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Abstract—Specialized accelerators for tensor-operations, such
as blocked-matrix operations and multi-dimensional convolu-
tions, have been emerged as powerful architecture choices for
high-performance Deep-Learning computing. The rapid develop-
ment of frameworks, models, and precision options challenges
the adaptability of such tensor-accelerators since the adaptation
to new requirements incurs significant engineering costs. Pro-
grammable tensor accelerators offer a promising alternative by
allowing reconfiguration of a virtual architecture that overlays
on top of the physical FPGA configurable fabric. We propose an
overlay (τ -VTA) and an optimization method guided by agile-
inspired auto-tuning techniques. We achieve higher performance
and faster convergence than state-of-art.

Index Terms—Neural Networks, Machine Learning, Autotun-
ing, FPGA, Transprecision Computing, Tensor Accelerator

I. INTRODUCTION

Deep Learning (DL), a powerful set of techniques for
learning in neural networks, has achieved unprecedented accu-
racy in numerous aspects of the digital transformation of our
society. This fascinating biologically-inspired programming
paradigm, which enables a computer to learn from observa-
tional data, attributes its success to a large volume of trained
parameters, which, however, can contain a lot of redundant
information [13]. Prior art has maintained remarkable levels
of accuracy, by applying pruning techniques [11][13][31], or
by using sparsification [4], or both [14][15]. A highly ef-
fective technique exploiting redundant information is moving
from floating-point arithmetic to low-precision integer arith-
metic [5]. Recently, transprecision computing was proposed
as a paradigm shift in precision selection, and suggests the
adaptability of precision according to an application’s require-
ments [20], as opposed to the conservative static selection of
low precision processing.

DL systems rely on hardware (HW) accelerators and man-
ually optimized, high-performance libraries to increase com-
putational efficiency, i.e., achieving the maximum throughput
while consuming the smallest possible amount of resources
and energy [18], [23]. While GPUs are dominating the training
and inference computations at scale, FPGAs can achieve more
than 10× better speed and energy efficiency than state-of-the-
art GPUs [12], [21]. In addition, the inherent programmability
of FPGAs at bit-level makes them ideal accelerators for ultra
low-precision inference and training [29], [19].

To optimize a neural network, programmers must choose
from many implementations that are logically equivalent
but differ dramatically in performance due to differences in
threading, memory reuse, pipelining and other HW factors.
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Fig. 1: Auto-tuning a model for an overlay FPGA back-end does not
necessarily lead to higher performance, when the precision is decreased
(e.g. INT8 to INT4). Investigating the reason and proposing path-forward
motivates this work.

Supporting diverse HW back-ends therefore incurs significant
engineering cost. Depending on whether it is an FPGA, a
GPU or an ASIC, the accelerator’s adaptability to different
models heavily relies on the software-supported libraries that
bridge the gap between the programming language semantics
and the HW supported intrinsics. A recent study proposed
the use of a statistical cost model that predicts program run
time by using a given low-level program [8]. The cost model
guides the exploration of the space of possible programs.

While auto-tuning has been proved to be effective in auto-
matic optimization, it typically assumes a fixed HW that offers
tunable knobs in the software, like tiling, loop reordering,
etc. However, in the case of FPGAs, the HW design space
also provides both tunable micro-architecture choices, e.g.
pipelining, and tunable implementation choices, e.g. device
frequency. Such HW tunable choices can lead to sub-optimal
auto-tuning when only a subset of them is considered for
bitstream generation, particularly in low-precision DL for
FPGAs [5].

To illustrate this problem, we examine the auto-tuning of
an FPGA overlay developed by the community-driven TVM
DL compiler stack [1], specifically VTA [22]. This overlay
employs a GEMM accelerator as a computation engine for
convolution operations. We configured a GEMM of 8 bits
(W8A8) and 4 bits (W4A4), for weights and activations,
respectively. Figure 1 depicts the roofline model [30] of
VTA, overlaid on a PYNQ-Z1 device [2]. The plot shows
the throughput achieved on different convolution layers of the
ResNet-18 inference benchmark. Each layer has a different
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arithmetic intensity, i.e. compute to data movement ratio. In
the left half of the plot, convolution layers are bandwidth-
limited, whereas on the right half, they are compute-limited.
The operation points on the roofline, depicted as circles
in Figure 1, are “optimal” since in those points neither
performance nor communication is under-utilized. The goal
behind designing HW architectures and compiler stacks is to
bring each workload as close as possible to the roofline of the
target HW and ideally to these “optimal” points.

As an experiment, we auto-tuned the VTA, using TVM’s
auto-tuning flow, configured with a GEMM of W8A8 and
W4A4. When VTA is configured with a 4-bit GEMM in-
trinsic, the theoretical performance is doubled to 102GOPs.
In addition, the arithmetic intensity is doubled since half the
number of bytes have to be fetched from the main memory.
Please note that this is a strong advantage of overlay architec-
tures on FPGAs [5]. However, the case of W4A4 delivers a
measured performance identical to that of VTA W8A8, which
wastes 100% of the theoretical possible speedup. In addition
the Euclidean distance (L2) of all auto-tuned convolutions
is higher for W8A8 than W4A4 from the perspective of
the “optimal” operation points for VTA of 8 bit and 4 bits.
This shortcoming is attributed to the current TVM compiler
stack that relies on the user for the selection of the HW
parameters of the VTA overlay for different precision. In
addition, the VTA auto-tuning, using TVM’s current auto-
tuning flow, focuses only on software-related optimization
options, assuming a fixed VTA design on the FPGA. While
this assumption enables the interoperability of TVM’s auto-
tuning flow to silicon-proven devices, such as GPUs, DSPs
and custom ASICs, it neglects some important features of
reconfigurable HW.

In this paper, we explore the following question: Can we
automatically guide the auto-tuning of a tensor accelerator
overlay, for different precision settings, by leveraging
knowledge from hardware design experience? Our affirma-
tive answer is based on a framework that makes the following
contributions:

� Engineering aspect: We adopt the concept of agile de-
velopment to the community-driven TVM github repository,
by bringing-up a pipeline of engineering tasks that extends
the autotuning process. When this step is finished, the best
explored models can be uploaded to benefit the community.
� Scientific aspect: Instead of eliminating the overlay hard-

ware design space with pruning techniques (e.g. successive
halving, used in [22]), we propose a technique that builds
a prediction model that quantifies the impact of a hardware
design choice (feature) towards an optimization goal, e.g.
increasing performance. By employing a classifier with an
arbitrary differentiable loss function, we show that the features
with the highest impact differ for different precisions. We
further propose the use of the most important features in order
to generate an overlay and then continue with auto-tuning.

In Section II we present the design-automation engineer-
ing contribution, i.e. the agile auto-tuning methodology. To
demonstrate the impact of this new integral development
concept, we propose the τ -VTA optimization in Section III.
Experimental results are presented in Section IV and Sec-
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Fig. 2: Overview of the proposed approach: the auto-tuning step of the TVM
toolflow for FPGAs considers also options from the implementation phase
of the VTA tensor accelerator overlay.

tion VI concludes the paper.

II. AGILE AUTOTUNING METHODOLOGY

A. Integration to TVM

To handle the expanding ecosystem of DL Frameworks
on the one side and specialized DL HW on the other, a
group from the University of Washington proposed TVM, a
full open source compiler-stack [7], [22], [24] that aims to
“close the gap between the productivity-focused deep learning
frameworks, and the performance- or efficiency-oriented hard-
ware backends” [1]. TVM is built using multiple Intermediate
Representation (IR) languages and therefore offers multiple
layers for optimizations, as seen on the left-hand side of
Figure 2. It first has multiple modules to import state-of-
the-art DL Frameworks (like pytorch, Tensorflow, Keras) to
the RelayIR [24]. Afterwards, it is able to perform multiple
optimizations on the Abstract Syntax Tree (AST) generated
out of RelayIR and lower the program to the TVM IR. The
TVM IR can then be interpreted by a runtime or another
compiler to finally execute the DL task on the target HW [22].

One special contribution of TVM is, besides the large
number of supported Frameworks and HW, to perform the so-
called “auto-tuning” of tensor operations in order to maximize
performance [8]. During auto-tuning, a number of known
optimizations are performed on the Relay AST to improve the
scheduling of the arithmetic operations. That way, the auto-
tuning doesn’t change the actual mathematical instructions –
like ALU or GEMM operations would – of the program,
but the execution order and memory accesses [8]. TVM’s
current auto-tuning supports numerous optimizations across
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Fig. 3: The design space of τ -VTA.

the lowering from DL code to an executable, categorized in
high-level dataflow rewriting, memory reuse across threads,
tensorized compute intrinsics and latency hiding. These are
analytically presented in [17].

We propose that HW-SW interoperability be adopted to
support the VTA auto-tuning in an agile way, inspired by
the positive disruption of the Hardware Agile Manifesto [16].
As depicted in Fig. 2, the processes of customizing the VTA
overlay and optimizing the software in multiple IRs, are com-
bined in a united auto-tuning task. With this approach we aim
to extend TVM’s current auto-tuning flow with HW design
options for VTA in an automatic way. Most importantly, the
intention of our approach is to select the most important HW
options during the auto-tuning, particularly the ones correlated
with different precision of VTA. In a nutshell, the “agile”
concept is to provide a development environment where
knowledge flows easily so the best solutions are reached as
quickly as possible. Fig. 2 conceptualize the steps, where
experience from DL development, DL software engineering
and DL hardware engineering can be combined by spawning
pipelines of tasks (i.e. auto-tuning sprints) on multiple systems
(i.e. auto-tuning fleet) that share libraries, tools and devices in
order to decrease auto-tuning time. This step will be further
explained in subsection II-C.

B. Introducing the design space of τ -VTA

Figure 3 gives a high-level overview of the VTA hard-
ware organization, as firstly presented in [22]. In addition,
the figure highlights the main contribution of this work,
i.e. the extension of TVM’s auto-tuning design space with
design options from HW expertise. VTA is composed of four
modules: FETCH, LOAD, COMPUTE, and STORE, which
communicate over command queues and on-chip shared mem-
ories, implemented using FPGA block-RAMs (BRAMs). The
FETCH module dispatches task instructions after loading
them from the DRAM. The LOAD and STORE units trans-

fer tensor-tiles from DRAM into on-chip FPGA memories
(BRAMs) and vice versa, respectively. The COMPUTE unit
performs operations on the register file. Specifically, the
tensor ALU performs element-wise tensor operations such as
activation, normalization, and pooling tasks, while the GEMM
core performs matrix multiplication over input and weight
tensors. Common deep learning Micro-kernels, such as 2D
convolutions, are executed in GEMM core [22].

The VTA architecture is parameterizable, so that different
shapes can be configured for tensor intrinsics, depending on
the available resources. For example, the shape of input,
weight, and accumulator tensors that feed the GEMM tensor
intrinsic unit directly affects the utilization of multipliers and
the width of BRAMs ports. The data-types of the tensors are
also parameterizable e.g. 8 bits or fewer. Programmability of
the VTA is based on a two-level Instruction Set Architecture
(ISA): i) a CISC-like task-ISA that explicitly orchestrates
concurrent compute and memory tasks and ii) a RISC-like
microcode-ISA that implements a wide variety of operators
with single-cycle tensor-tensor operations.

VTA is an overlay architecture programmed in synthesiz-
able C++. Using the Xilinx Vivado HLS tool it is synthesized
to a hardware description language (HDL) (either VHDL
or Verilog) as a register-transfer-level (RTL) model. The
downstream implementation stage, with the Xilinx Vivado
tool, includes logic synthesis, place & route, optimization (e.g.
timing, area, energy) and the generation of a VTA bitstream
for the FPGA device.

All of these steps include many design choices that affect
the trade-off between performance and resources utilization.
In addition to the design options, the customization knobs of
VTA define an additional hardware design space with 1000s of
individual designs. VTA’s developers explore which candidate
to use in a sequence of steps. First, they use a simple FPGA
resource model to prune unfeasible VTA parameterizations.
After pruning, each candidate hardware design is compiled,
placed, and routed. They select three tunable parameters,
specifically, FPGA device, precision and batch size. Typically
their exploration returns a handful of promising candidates -
“the rest of the designs either yield low peak performance
or fail placement, routing, or timing closure” [22]. For this
final set of designs, they generate optimized software, using
operator auto-tuning[8], and use this software to obtain the
workload’s performance profile.

While VTA’s optimization uses pruning instead of exhaus-
tively exploring the design space to find the best candidate,
the design space is limited to only three parameters. However,
an overlay FPGA design can benefit from the knobs of design
tools to deliver high performance. Such knobs may have
an indirect impact on auto-tuning. For example, an optimal
selection of the design options solely in the HLS step can
lead to performance improvements of up to 29.030× [9].
Figure 3 shows some important design options that are later
discussed in Section III. We propose to find the impact of
these parameters on VTA’s performance by using a prediction
technique and then guide the exploration based on the most
important parameters. Hence, instead of pruning the design
space with the hardware experience of designs that fail to meet



Listing 1: The
naive implementation.

for i in 0..1024:
 for j in 0..1024:
   C[i][j] := 0

  for k in 0..1024:
   C[i][j] += A[k][i] *   
              B[k][j]

for io in 0..(1024/ti):
  for jo in 0..(1024/tj):
    C[io*ti:io*ti+ti][jo*tj:jo*tj+tj]:= 0

for k in 0..1024:
   for ii in  0..ti:
      for ji in 0..tj: 
          C[io*ti+ii][jo*tj+ji] +=
           A[k][io*ti+ii] * B[k][jo*tj+ji]

Listing 2: One possible optimization using loop tiling to
optimize memory access leveraging the cache, where ti
and tj are the tiling factors for each dimension.

X

Single Buffer Partitioned Buffer, factor:2

---------- 18 bits ----------

2-ports 4-ports
Throughtput: 2x8=16bits/clk

BRAMs: 1
Throughtput: 4x8=32bits/clk

BRAMs: 2

2-ports
Throughtput: 2x16=32bits/clk

BRAMs: 1

Worst Negative Slack

Routing Congestion

- +
100MHz 142MHz 167MHz 200MHz

Reshaped Buffer dim:1,factor:2

#pragma HLS array_partition
variable=X factor=2 dim=1

---------- 18 bits ----------

#pragma HLS array_reshape
variable=X block factor=2

uint8[depth] X,
X can be A,B,C of
Listings 1,2,3

---------- 18 bits ----------
X1

X2

X1 X2

for io in 0..128:
   for jo in 0..128:
    vta.intr.fill_zero(C[io*8:io*8+8][jo*8:jo*8+8])
for ko in 0..128:
   vta.intr.gemm8x8_add(C[io*8:io*8+8][jo*8:jo*8+8], A[ko*8:ko*8+8]
                        [io*8:io*8+8], B[ko*8:ko*8+8][jo*8:jo*8+8])

Listing 3: Another possible optimization using the intrinsic operations of VTA accelerator.
This example sets the tiling factors ti and tj to 8 in order to match the dimensions of the
available intrinsic instructions.

Fig. 4: Exemplary impact of features “Partition” and “Reshape” on memory
throughput and BRAMs utilization for an uint8 array.

the specs, we proactively offload the design space pruning
to an algorithmic optimization problem (Section III). To
establish a differentiation of the proposed VTA auto-tuning,
from the current one in TVM stack, we use the term “τ -VTA
auto-tuning”, accounting for transprecision.

To highlight the difference of the current VTA auto-tuning
by the “τ -VTA auto-tuning”, we present in code Listing 1 an
example of a GEMM computation. The Listing 2 is expected
to be faster on a target HW that uses caches, while the
Listing 3 relies on intrinsic HW specific instructions. During
TVM’s auto-tuning phase, one of the optimizations is the se-
lection of different tiling factors that accommodate for specific
cache hierarchy or HW intrinsic dimensionality on the HW
device (VTA). This selection can be either completely random
or algorithmic-driven as shown in [8], where XGBoost [6] and
TreeGRU [27] algorithms have shown to find better code-
refactoring candidates in shorter time. However this analysis
neglects some important features of the reconfigurable HW.
For example, if the data-type of the computation is uint8,
then during the design of VTA we can use the Vivado HLS
directives #pragma HLS ARRAY PARTITION and #pragma
HLS ARRAY RESHAPE to increase the memory throughput
and BRAMs utilization, as shown in Fig. 4, assuming 18Kbits
true dual-port Xilinx BRAMs. The case of uint4 will double
the throughput and so on. However, the aggressive use of
those directives is known to increase the routing congestion
and the difficulty to meet the target frequency. Such trade-
offs are known to the HW engineering community, but not
in the SW counterpart. The “τ -VTA auto-tuning” bridges this
gap by algorithmically selecting the most important VTA HW
parameters, for different precision settings, before initiating
the TVM’s current VTA auto-tuning.

C. Collaborative Exploration Pipeline

An end-to-end DNN framework, such as TVM, combines
expertise from many levels of the computing stack, i.e.
DNN front-end languages, compilers, IRs, scheduling, HW
generation, etc. With it being a community-driven framework,
it is expected that updates are introduced in a dynamic,
non-deterministic time-plan. Automating the integration of
code changes from different contributors is a key element
for maintaining project stability. In this work we explore the
optimal VTA designs for a given precision, based on features
of the hardware design space. We propose the use of tools
that allow us to enforce the concept of Continues Integration
(CI) during this exploration.

Figure 5 shows the overview of this CI exploration pipeline.
The proposed CI infrastructure consists of a cluster of ma-
chines, named auto-tuning fleet, on which we deploy our
exploration jobs. The key technologies we use are Jenkins,
Docker and Docker Swarm. Jenkins is the tool we use to
define, run and manage the CI jobs. Jenkins supports the
“Master+Agent” mode, where the Master is in charge of
orchestration and acts as the user end-point, and the Agents
perform the actual work, i.e. exploration. These agents can be
distributed across many servers. Thanks to the Jenkins plug-in
that provides integration with Docker, the agents can be even
spawned on-demand as containers. Docker is the supporting
technology for the whole infrastructure. Every component
runs as a Docker container, even the Jenkins Master itself.
This establishes portability and scalability for the exploration
phase. Docker Swarm allows a seamless deployment of
containers on any of the cluster’s machines in a transparent
way. It is responsible for load-balancing and tracking of the
status of all running containers, across all of the machines
that have joined the Swarm.

The advantage of the proposed collaborative exploration
pipeline is that, whenever a community member commits
updates of the VTA overlay to the TVM repository (e.g.
new GEMM unit, new precision in accumulator etc.), the
exploration of the optimal configurations of the VTA design
space is triggered automatically. As soon as an optimal VTA
bitstream is explored, auto-tuning is triggered as a subsequent
step, named auto-tuning sprint (inspired by the agile concept).
The best VTA bitstreams and auto-tuning configurations are
stored in the local repository and they can be uploaded back
to the community’s repository with a merge request.

III. τ -VTA AUTO-TUNING

A. τ -VTA Features

1) Feature Selection: To enable a guided VTA design
space exploration, by annotating knowledge from HW expe-
rience, we build a dataset of HLS and implementation results,
consisting of samples across individual designs. We run each
design through the complete C-to-bitstream flow for various
design options. These options are used in addition to the ones
of current TVM’s auto-tuning [22], i.e. fpga device, precision
and batch size. The design options are the features of our for-
mulation for predicting an optimization target. In this analysis
we explore two main targets, performance, in terms of Giga
Operations per second (GOPs) and resources utilization, in
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Fig. 5: The exploration pipeline using Docker Swarm and Jenkins.

terms of absolute number of utilized FPGA resources. For the
latter target we explore every resource individually, i.e. Block
RAMs (BRAM)s, Flip Flops (FFs), Digital Signal Processors
(DSPs) and Look-Up-Tables (LUTs). Feature selection is a
very important step for our flow, so we decide not only to
include the design options commonly used by the FPGA
community, based on our experience, but also the ones used in
research around design space exploration with EDA tools [9],
[10]. Table I lists the features we’ve selected in this research.
Similarly, we extract implementation results, known as the
targets in our optimization problem, from the implementation
reports. After extraction, our dataset contains features and
targets for each design sample and can be used to develop
prediction models that map from features to targets.

TABLE I: Features used in the architecture search

Feature Description Search range
HLS freq The frequency Vivado HLS is aiming for. [100:20:500]MHz
Inline Flatten RTL hierarchy by function inlining. Enabled/Disabled
Unroll Unroll a loop with a given factor. [1,2,4,8,complete]
Pipeline Pipeline(II=1) design with registers. Enabled/Disabled
Dataflow Use task-level pipelining. Enabled/Disabled

Partition Distribute the memory contents across
multiple BRAMs.

cyclic/block
dim=[1,2]
factor=[1:32]

Reshape First Partition, then rejoin BRAMs to
decrease utilization.

cyclic/block
dim=[1,2]
factor=[1:32]

Impl freq The frequency during place and route. [100:20:500]MHz
Syn strategy The Vivado synthesis strategy (heuristic). All available (8)
Imp strategy The Vivado implementation strategy (heur.). All available (32)

2) Irrelevant Features Elimination: Some of the design
options are correlated. As such, combinations of features that
are known a priori to exert little influence on the targets should
be eliminated to reduce the dimensionality of the data. Having
fewer features leads to simpler models, which require shorter
training time, and reduces the chance of over-fitting. Feature
elimination can benefit from HW knowledge. However, even
if some feature choices are valid from a HW knowledge
perspective, they may lead to unfeasible designs. For example,
revisiting the example of Figure 4, the large factors of
partitioning/reshaping can lead to more congested routing,
which in combination with the frequency requirements, may
result in unsuccessful timing closure. We eliminate irrelevant

features by formulating them as constraints in the τ -VTA
optimization problem.

B. Problem Formulation

1) Prediction Model for Feature Importance: We train a
classification model to predict the impact of features on the
optimization goal of increasing performance while respect-
ing constraints in resources utilization. For our study, we
have a set of n training samples {xi,yi}ni=1, where xi =[
x1i , x

2
i , . . . , x

p
i

]> ∈ Rp is the input vector of feature values
for the ith sample, and yi =

[
y1i , y

2
i , . . . , y

q
i

]> ∈ Rq is the
corresponding vector of target values. p denotes the number
of input features (e.g., HLS freq, Unroll, precision etc.), and
q denotes the number of output targets (i.e., actual GOP, LUT,
FF, DSP, and BRAM counts after the Vivado-implementation).
In addition we define X = [x1, . . . ,xn]

> to denote feature
values for all samples and yk =

[
yk1 , y

k
2 , . . . , y

k
n

]>
to denote

values of the target k for all samples.
Each learning task corresponds to one target prediction.

We train a separate model fk for each target k, resulting in
a set of mapping functions {fk : Rp → R}qk=1. We select the
gradient tree boosting algorithm to build our prediction model.
Specifically, we model the target as the sum of regression
trees, each of which maps the features to a score for the
target. Target estimation is determined by accumulating scores
across all trees. By implementing gradient descent, gradient
tree boosting optimizes the loss over the space of regression
trees by repeatedly selecting the tree that points in the nega-
tive gradient direction. Since we eliminate irrelevant features
(Section III-A2), many design options result in unfeasible
implementations (e.g. timing violation, resource limitations
etc.), which result in very sparse datasets. We propose the
use of XGBoost [6], a gradient tree boosting algorithm for
sparse datasets that employs a sparsity-aware approximate
split finding technique.

The benefit of using XGBoost is that, after the boosted
trees are constructed, it is relatively straightforward to retrieve
importance scores for each feature and use them for our
mapping functions {fk : Rp → R}qk=1. Importance provides
a score that indicates how valuable each feature was in the
construction of the boosted decision trees within the model.
The more a feature is used to make key decisions in decision
trees, the higher its relative importance. This importance is
calculated explicitly for each feature in the dataset. For a
single decision tree, importance is calculated through the
amount that each feature-split-point improves the performance
measure by, weighted by the number of observations the node
of the tree is responsible for. The feature importances are then
averaged across all of the decision trees within the model to
obtain the feature importance space Fi.

2) τ -VTA Auto-tuning Algorithm: For a given tensor op-
erator specification, e.g. Listing 1, there are multiple possi-
ble low-level program implementations, each with different
choices of loop order, tiling size, and other options, e.g.
Listing 2 and 3. The problem of τ -VTA auto-tuning is to find
which logically equivalent programs exhibit fastest execution
for a VTA overlay of selected precision. Towards this goal,
we extended TVM’s auto-tuning algorithm with an extra outer



Algorithm 1: Learning to Optimize TP Tensor Programs
Input: VTA precision p
Input: Feature importance space Fi (discussed in III-B1)
Input: Software transformation space Se
Output: Selected VTA overlay o∗p for precision p
Output: Selected schedule configuration s∗p for precision p
Data: Database Do of run time statistics for VTA overlay o

1 while k trials overlays < max k trials overlays do
/* Auto-tuning sprints on a fleet of m */

2 Mp ← run m-parallel jobs of VTA bitstream generation to
collect candidates in o∗p, with higher probability for the
most important features of Fi for precision p

3 Do ← ∅
4 while n trials < max n trials do

/* Pick the next promising batch */
5 Q← run parallel simulated annealing to collect

candidates in Se for the VTA overlay Mp

6 S ← select (1− ε)b-subset from Q using Random
Search or TreeGRU [27] optimizer (as in current
VTA auto-tuning)

7 S ← S ∪ { Randomly sample ε candidates. }
8 Run b measurements on VTA configured with Mp

9 Do ← exec. time // Update best trials
10 n trials ← n trials +b

11 s∗p ← history best schedule configuration for precision p
12 k trials overlays ← k trials overlays +m

13 o∗p ← history best VTA overlay for precision p

loop that iterates over a number of possible optimal VTA
overlays. This pool is populated with VTA bitstreams, by
giving priority to the configurations of the design features
with higher importance per precision target. Algorithm 1
describes this algorithmic behavior. The lines 4-to-9 corre-
spond to TVM’s auto-tuning algorithm [22] and describe
the steps needed to obtain an optimal configuration from a
software transformation space Se, on a target hardware device.
Specifically, lines 5-to-8 account for combining quality and
diversity when selecting b candidates for hardware evaluation
and are analytically explained in [22]. The iteration of these
steps over an outer loop (line 1) establishes the search for
an optimal VTA overlay for a given precision p. Thus, the
difference of Algorithm 1 with the auto-tuning algorithm
in [22], is that instead of performing auto-tuning only with
one VTA overlay, the Algorithm 1 proposes the auto-tuning
in multiple overlays, in parallel. The output is not only an
optimal configuration from a software transformation space
Se, but also a VTA overlay o∗p for a precision requirement
p. The overlays with the highest probability of being optimal
are prioritized in this exploration using the feature importance
metric, which is described in previous subsection III-B1.

IV. EVALUATION RESULTS

A. Feature Importance

We evaluate the feature importance prediction model with
a design space defined by the values listed in Table I. In
addition, we use a transprecision vector of [1, 2, 4, 8] bits.
In this analysis, transprecision is defined as the flexibility
to change precision on-demand by the application. This is
a typical requirement in the area of NN architecture explo-
ration [26]. The initial design space includes 797,442,048

evaluations (design options listed in Table I × [1, 2, 4, 8] bits).
After the elimination of irrelevant features (Section III-A2),
the design space contains 2,440 designs. After training the
model described in Section III-B1 with a subset of the design
space, we build the prediction model to find the importance
of design features for performance and resources. Then, we
use this model to select the VTA configurations that will be
implemented for a given input vector (precision, freq, etc.).

We implement and train the prediction model in Python
leveraging the XGBoost library [6]. All designs in the dataset
are synthesized and implemented with Xilinx Vivado 2018.3
(VTA-supported) targeting Pynq-Z1. Experiments are per-
formed on an Intel Xeon E5-2630 processor running at
2.6GHz. The models is able to complete the prediction tasks
within seconds, compared to the minutes or hours that each
implementation typically incurs. We measured 35 minutes for
a single end-to-end implementation with default settings for
VTA, Vivado HLS and Vivado. Some design options can lead
to implementations that last up to eight hours. The average
prediction time for all mapping functions is 2.7 seconds.

For importance classification, we compute the percentage
of incorrectly classified samples out of the total number of
samples. We randomly select 20% of our data as the testing set
and perform a cross-validation by random permutation over
10 iterations on the remaining training/validation set. In each
iteration, we randomly select 75% of the training/validation
set for training and 25% for validation. The validation set
is used for parameter tuning to locate better VTA models
for implementation. Figure 6 depicts the feature importance
on the HW design space of τ -VTA, for the objective targets
a) Performance(GOPs), b) DSPs, c) BRAMs and d) Logic
resources (FFs, LUTs). For every objective we plot the
importance score F for every feature. The precision feature
is plotted as a grouped option. Please note that the plotting is
orthogonal to all features and any combination can be used.
Since we focus on transprecision overlays in this study, we
select an analysis that expresses the precision as a grouping
option over the others.

Figure 6 also shows the prediction accuracy. DSPs and
BRAMs are generally easier to estimate than logic resources
because operations with LUTs and FFs experience more
complicated transformations than coarse-grain elements like
DSP and BRAMs. In general, XGBoost has an accuracy of
87% for predicting the importance of performance and 72%,
77% and 68% for DSPs, BRAMs, and logic, respectively.

B. τ -VTA Auto-tuning

After the feature importance analysis, we guide the se-
lection of the final set of designs and generate optimized
software using operator auto-tuning [8]. Component eval-
uations were based on convolution workloads in ResNet-
18 for ImageNet classification. The accuracy evaluation of
ResNet-18 is orthogonal to this analysis since we don’t aim
to optimize the accuracy, but to optimize the performance
of the convolutions given a predefined precision. Hence, the
precision choice is used as input for the optimization of the τ -
VTA overlay and not for its accuracy, which is a separate step.
Figure 7 compares the performance of convolutions when the
VTA designs are selected by using the current state-of-the-art
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Fig. 6: Features’ impact on the HW design space of τ -VTA, using an XGBoost model. Different features express the diverse impact on performance and
resources with respect to precision specification.
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Fig. 7: Schedule exploration with a naı̈ve random search and TreeGRU algorithm for a single connvolution layer on PYNQ-Z1. Original VTA and τ -VTA
are compared. Design candidates with (2,16)x(16,16)and (8,8)x(8,8) GEMM intrinsic at a)W8A8 a)W4A4 a)W2A2 d)W1A1 are considered. The layer is
conv2d: IC=256, OC=256, H=W=14, KW=KH=3, stride=(1,1),padding=(0,0).

approach (VTA) or by using the feature importance metric (τ -
VTA). We select two auto-tuning methods from [8] which are
implemented in TVM, random search and TreeGRU [27]. For
the case of τ -VTA we select the trained prediction model of
Section IV-A and we get the predicted VTA designs that are
proposed by the model to operate better, for an input feature
vector of a precision of [1, 2, 4, 8] bits. We set the maximum
number of iterations n = 1000. Our proposed τ -VTA designs
are able to guide the auto-tuning to higher performance for
the transprecision vector of [8,4,2,1] bits by 1×, 1.7×, 1.4×
and 1.2× for TreeGRU and 2.3×, 2.5×, 2.1× and 2.3× for
random search. In addition, the τ -VTA auto-tuning converges
faster by 1.5×, 5×, 5.2× and 7.1× for TreeGRU and 6.6×,
2.2×, 6.2× and 8.1× for random search, respectively.

V. RELATED WORK

To accelerate DL models on diverse DL HW, it is important
to map the computation to DL HW efficiently. On general-
purpose HW, efficient computation of DL models relies on
the highly optimized linear algebra libraries such as Basic
Linear Algebra Subprograms (BLAS) libraries (e.g., MKL
and cuBLAS). In addition, the HW vendors have released
specially optimized libraries tailored for DL computations
(e.g., cuDNN and MKL-DNN). More advanced tools, like
TensorRT [3], support graph optimization and low-bit quanti-
zation with large collection of highly optimized GPU ker-
nels. Due to enormous search space for parameter tuning
in hardware-specific optimizations, an emerging set of tech-
niques, namely auto-tuning, are necessary to determine the
optimal parameter settings. Apart from TVM’s auto-tuning,
which we used in our analysis, and was used with FP-
GAs [22], as well as GPUs and embedded devices [8], numer-
ous DL works employ optimizers for parameter tuning. Tensor

Comprehensions [28] firstly uses black-box optimization to
select parameters of thread blocks and secondly polyhedral
optimization to generate internal loops. This task, falls within
the category of hyper-parameter optimization for optimal
code generation for different HW back-ends. An extensive
review of such optimizers, alongside the DNN compilation
frameworks to apply these optimizers, is presented in [17].
Similar to our approach, the formulation of a prediction model
that quantifies the impact of a hardware design choice, has
been approached several times in literature already [25]. The
general category of such research direction falls within the
design space exploration of HLS tools for an FPGA model.
However, to the best of our knowledge, the only background
work for auto-tuning with TVM compiler stack, is [8]. As
a future work we aim to study how our prediction model
depends on a particular DNN topology.

VI. CONCLUSION

This research explores the possibility of automatically
guiding the auto-tuning of an overlay architecture, for dif-
ferent transprecision settings, by leveraging knowledge from
hardware experience. By adopting the concept of agile devel-
opment we built a pipeline of engineering tasks that support
the auto-tuning process. Instead of eliminating the overlay
hardware design space with pruning techniques, we propose
a technique that builds a prediction model to quantify the
impact of a hardware design choice towards an optimization
goal. We show that the features with the highest impact differ
for different precisions. By using the most important features
in order to generate an overlay we manage to perform auto-
tuning that succeeds in higher performance of up to 2.5× and
faster convergence of up to 8.1×.
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