse.

D. Analysis of Burst Usage

To better understand the mechanisms behind the improve-

ment of memory access performance on most of the bench-

marks and investigate the reasons for the slowdown on some

benchmarks, we simulated a bad and a good performing

benchmark on the PS and PL systems analyzed in Section

VIII-C and analyzed how many of the cache lines requested

from memory are actually used. More specifically, Fig. 10

shows, for each burst length, how many of the requested cache

lines have been actually used at least once and how many

259



PL systemPS system

eu
-2

00
5

in
-2

00
4

we
bb

as
e-

co
nt

11
_l

db
lp

-2
01

m
aw

i1
23

4

ro
ad

_u
sa

am
az

on
-2

cit
-P

at
e

ljo
ur

na
l

wi
ki

pe
di

pd
s-

80

fli
ck

r

yo
ut

ub
e

ra
il4

28
4

2.24  2.14 1.75 1.71 1.91  1.04
1.871.50

0.42 1.29

0.61
1.39

1.33
1.00

1.09

eu
-2

00
5

in
-2

00
4

db
lp

-2
01

am
az

on
-2

we
bb

as
e-

m
aw

i1
23

4

pd
s-

80

fli
ck

r

wi
ki

pe
di

cit
-P

at
e

ljo
ur

na
l

yo
ut

ub
e

ra
il4

28
4

co
nt

11
_l

ro
ad

_u
sa

0.6x
0.8x

1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

2.6x

2.8x

3.0x

3.2x

3.4x

4.74  4.71 4.53 2.82 3.68 1.66  0.96
4.34

2.35

2.09

2.35

1.27

2.35
3.95 1.25

Single-request [6]
Proposed

Single-request [6]
Proposed

0.42 2.24
MACCs/cycle

0.96 4.74
MACCs/cycle

Sp
ee

du
p 

ve
rs

us
 tr

ad
iti

on
al

 n
on

bl
oc

ki
ng

 c
ac

he

Fig. 9. Speedup provided by the proposed and single-request architecture on individual benchmarks compared to traditional nonblocking cache, at 32 KB of
cache and 4×512 (3×512) MSHRs per bank on PS (PL) system. Bars are color-coded based on the absolute performance, in MACCs/cycle, achieved by the
traditional nonblocking cache baseline, also displayed on top of each bar. Our burst-based miss-optimized architecture is beneficial to most of the largest and/or
irregular benchmarks, where the baseline has the lowest performance.

have been wasted, normalized by the total number of requested

cache lines.

By construction, in bursts of two or more beats, at least

two distinct cache lines will be always used. Invalidated bursts

are completely discarded; hence, the bars corresponding to

zero used cache lines count the number of cache lines wasted

because of invalidations. Data wastage in bursts where two or

more cache lines have been used are instead due to requests

hitting cache lines covered by the same MSHR but that are

not consecutive.

In the well-performing benchmarks, a large share of useful

data is retrieved through bursts of all lengths, which the memory

controller can serve more efficiently than single requests,

especially in the PS system. Indeed, even though the total share

of wasted data is similar in both PS benchmarks, and higher

than in the PL system, the speedup provided by DynaBurst is

significantly higher in road usa than in eu-2005.

Where DynaBurst performs well, most of the bursts converge

to their optimal length (according to the policy described

in Section IV) by the time requests are sent to memory

as invalidations are almost non-existing. Conversely, on the

regular benchmarks, single requests are more dominant and

bursts of maximum length are almost exclusively due to prior

invalidations. In those cases, the cache already filters most of

the memory accesses and the few remaining misses are better

served by single-request architectures.

E. Resource Utilization

Fig. 11 shows the area of all the PS and PL architectures with

ideal maximum burst length (8 and 4 respectively). Due to the

logic for burst handling, slice overhead is 30–40% compared to

single request systems, which brings slice utilization with one

and two hash tables per bank close to that of traditional caches

where associative MSHRs are stored in flip flops. BRAM

overhead is more modest (0–15%) and is due to the additional

burst offset bits in each subentry and to the data buffer. Trends

in the PL system are very similar but overheads are even smaller

(10–15% slices, 2–15% BRAM) thanks to the wide pipeline

registers for 512-bit cache lines, previously in flip-flops, that

are now packed more efficiently into LUTRAM in the data

buffer.

IX. RELATED WORK

All modern DRAM controllers implement some form of

memory operation reordering such as the first-ready first-come

first-serve (FRFCFS) policy which prioritizes row hits [5] or

one of the many alternatives [14]–[20]. All these approaches

must also minimize latency and thus rely on associative

lookups over shallow request queues that provide only a local

view of the memory accesses. We target throughput-oriented

applications that can trade a few more cycles on the miss path

for greater bandwidth through deeper request reordering. This

was also the focus of our previous work [6], which has been

extensively discussed in Sections I and II.

Several works automatically generate application-specific

memory systems. TraceBanking [21] uses a memory trace to

produce efficient on-chip memory banking schemes. Cong

et al. [1] restructure local buffers in HLS applications to

make DRAM-BRAM memory transfers more efficient. EASY

[22] uses an SMT solver to minimize the number of BRAM
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Fig. 10. Distributions of requested, used, and wasted cache lines per burst as a function of the burst length, normalized by the total number of cache lines
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single requests are more frequent.
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Fig. 11. Area of all systems considered in the exploration in Section VIII-B. On
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utilization as traditional nonblocking caches. The overhead is even smaller on
the PL systems (10–15% slices, 2–15% BRAM) as it is partially compensated
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bank arbiters for multi-threaded HLS accelerators. All these

contributions rely on precise compile-time information on the

access pattern and need the entire data set to fit in on-chip

memory or at least to be processable in a tiled fashion—two

limitations that do not concern our system.

The methodology from Bayliss et al. [2] generates

application-specific reuse buffers that minimize memory traffic

and row conflicts, but is restricted to affine loop nests. ConGen

[23] minimizes row conflicts by scrambling DRAM address

bits by analyzing at compile-time the application’s full memory

trace. MATCHUP [24] and LMC [25] use static analysis

on HLS code and runtime profiling respectively to generate

application-specific cache systems. Those generators could

instantiate our architecture behind their caches to transparently

boost read bandwidth towards external memory when the hit

rate remains low and applications are latency-tolerant.

X. CONCLUSION

Irregular memory access patterns bring DRAM memories

far from their optimal operating point, which reduce the benefit

of datapath parallelization. When application-specific solutions

are not available, miss-optimized memory systems improve

throughput of latency-insensitive applications by dynamically

reusing the data returned from DRAM as much as possible

and often more efficiently than a traditional nonblocking

cache with the same area. DynaBurst extends such systems

by requesting variable-length bursts from memory, which

increase the absolute amount of DRAM bandwidth available

to the FPGA by using larger portions of DRAM bursts and

of the DRAM row buffer. This makes miss-optimized systems

beneficial also behind DRAM controllers with multiple narrow

ports, commonly found on SoC platforms, and further increase

their usefulness when memory ports are wide. Our memory

system can be downloaded as an open-source project from

https://github.com/m-asiatici/dynaburst.
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