
Analysis and Optimization of I/O Cache Coherency
Strategies for SoC-FPGA Device

Seung Won Min
Electrical and Computer Engineering

University of Illinois
Urbana, USA

min16@illinois.edu

Jinjun Xiong
IBM T.J. Watson Research Center

Yorktown Heights, USA
jinjun@us.ibm.com

Sitao Huang
Electrical and Computer Engineering

University of Illinois
Urbana, USA

shuang91@illinois.edu

Deming Chen
Electrical and Computer Engineering

University of Illinois
Urbana, USA

dchen@illinois.edu

Mohamed El-Hadedy
Electrical and Computer Engineering
California State Polytechnic University

Ponoma, USA
mealy@cpp.edu

Wen-mei Hwu
Electrical and Computer Engineering

University of Illinois
Urbana, USA

w-hwu@illinois.edu

Abstract—Unlike traditional PCIe-based FPGA accelerators,
heterogeneous SoC-FPGA devices provide tighter integrations
between software running on CPUs and hardware accelerators.
Modern heterogeneous SoC-FPGA platforms support multiple
I/O cache coherence options between CPUs and FPGAs, but these
options can have inadvertent effects on the achieved bandwidths
depending on applications and data access patterns. To provide
the most efficient communications between CPUs and accelera-
tors, understanding the data transaction behaviors and selecting
the right I/O cache coherence method is essential. In this paper,
we use Xilinx Zynq UltraScale+ as the SoC platform to show how
certain I/O cache coherence method can perform better or worse
in different situations, ultimately affecting the overall accelerator
performances as well. Based on our analysis, we further explore
possible software and hardware modifications to improve the
I/O performances with different I/O cache coherence options.
With our proposed modifications, the overall performance of SoC
design can be averagely improved by 20%.

Index Terms—FPGA, heterogeneous computing, cache, cache
coherence

I. INTRODUCTION

Heterogeneous SoC-FPGA platforms such as Xilinx Zynq
UltraScale+ MPSoC provide flexible development environ-
ment with tightly-coupled interfaces between different pro-
cessing units inside. Depending on the needs of users, these
processing units can be combined and programmed to provide
the most suitable configuration. For the different components
to operate seamlessly together, it is important to understand
how data coherency between them are managed. For the
traditional server or desktop class machines, there is little
meaning of configuring the host system’s I/O cache coherence
for general FPGA designers because often: 1) manufacturers
do not provide any documentations of that level of detail or
2) I/O cache coherence is enabled by default in such scales of
systems. On the other hand, in SoC-FPGA design, all available
I/O cache coherence options are fully disclosed to the FPGA
designers and the designers are responsible of choosing the
most suitable methods for target applications.

However, choosing the right I/O cache coherence method
for different applications is a challenging task because of
it’s versatility. By choosing different methods, they can intro-
duce different types of overheads. Depending on data access
patterns, those overheads can be amplified or diminished. In
our experiments, we find using different I/O cache coherence
methods can vary overall application execution times at most
3.39×. This versatility not only makes designers hard to decide
which methods to use, but also can mislead them to wrong
decisions if performance evaluations are incomprehensive.
SoC IP providers such as Xilinx and ARM provide high-level
guides [1], [2] of using different I/O cache coherence methods
and interfaces, but these are often vague and do not include
any quantitative analysis.

In this work, we analyze the effects of using different I/O
cache coherence methods in SoC-FPGA as detail as possible
and provide general guide of using each method. Our I/O cache
coherence performance analysis consists of two parts: software
costs and hardware costs. The software cost denotes how much
the software portion of applications can be affected to maintain
certain types of I/O cache coherence methods. The hardware
cost denotes how much the hardware complexities added to
maintain I/O cache coherence can affect I/O bandwidths. Later
in this paper, both of the costs are combined to evaluate the
total cost of I/O cache coherence. Throughout the experiments,
we use Xilinx’s Zynq UltraScale+ platform which supports
variety of interface options including hardware coherent I/O
bus and direct accesses to L2 cache. The contributions of this
paper can be summarized as follows:

• Evaluate software and hardware costs of using different
I/O cache coherence methods.

• Introduce several optimization techniques which can
eliminate some I/O cache coherence costs.

• Provide a complete guide of achieving efficient I/O cache
coherence based on real hardware evaluation results.

ar
X

iv
:1

90
8.

01
26

1v
1 

 [
cs

.A
R

] 
 4

 A
ug

 2
01

9



The rest of the paper is organized as follows. In Section II,
we explain backgrounds of different I/O cache coherence
strategies in detail. In Section III, we elaborate our exper-
iment environment. In Section IV, we show our software
and hardware I/O cache coherence cost evaluation results. In
Section V, we provide a general guide of I/O cache coherence
optimizations. Section VI discusses related works. Finally in
Section VII, we summarize our work and conclude this paper.

II. I/O CACHE COHERENCE

In a modern system design, it is common to use memory
as a shared buffer to transfer data between CPUs and I/O
devices [3]. However, with CPU caches, it is possible the data
inside the shared buffer is physically scattered over the caches
and DRAM. In such case, depending on the perspective, the
buffer may contain different values. To avoid the situation,
I/O cache coherence is required to maintain data coherency
and consistency between CPUs and I/O devices. I/O cache
coherence can be achieved in several ways. First, certain
regions of memory can be disabled from caching. Second,
CPUs can manually flush or invalidate cache lines before any
I/O data transactions. Third, hardware implementations can be
added so I/O devices can snoop CPU caches. In this section,
we describe the methods and briefly discuss their benefits and
costs.

A. Allocating Non-cacheable Memory

The simplest way of achieving I/O cache coherency is
making memory accesses non-cacheable. This does not need
to be enforced globally, and it can be narrowed down to
specific memory regions which are shared between CPUs and
I/O devices by setting appropriate ISA-dependent virtual page
attributes. However, in this case, CPU memory accesses to the
regions may lose benefits of data locality.

B. Software I/O Coherency

Software I/O coherency requires CPUs to manually flush
or invalidate cache lines by executing cache maintenance
instructions before any data transactions between CPUs and
I/O devices are made. In this method, CPUs can still cache
data from the memory regions shared with I/O devices, but
the manual cache instructions are in critical paths of I/O data
transactions and it can decrease effective bandwidths [4]. Fur-
thermore, global memory fences should be inserted between
the cache instructions and data accesses to guarantee no data
accesses precedes the cache instructions.

C. Hardware I/O Coherency

Hardware coherency relies on hardware implementations
included in host systems which let I/O devices to snoop CPU
caches. This I/O coherence method requires the least amount
of software designers’ attentions as the shared memory regions
can be treated as cacheable, and it does not require any cache
maintenance instructions. Achieving the cache snooping can
be largely done in two ways. First, I/O buses between CPUs
and I/O devices can be modified so every memory access

CPU

L2 (1MB)

User-Defined 

Logic
Cache Coherent 

Interconnect

I/O Bus Main Memory

❶ ACP

❷ HPC

❸ HP

L1 L1�• •

Processing System

(PS)

Programmable Logic 

(PL)

Fig. 1. Simplified block diagram of possible I/O configurations in Xilinx
Zynq UltraScale+. 1 Accelerator Coherency Port (ACP) can access L2 cache
directly. 2 High Performance Coherent (HPC) interface goes through coherent
I/O bus where it can issue cache snooping requests to CPU cache. 3 High
Performance (HP) interface goes to memory directly and I/O cache coherence
should be dealt by CPU.

requests from I/O devices cause cache snoop requests as
well. Depending on snooping results, I/O devices can directly
grab data from caches for readings or automatically invalidate
stale cache lines from CPU caches when writing to memory.
However, resolving cache snoop requests may require several
extra bus cycles between different memory requests which
can reduce I/O bandwidths [5]. The second way is directly
connecting I/O devices to caches. In this case, I/O devices
generate cache snooping requests like other CPU cores. The
difference compared to the first method is in this case, I/O
data requests are treated as regular CPU data requests and
each request generates a cache line allocation. This would be
beneficial if the cache line allocated is reused frequently, but
with inappropriate data access patterns it can end up evicting
useful cache lines for CPUs.

III. EXPERIMENT ENVIRONMENT

All experiments in this paper are done based on Xilinx Zynq
UltraScale+ MPSoC. Zynq Ultrascale+ has Processing System
(PS) block and Programmable Logic (PL) block as described
in Fig. 1. PS consists of hard IPs such as CPU, coherent I/O,
and memory. PL consists of programmable logic and can be
programmed by users like regular FPGAs. Between the two
blocks, there are several types of I/O available. 1 Accelerator
Coherency Port (ACP) interface can access shared L2 cache
(1MB) directly. However, this port does not fully comply

TABLE I
AVAILABLE PL INTERFACES AND DATA COHERENCY METHODS IN ZYNQ

ULTRASCALE+

Alias Inteface Memory Data channel Coherency
Allocation is connected to Method

HP (NC) HP Non-cacheable Memory Not Required
HP (C) HP Cacheable Memory Cache Inst.

HPC HPC Cacheable Memory & H/W CoherentCache (Read-only)
ACP ACP Cacheable Cache H/W Coherent



0

1

2

3

4

5
T

X
 B

a
n
d
w

id
th

 
(G

B
/s

)

Data Transfer Size

HP HPC (w/ Write) HPC (w/ Flush)

ACP (w/ Write) ACP (w/ Flush)

L2 Size

Fig. 2. I/O bus TX (CPU→PL) bandwidth comparison. No software overhead
is included in this measurement.

with Advanced eXtensible Interface 4 (AXI4) protocol which
is commonly used in Xilinx IPs. Since there is no publicly
available ACP adapter IP, we developed ACP↔AXI4 converter
for our experiments. 2 High Performance Coherent (HPC)
interface goes through coherent I/O bus where it can issue
cache snooping requests to the CPU cache.

ARM Cache Coherent Interconnect 400 (CCI-400) [6]
is used for this coherent I/O bus and it uses AXI Co-
herency Extensions (ACE) and ACE-Lite protocols to sup-
port cache coherency. ACE protocol supports bi-directional
(Cache↔Cache) cache coherency and ACE-Lite supports one-
directional (Device→Cache) cache coherency. CCI-400 can
support up to two ACE ports where the one is already occupied
by ARM Cortex-A53 CPU. We do not use the other ACE port
in this experiment since our accelerators do not implement any
private caches. In context of Zynq UltraScale+, HPC interfaces
are only using ACE-Lite protocols. 3 High Performance (HP)
interface goes to memory directly and I/O cache coherence
should be dealt by the CPU. All interfaces are 128-bit wide
and we fix interface frequencies to 300 MHz throughout our
experiments, providing the maximum theoretical bandwidths
of 4.8 GB/s. Table I summarizes overall Zynq UltraScale+
interfaces and possible I/O cache coherence methods. In the
rest of the paper, we refer the HP interface with non-cacheable
and cacheable memory allocations as HP (NC) and HP (C),
respectively.

Software I/O coherency implementation is embedded in
Xilinx drivers and the drivers are capable of identifying the
buffer allocation types. If the buffers are non-cacheable, the
drivers do not manually flush or invalidate caches. If the
buffers are cacheable, the drivers automatically perform cache
flushes and invalidations.

IV. I/O CACHE COHERENCE AND SOC-FPGA

In this section, we evaluate hardware and software costs
of different I/O cache coherence methods. For the hardware
cost, we are interested in identifying how much the extra
steps required to resolve cache snoop requests in hardware
can negatively affect I/O bandwidths. For the software cost

0

1

2

3

4

5

R
X

 B
a

n
d
w

id
th

 
(G

B
/s

)

Data Transfer Size

HP HPC (w/ Read) HPC (w/ Flush)

ACP (w/ Read) ACP (w/ Flush)

L2 Size

Fig. 3. I/O bus RX (PL→CPU) bandwidth comparison. No software overhead
is included in this measurement.

evaluation, we measure CPU overheads added when hardware
coherent I/O interfaces are not supported.

A. Hardware Cost Evaluation

In this experiment, we measure raw bandwidths of non-
hardware coherent I/O (HP) and hardware coherent I/O (HPC
and ACP) interfaces. The raw bandwidth here means the pure
interface bandwidths without any software overheads included.
To measure CPU to PL (TX) and PL to CPU (RX) bandwidths,
we program PL to initiate data transfers and count how many
bus clock cycles spent. For the hardware coherent I/Os, we’d
like to also know if there are any bandwidth differences when
the shared buffer data for both TX and RX cases are cached
or not. To achieve this, we intentionally read/write or flush
the entire range of the shared buffers before the data transfers
begin. The summary of the test setups can be found at Table II.
We do not differentiate between HP (NC) and HP (C) in this
experiment as their differences are only at software costs.

Fig. 2 shows the TX bandwidth measurement results. Start-
ing from the HP results, we observe almost no differences
in TX bandwidths while sweeping from 4KB to 32MB data
transfers. There is a small bandwidth drop at 4KB due to the
initial DRAM access latency, but the overhead of the latency
becomes almost not visible as the data transfer size increases.

In case of HPC, we see huge differences when the data
is cached or not. For HPC (w/ Flush), there is only a small

TABLE II
RAW BANDWIDTH TEST SETUP

Direction Interface Before data transfer
the buffer has been

HP
CPU HPC (w/ Write) Written
↓ HPC (w/ Flush) Flushed

PL ACP (w/ Write) Written
ACP (w/ Flush) Flushed

HP
PL HPC (w/ Read) Read
↓ HPC (w/ Flush) Flushed

CPU ACP (w/ Read) Read
ACP (w/ Flush) Flushed



0

0.2

0.4

0.6

0.8

1

64KB 16MB

N
o

a
rm

a
liz

e
d
 T

ra
n
s
p
o

s
e

 T
im

e

Matrix Size

Cache. to N-cache

Cache. to Cache.

(a) Memcpy (b) Transposition

0

0.2

0.4

0.6

0.8

1

64KB 16MBN
o

rm
a

liz
e

d
 M

e
m

c
p
y
 T

im
e

Memcpy Size

N-cache. to N-cache. N-cache. to Cache.

Cache. to N-cache. Cache. to Cache.

Fig. 4. (a) Memcpy execution time comparison using different combinations
of non-cacheable and cacheable source/destination buffers. (b) Matrix trans-
pose execution time comparison with non-cacheable and cacheable destination
buffers.

bandwidth drop compared to HP, but for HPC (w/ Write), the
TX bandwidth decreases significantly. Based on this analysis,
we can assume the data flow path from CPU cache to the
device is sub-optimal in Zynq UltraScale+. Writing larger
amount of data to the buffer attenuates this problem as the
maximum amount of cached data is limited by the L2 size.
Still, to reach near the peak HPC bandwidth, more than 32
MB of data should be transferred.

ACP bandwidth is nearly reaching 4.8 GB/s with small sizes
of data, but it starts to sharply drop as the data size approaches
toward the L2 size. A53 L2 cache does not have hardware
prefetching unit and therefore all cache accesses without pre-
populated cache lines need to pay cache miss penalties. By
observing the measurement results, we can assume writing
more than 64KB of data in one time starts to evict its
previously allocated cache lines. Currently, A53 L2 cache is
using random cache replacement policy, but future SoC-FPGA
platforms using least recently used cache replacement policy
may push back the self eviction point. When the buffer is
completely flushed before the data transfer, ACP constantly
suffers from the low bandwidth as all cache accesses cause
cache misses.

For the RX bandwidth measurement results, we do not see
any significant bandwidth changes beside ACP. In Fig. 3, both
HP and HPC are reaching near 4.8 GB/s of bandwidths in all
cases. In case of ACP, we observe a similar trend to the TX
case where the ACP bandwidth is higher when most of the
data are cached.

The bandwidth discrepancies between the RX and TX can
be due to the cache coherency protocol. For example, Molka
et al. [7] describes different cache read and write bandwidths
in the Intel’s Nehalem processors due to the cache coherency
protocol used in them.

B. Software Cost Evaluation

In this section, we evaluate non-cacheable memory access
bandwidths and manual cache operation costs. The advantage
of using caches is well evaluated in the past [8], [9], but
we include the evaluation in this paper for the completeness
of I/O cache coherency evaluation. For the non-cacheable

0 0.2 0.4 0.6 0.8 1

16MB

64KB

16MB

64KB

C
P
U
→
F

P
G

A
F
P
G
A
→

C
P

U

Data Transfer Time Breakdown

Data Transfer Cache Ops

CPU
↓

FPGA

FPGA
↓

CPU

Fig. 5. Data transfer time breakdown with manual cache maintenance
instructions.

memory access evaluation, we first measure four types of
memory copy operations: non-cacheable to non-cacheable,
non-cacheable to cacheable, cacheable to non-cacheable, and
cacheable to cacheable. All memory copies are done using
memcpy() function from the C library. In Fig. 4 (a), we
find the bandwidth penalty is as large as 30× when reading
from the non-cacheable region compared to reading from the
cacheable region. On the other hand, the memory writes to
the non-cacheable regions remains almost the same because
the Write-Combine (WC) function can combine multiple non-
cacheable write requests to a single larger memory write. This
feature will be further discussed in Section V-A.

Still, the WC is only active in regular memory access
patterns and CPUs can suffer from long memory latencies
with irregular memory write patterns. In Fig. 4 (b), we
measure execution times of matrix transpositions to different
types of memory. In this experiment, the source matrix is
stored in cacheable memory region and the destination for the
transposed matrix is located in non-cacheable memory region.
When the entire matrix can fit in the cache, the cacheable
memory is about 4× faster than the non-cacheable memory.
When the matrix size is much larger than the cache size, the
cacheable memory is still about 1.33× faster than the non-
cacheable memory.

When manual cache instructions are needed, the CPU
overhead added heavily depends on other CPU workloads and
the total number of buffers flushed or invalidated. In Linux,
after each buffer is flushed or invalidated, global memory
barrier should be inserted to guarantee no memory accesses
are reordered. If this global memory barrier needs be executed
multiple times while heavy memory accesses are being made,
the overall CPU performance can be severely degraded.

In Fig. 5, we show data transfer time breakdown with
manual cache instructions. With a smaller data size, the manual
cache instructions take majority of the total data transfer time.
With a larger data size, the overhead of the memory barrier
takes less portion of the total data transfer time and the total
overhead of the manual cache instructions become smaller. We
find the directions of the data transfers do not significantly
affect the manual cache instruction overheads.



Large(>16MB)

Direction?

Is it mostly 

CPU write?

HP (NC)

HPC

Data size?

When data is 

read?

Can you insert 

more memory 

access? (>16MB)

HPC

HPC

ACP

Is it mostly 

sequential?
HP (NC)

CPU→PL

PL→PL

PL→CPU

No

Yes

No

Yes

Medium

Small (<64KB)

Unknown/Later

Yes

No

Immediately after 

CPU writes

Final Decision

HP (C)

Any other background 

tasks with memory 

intensive workloads?

Yes No

*From this point, we cannot 

use non-cacheable memory 

and should rely on 

cacheable memory

Fig. 6. Decision tree for selecting the optimal I/O cache coherence method.

V. OPTIMIZING DATA TRANSACTIONS

In this section, we suggest several I/O cache coherence
optimization techniques to achieve the most effective data
transaction behaviors. First, we introduce several hardware
features which can be exploited to remove some I/O cache
coherence overheads. Second, we present a decision tree
(Fig. 6) which can be utilized to optimize I/O cache coherence
selections. Finally, we apply our decision tree to several ap-
plications and compare the overall performances with baseline
designs.

A. Exploiting Hardware Features

1) Wribe Combine (WC): WC is a cache feature which
can combine multiple write accesses to non-cacheable regions
into a single larger memory write request [10]. Compared to
requesting multiple small memory writes, requesting a single
larger memory write can better utilize the memory bandwidth.
To activate this feature, consecutive write requests should be
contiguous in memory address space in certain degree. The
minimum requirement for the contiguity may depend on CPU
architecture, and A53 requires at least the write requests are
128-bit aligned. For example, if there are four integer (4-byte)
write requests to address of 0x00, 0x01, 0x02 and 0x03, then
they can be combined into a single 128-bit write request. When
the write requests are pointing to different memory addresses
resulting into different memory alignments, they need to be
split into different memory write requests.

2) Cache Bypass: In Section IV-A, we showed the
CPU→PL bandwidth of HPC interface can be significantly
lower when the data is cached. It is possible to resolve
this by manually flushing cache lines, but this costs CPU
cycles in exchange. One way to implicitly flush the cache
lines is using cache bypass function in hardware [11]. Cache
bypass can be used in cacheable memory region where caches
decide not to allocate certain cache lines for certain data
access patterns. In A53, similar function, called Read Allocate
Mode, is implemented to not allocate cache lines when there
is a massive amount of writes with regular access patterns.
This kind of behavior can be often observed when using
memset(). With this feature, without explicitly executing
cache flush instructions, data can be directly written into
DRAM even if the memory regions are cacheable. However,
if the memory writes are done with irregular patterns, the read
allocate mode is not activated.

B. I/O Cache Coherence Decision Tree

Gathering all explorations from previous sections, we build
a decision tree (Fig. 6) to provide a general I/O cache coher-
ence optimization flow. The total cost of I/O cache coherence
can be roughly estimated as follows:

(total cost) =
α

(raw bandwidth)
+ (software cost)

Here, the α represents the bandwidth requirement of an
application. We first categorize all data transaction types into
CPU to PL, PL to PL, and PL to CPU. Just to clarify, in this
decision tree, we are only accounting to the cases where a
shared memory (mostly host DRAM) between two instances
is used as a data communication medium. Without any shared
memory, there are no I/O cache coherency issues. Our decision
tree strategy focuses on minimizing unexpected risks rather
than maximizing possible gains. The parameter values set in
this decision tree can be rather conservative.

For the communication between PL logics, there is no CPU
involvement and therefore using HP (NC) is the best. For the
PL to CPU case, we conclude using HPC interface is the best
in general as it can provide relatively high memory bandwidth
while not introducing additional software costs. The memory
bandwidth loss with the HPC interface in this case compared
to the HP is about 5% (Fig. 3).

CPU to PL case is more complex than the former two cases
as the raw bandwidth differences are huge in this case. In this
case, we first check if the TX buffer is mostly used for CPU
write. If the CPU is mostly writing to the buffer, then we
check if the writing is mostly done in sequential manner. If
the memory write patterns are sequential or can be modified
to be sequential, then we can safely use the non-cacheable
memory allocation. If the writes cannot be made sequential or
the CPU needs to make substantial amount of read requests
from this buffer, the buffer cannot be made non-cacheable.
From this point, we need to rely on HP (C), HPC, or ACP.

Using HP (C) is discouraged in general since executing extra
cache instructions and memory barriers can only have negative
affects in terms of performances. To use HPC or ACP, we
must check how much of the data to be transferred is cached
as the raw bandwidths of HPC and ACP vary a lot depending
on the data locations. However, because it is impossible to
know the exact location of data before we access the cache,
we rely on several intellectual guesses. First, we check the



HP (NC) HP (C) HPC ACP Optimized

Pre-processing Accelerator Post-processing

2.36 3.39 2.08 2.92 2.97

DoG

(480x270)

H
P

 (
N

C
)

H
P

 (
C

)
H

P
C

A
C

P
O

p
ti
m

iz
e

d

H
P

 (
N

C
)

H
P

 (
C

)
H

P
C

A
C

P

O
p

ti
m

iz
e

d

H
P

 (
N

C
)

H
P

 (
C

)
H

P
C

A
C

P
O

p
ti
m

iz
e

d

0

0.5

1

1.5

2

H
P

 (
N

C
)

H
P

 (
C

)

H
P

C

A
C

P

O
p

ti
m

iz
e

dN
o

rm
a

liz
e

d
 E

x
e

c
u
ti
o

n
 T

im
e

DoG

(3840x2160)
SGEMM Average

Fig. 7. Benchmark results with using different I/O cache coherence methods.
Difference of Gaussian (DoG) is tested with different image sizes.

size of the data. If the data size is large enough (>16MB),
based on our observation from Fig. 3, we can obtain relatively
high bandwidth with HPC. Second, if the data size is small
(<64KB) and the accelerator reads the data immediately after
the CPU writing, we can use ACP to maximize the bandwidth.
Third, if none of the above cases were true, we can consider
reordering some other workloads to just before the accelerator
data reads. For example, in video streaming, we can add some
delay of several frames to make latter frames to evict former
frames from the cache. If the reordered workloads can make
large enough amount of memory accesses (>16MB), most of
the data will be evicted from the cache and we can use HPC.
If this is also impossible, then we finally need to consider
using HP (C). Before we choose HP (C), one thing we may
need to consider is if there are any background tasks which
are memory intensive. If there are any such tasks, we should
still consider using HPC as memory barriers inserted by HP
(C) is likely to slow down the overall CPU performances.

C. Case-Study Evaluations

To evaluate our decision tree, we use modified Difference
of Gaussian (DoG) filter from xfOpenCV [12], SGEMM, and
CHaiDNN [13] with AlexNet as case-study examples. All
applications are written in C++ and synthesized with Xilinx
SDSoC. DoG takes grayscale images as inputs and generates
two outputs. The first output is generated by directly applying
a gaussian filter to the input and the second output is generated
by passing the first output to another gaussian filter. Later, two
output images are subtracted to each other and the final output
is generated. This difference of the gaussian filtered images
are often used for edge detections. For this application, we
use CPU to convert RGB images to grayscale images and
subtract two gaussian filtered images. Accelerator is used for
accelerating the gaussian filters. For SGEMM, we implement
a 128×128 matrix multiplication accelerator and perform
block matrix multiplication for larger input matrices. CPU is
responsible of cropping input matrices into 128×128 blocks

N
o

rm
a

liz
e

d
 E

x
e

c
u

ti
o

n
 T

im
e

0

0.2

0.4

0.6

0.8

1

HP (NC) HP (C) Optimized

De-Quant.

Pool5

Conv5

Conv4

Conv3

Pool2

Conv2

Pool1

Conv1

Quant.

Fig. 8. Benchmark results of CHaiDNN with different I/O cache coherence
methods. Quantizations and de-quantizations are done at CPU. The execution
order is from bottom to top (Quant.→Conv1→...→Pool5→De-Quant.).

and feeding into the SGEMM accelerator and accumulating
the accelerator outputs into the output matrix. CHaiDNN
accelerates convolution and pooling layers of DNN and CPU
is responsible of quantizing input images and de-quantizing
accelerator outputs.

For the baselines, we implement designs with pure HP (NC),
HP (C), HPC, or ACP options. Due to the design complexity,
we only compare between HP (NC), HP (C), and optimized
version for CHaiDNN. The baseline CHaiDNN design from
Xilinx only uses HP (NC) and HP (C). The optimized designs
follow the decision tree we created. The modifications are only
done in memory allocation types and interface connections and
accelerators are not modified while comparing with other I/O
cache coherence methods.

Fig. 7 shows the benchmark results of DoG with different
image sizes and SGEMM. In average, our optimized version
achieved at least 20% of execution time reduction compared
to any other baseline configurations. In general, HP (NC) has
the smallest accelerator execution times due to is high raw
bandwidth, but the post-processing times have been greatly
increased. HP (C) in general has very long accelerator execu-
tion times because of manual cache instructions and memory
barriers. HPC performs well when the input sizes are large, but
starts to suffer from low raw bandwidth when the inputs are
small due to the reason explained in Section IV-A. In opposite,
ACP performs well when the input sizes are small, but as the
input sizes increase the cache hit rates become lower and the
accelerator execution times start to skyrocket.

Fig. 8 shows the AlexNet execution time breakdown with
CHaiDNN. HP (NC) greatly suffers from non-cacheable mem-
ory accesses during both quantizations and de-quantizations.
HP (C) has slightly better performance than HP (NC), but
still need to spend non-negligible amount of time executing
manual cache instructions. The optimized version removes
the penalties of both HP (NC) and HP (C) and reduces the
execution time by 37.2% and 30.9% compared to HP (NC)
and HP (C), respectively.

VI. RELATED WORKS

There are several I/O cache coherence bandwidth researches
with older SoC-FPGA platforms such as Xilinx’s Zynq-7000
and Altera’s Cyclone V [14]–[20]. For both platforms, the



only available hardware coherent I/O port is ACP. [15]–[20]
are limited to evaluating raw I/O bandwidths of using different
ports and did not include software cost evaluations. [14] has
evaluated software costs of I/O cache coherence, but only with
a fixed data access pattern.

VII. CONCLUSION

The costs of different I/O cache coherence methods varies
widely depending on applications. Approaching the I/O cache
coherence optimization problem should be done in bottom-up
fashion including both software and hardware profilings. In
this paper, we presented multiple I/O cache coherence methods
of SoC-FPGA and optimization techniques based on thorough
analysis of Zynq UltraScale+ platform. By properly combining
different I/O cache coherence methods, we showed the overall
execution time can be reduced by 20%. In this paper, we
mainly discussed the I/O cache coherence in a context of
CPU-to-accelerator connections, but this can be also applied to
other device connections such as high-speed Ethernet, GPU,
and NVMe. Considering that modern SoC-FPGA platforms
can support many different kinds of peripherals, a good
understanding of I/O cache coherence optimization will be
more important in the future.

VIII. ACKNOWLEDGEMENTS

This work was supported by the Applications Driving
Architectures (ADA) Research Center, a JUMP Center co-
sponsored by SRC and DARPA, and IBM-ILLINOIS Center
for Cognitive Computing Systems Research (C3SR) – a re-
search collaboration as part of the IBM AI Horizon Network.

REFERENCES

[1] ARM, “ARM Cortex-A53 MPCore Processor Technical Reference Man-
ual,” https://developer.arm.com/docs/ddi0500/g/preface.

[2] Xilinx, “Zynq UltraScale+ Device Technical Reference Manual,”
https://www.xilinx.com/support/documentation/user guides/
ug1085-zynq-ultrascale-trm.pdf.

[3] T. B. Berg, “Maintaining I/O data coherence in embedded multicore
systems,” IEEE micro, vol. 29, no. 3, 2009.

[4] M. Loghi, M. Poncino, and L. Benini, “Cache coherence tradeoffs in
shared-memory MPSoCs,” ACM Transactions on Embedded Computing
Systems (TECS), vol. 5, no. 2, pp. 383–407, 2006.

[5] G. Girão, B. C. de Oliveira, R. Soares, and I. S. Silva, “Cache coherency
communication cost in a NoC-based MPSoC platform,” in Proceedings
of the 20th annual conference on Integrated circuits and systems design.
ACM, 2007, pp. 288–293.

[6] ARM, “ARM CoreLink CCI-400 Cache Coherent Interconnect Tech-
nical Reference Manual,” https://developer.arm.com/docs/ddi0470/k/
preface.

[7] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller, “Memory
performance and cache coherency effects on an intel nehalem multi-
processor system,” in 2009 18th International Conference on Parallel
Architectures and Compilation Techniques. IEEE, 2009, pp. 261–270.

[8] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in ACM
SIGARCH Computer Architecture News, vol. 18, no. 2SI. ACM, 1990,
pp. 364–373.

[9] M. D. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance
and optimizations of blocked algorithms,” in ACM SIGARCH Computer
Architecture News, vol. 19, no. 2. ACM, 1991, pp. 63–74.

[10] J. Benkual, T. Y. Ho, and J. F. Duluk Jr, “System, apparatus, method,
and computer program for execution-order preserving uncached write
combine operation,” Dec. 30 2003, uS Patent 6,671,747.

[11] T. L. Johnson, D. A. Connors, M. C. Merten, and W.-M. Hwu, “Run-time
cache bypassing,” IEEE Transactions on Computers, vol. 48, no. 12, pp.
1338–1354, 1999.

[12] Xilinx, “xfOpenCV,” https://github.com/Xilinx/xfopencv, 2019.
[13] ——, “CHaiDNN,” https://github.com/Xilinx/CHaiDNN, 2019.
[14] A. Powell and D. Silage, “Statistical performance of the ARM cortex

A9 accelerator coherency port in the xilinx zynq SoC for real-time
applications,” in 2015 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). IEEE, 2015, pp. 1–6.

[15] J. Silva, V. Sklyarov, and I. Skliarova, “Comparison of on-chip com-
munications in Zynq-7000 all programmable systems-on-chip,” IEEE
Embedded Systems Letters, vol. 7, no. 1, pp. 31–34, 2015.

[16] M. Sadri, C. Weis, N. Wehn, and L. Benini, “Energy and performance
exploration of accelerator coherency port using Xilinx ZYNQ,” in
Proceedings of the 10th FPGAworld Conference. ACM, 2013, p. 5.

[17] P. Vogel, A. Marongiu, and L. Benini, “An evaluation of memory
sharing performance for heterogeneous embedded SoCs with many-core
accelerators,” in Proceedings of the 2015 International Workshop on
Code Optimisation for Multi and Many Cores. ACM, 2015, p. 6.

[18] V. Sklyarov, I. Skliarova, J. Silva, and A. Sudnitson, “Analysis and
comparison of attainable hardware acceleration in all programmable
systems-on-chip,” in 2015 Euromicro Conference on Digital System
Design. IEEE, 2015, pp. 345–352.

[19] R. F. Molanes, J. J. Rodrı́guez-Andina, and J. Farina, “Performance
characterization and design guidelines for efficient processor–FPGA
communication in Cyclone V FPSoCs,” IEEE Transactions on Industrial
Electronics, vol. 65, no. 5, pp. 4368–4377, 2018.

[20] R. F. Molanes, F. Salgado, J. Fariña, and J. J. Rodrı́guez-Andina, “Char-
acterization of FPGA-master ARM communication delays in Cyclone V
devices,” in IECON 2015-41st Annual Conference of the IEEE Industrial
Electronics Society. IEEE, 2015, pp. 004 229–004 234.

https://developer.arm.com/docs/ddi0500/g/preface
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/support/documentation/user_guides/ug1085-zynq-ultrascale-trm.pdf
https://developer.arm.com/docs/ddi0470/k/preface
https://developer.arm.com/docs/ddi0470/k/preface
https://github.com/Xilinx/xfopencv
https://github.com/Xilinx/CHaiDNN

	I Introduction
	II I/O Cache Coherence
	II-A Allocating Non-cacheable Memory
	II-B Software I/O Coherency
	II-C Hardware I/O Coherency

	III Experiment Environment
	IV I/O Cache Coherence and SoC-FPGA
	IV-A Hardware Cost Evaluation
	IV-B Software Cost Evaluation

	V Optimizing Data Transactions
	V-A Exploiting Hardware Features
	V-A1 Wribe Combine (WC)
	V-A2 Cache Bypass

	V-B I/O Cache Coherence Decision Tree
	V-C Case-Study Evaluations

	VI Related Works
	VII Conclusion
	VIII Acknowledgements
	References

