
1

DSP-Packing: Squeezing Low-precision Arithmetic
into FPGA DSP Blocks

Jan Sommer, Akif Özkan, Oliver Keszocze, Member, IEEE Jürgen Teich, Fellow, IEEE

Abstract—The number of Digital Signal Processor (DSP) re-
sources available in Field Programmable Gate Arrays (FPGAs)
is often quite limited. Therefore, full utilization of available DSP
resources for the computationally intensive parts of an algorithm
is paramount for optimizing the non-functional properties of an
implementation (i.e., performance, power, and area). The DSPs
available in Xilinx devices implement large bit width operators
(i.e. a 48-bit accumulator or a 18× 27 multiplier). However,
using such a DSP for low-precision quantized data (as is common
in image processing or machine learning applications) leaves
the DSP resources underutilized. As a remedy, A method has
been proposed to pack and compute four 4-bit multiplications
on a single DSP in a single clock cycle. This paper presents a
generalization of this scheme to arbitrary bit widths and number
of multiplications. We also demonstrate that the previously
proposed approach leads to errors (Mean Absolute Error (MAE)
= 0.37). Furthermore, we explain where these errors come
from and how they can be corrected. On top, we introduce a
novel approximate method called “Overpacking” which allows to
squeeze even more multiplications into a single DSP at the cost
of small errors (MAE = 0.47). Overpacking allows to squeeze
six 4-bit multiplications into a single DSP compared to just four
in the literature. Finally, we introduce an alternative method
for packing multiple small-bit width additions into a single 48-
bit accumulator for use in applications such as Spiking Neural
Networks.

Index Terms—Digital Signal Processing (DSP), Field-
Programmable Gate Array (FPGA), Approximate Computing.

I. INTRODUCTION

Modern FPGAs have a heterogeneous architecture. They
consist of programmable fabric, i.e., Lookup Tables (LUTs)
and Flip-Flops (FFs), as well as non-programmable hard
blocks like dedicated Digital Signal Processors (DSPs). The
micro-architecture of such a DSP-block is vendor-dependent.
The DSP48E2 that is present in Xilinx UltraScale FPGAs
features a 27 bit preadder, a 18 × 27 bit multiplier and a 48
bit accumulator [1]. A single DSP48E2 block can implement
functions of the form

P = B × (A+D) + C + Pin (1)

as shown in Fig. 1.
The DSP hard blocks can be used to implement arithmetic

circuits that achieve a much better performance (in terms of
speed, area and energy efficiency) compared to implementa-
tions that use the standard programmable FPGA fabric. There-
fore, when designing arithmetic circuits for optimal results,
maximal usage of the available DSP blocks is important [2].

The authors are with the Friedrich-Alexander-Universität Erlangen-
Nürnberg, 91054 Erlangen, Germany. E-mail: {jan.sommer, oliver.kescoeze,
akif.oezkan}@fau.de, teich@cs.fau.de.

D 27

C 48

B 18

A 27

48 48

48

P

Pin

Pcout

27

Fig. 1: Schematic architecture and dataflow of the Xilinx
DSP48E2.

Since the DSP blocks are a scarce resource on an FPGA
chip, it is important to use them as efficiently as possible.
This is a problem for small bit width arithmetic, because
implementing such a function on a DSP block would leave
most of the DSP’s resources unused. Applications in the
domain of image processing or machine learning typically
operate on quantized data with small bit widths of 8 bit
or less [3], [4]. To improve the utilization of the DSP’s
resources for low-precision arithmetic, some techniques have
been proposed to map multiple small bit width multiplications
to a single DSP [3], [4]. An even better utilization can be
achieved when applying Approximate Computing principles.
Approximate Computing is an emerging paradigm where non-
functional requirements like chip area, latency or energy
efficiency are traded of for computational accuracy [5], [6].
Our contributions are as follows:

• We generalize the multiplication packing technique pro-
posed by Xilinx Inc. [3], [4] to arbitrary bit widths and
arbitrary number of multiplications independent of the
DSP’s architecture.

• We show how multiplication packing technique proposed
by Xilinx Inc. [3], [4] leads to small errors and how these
errors can be corrected.

• We present a novel packing strategy called “Overpacking”
to squeeze more (logical) values into one (physical) DSP
input such that partially incorrect results are produced.
We show techniques how the erroneous results can be
improved using additional logic. Overpacking allows up
to 50% more multiplications on a single DSP compared
to the approaches proposed by Xilinx Inc. [3], [4].

• We also present a strategy for packing small bit width
additions into the DSPs 48-bit accumulator.

ar
X

iv
:2

20
3.

11
02

8v
1

 [
cs

.A
R

]
 2

1
M

ar
 2

02
2

2

II. RELATED WORK

Huang et al. [7] propose a method for implementing parallel
multiplications on a single DSP slice. On the DSP48E2 that is
present on Xilinx UltraScale FPGAs [1], this method allows
to implement two multiplications w0 ·a0 = r0 and w1 ·a1 = r1

and a multiply-accumulate result r2 = w0 · a1 + w1 · a0 . To
achieve maximal utilization, the operands w0, w1 must have a
bit width of 4 and the operands a0, a1 must have a bit width
of 5, resulting in a bit width of 4+5 = 9 for the results r0, r1.

Mert et al. [8] propose a method to map two multiplications
c0 ·a0 = r0 and c1 ·a0 = r1 to a single DSP. Note that c0 and
c1 must be constants. Also note that the variable input a0 is
the same for both multiplications. This methods requires the
constants to be decomposed into shift operations prior to the
synthesis of the circuit. However, in many applications, the
multiplication operands change during runtime, rendering the
proposed method infeasible.

Kalali and Van Leuken [9] extend the method of Mert
et al. [8] by using a table lookup technique for storing the
decomposed constants. The lookup table allows the constants
to be changed during runtime. In addition, an approximate
computing technique is proposed to reduce the large overhead
caused by this lookup table.

In the Xilinx white paper [3], a method is proposed to
implement two multiplications of the form w0 · a0 = r0 and
w1 · a0 = r1 on a single DSP. In the remainder of this paper,
this procedure will be referred to as INT8-packing. Note that
the variable input a0 is the same for both multiplications.
In this method, all input operands have a bit width of 8,
thus resulting in two 16 bit results. A very similar method
is proposed by Lee et al. [10].

In the Xilinx white paper [4], a method is proposed to
implement four multiplications of the form w0 · a0 = r0,
w1 · a0 = r1, w0 · a1 = r2, w1 · a1 = r3 on a single DSP. The
input operands w0, w1, a0, a1 have a precision of 4 bit, thus
resulting in four 8 bit results. In the remainder of this paper,
this procedure will be referred to as INT4-packing.

III. PRELIMINARIES: INT4-PACKING

To generalize the ideas proposed by Xilinx Inc. [4], we
first give an overview over INT4-packing. Here, we also
introduce our notation. INT4-packing basically computes the
outer product of two vectors a and w, with both vectors having
two elements each:

a ·w> =

[
a0

a1

]
·
[
w0

w1

]>
=

[
a0w0 a0w1

a1w0 a1w1

]
(2)

Computing the result of this outer product requires 4 mul-
tiplications in total. Using the INT4-approach, these multipli-
cations can be packed on a single DSP if the entries of a
are unsigned 4 bit integers and the entries of w are signed 4
bit integers. The strategy is to rearrange the individual inputs
a0, a1, w0, w1 as described in the following equation:

(a1 · 211 + a0) · (w1 · 222 + w0)

= a1w1 · 233 + a0w1 · 222 + a1w0 · 211 + a0w0 (3)

Note that multiplications or divisions with 2n can be imple-
mented by fixed shift operations that only require a rewiring of
the individual bits. The computation in Eqn. (3) can be mapped
to the DSP48E2 as follows: The operand a0 is mapped to the
B-Port (see Fig. 1) with an offset of 0. a1 is also mapped to
the B-Port but with an offset of 11. This is a hardware-efficient
way of implementing a1 · 211 +a0 · 20. Input w0 is mapped to
the preadder port A with an offset of zero. Since w0 is signed,
the sign bit has to be repeated for all Most Significant Bits
(MSBs) to perform sign extension. Input w1 cannot be mapped
to the same port as w0 because it is signed. Therefore, w1 is
mapped to the preadder port D with an offset of 22. The 4
results of the outer product can be extracted from the P-Port.
E.g., the result a1w1 can be extracted from bit 33 to bit 40
from the P-Port. The individual results are separated by δ = 3
padding bits (see Fig. 2). This is important when multiple
DSPs are chained together using the carry ports (Pin, Pcout) in
order to accumulate their results. Thus, with δ bits padding
a maximum of 2δ results can be accumulated without error.
When no results are accumulated no padding is needed.

IV. GENERALIZATION OF INT4-PACKING: INT-N

The architecture-independent packing INT-N is used to
generate a multiplication packing that does not consider the
constraints of the target DSP (i.e., limited bit widths and input
ports). To generalize the INT4-approach, the multiplication
packing technique has to be described in mathematical terms.
For the generalization, the integer input vectors a = [a0...an]
and w = [w0...wm] can have any number of entries. A packing
configuration can then be described as follows. The offsets of
the entries of a and w are stored in the sets aoff and woff and
the bit widths are stored in awdth and wwdth, respectively. The
bit widths of the individual elements can be chosen arbitrarily,
even allowing for cases where the each entry has a different bit
width. The result r contains the outer product, i.e., r = a·w>.
Thus, the sets roff contains the offsets and rwdth contains
the bit widths of the individual results. For example, INT4-
packing has the following packing configuration (see Fig. 2):
Padding δ = 3, wwdth = awdth = {4, 4}, rwdth = {8, 8, 8, 8},
woff = {0, 22}, aoff = {0, 11}, roff = {0, 11, 22, 33}. The
offsets of the inputs aoff and woff determine the offsets of the
results roff as described in Eqn. (4) (with | · | denoting the
cardinality).|aoff |−1∑

i=0

ai · 2aoff,i

 ·
|woff |−1∑

j=0

wj · 2woff,j

=

|woff |−1∑
j=0

|aoff |−1∑
i=0

aiwj · 2roff,j·|aoff |+i (4)

Note that in the equation above, the offsets of the in-
puts woff ,aoff determine the offsets of the results roff , i.e.:
roff,j·|aoff |+i = aoff,i + woff,j This can be understood as a
generalization of Eqn. (3). Note that this generalized packing
INT-N also applies to INT8 packing.

3

$$ 012$ $

$ 012$

3 0123 012

𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿3456$ 012 3456$ 012 3456$ 012 3456$ 012

D

C
B

A

P

Fig. 2: INT4-packing for performing four parallel multiplications on a single DSP. Here, $ denotes the (extended) sign bits
and δ denotes the padding bits. The offsets of the individual inputs determine the offsets of the individual results as described
in Eqn. (3).

V. ERROR ANALYSIS OF MULTIPLICATION PACKING

The generalized multiplication packing INT-N (and thus
including the the INT4 and INT8 packing technique proposed
by Xilinx) suffers from an error where some actual outputs
Oactual are smaller than the expected outputs Oexpect. This error
is bounded by −1, i.e., Oactual = Oexpect − 1. The error is
introduced by the right-shifting operation that is implicitly
performed when extracting the results from the bit string. The
individual results aiwj are extracted from the result vector by
right shifting. The reasoning behind this is that

x� n =
x

2n
(5)

However, right shifting signed integers implements division
that is always rounding down i.e.:

x� n =
⌊ x
2n

⌋
(6)

This biases the output towards negative infinity. For INT4-
packing, this leads to an error rate of around 37% over all
possible input combinations.

We propose two error correction schemes: one method for
full error correction requiring extra hardware (LUTs, FFs) and
one approximate method that reduces the error probability
from 37% to 3% and requires no additional hardware.

A. Full Error Correction
Since the errors are related to rounding, they can be fixed

by applying the correct rounding. The correct rounding should
implement rounding that does not introduce a bias. For this,
rounding to the nearest integer is used. This rounding scheme
can be implemented using the Round-Half-Up function:

round half up = bx+ 0.5c (7)

For example, 3.1 gets rounded to 3, and 3.6 gets rounded to 4.
The advantage of this function is that it can be implemented
easily in hardware by checking a single bit. To implement the
Round-Half-Up function, the cases where the result needs to
be rounded up have to be determined, because rounding down
is done by default. For this, the results can be interpreted as
fixed-point numbers:
• If the first bit behind the decimal point is 1, then round

up by adding 1 to the result.
• Else, round down by adding a 0 (i.e. do nothing).
Full error correction requires additional hardware resources

for implementing the required adders (see Fig. 3).

B. Approximate Correction

The idea is to anticipate if the first bit after the decimal point
is 1 (thus requiring rounding up) and then adding a 1 to the
result before extracting to result. The proposed solution works
as follows. The assumption is that a contains unsigned entries
and w contains signed entries. The first bit after the decimal
point of the n’th result located at roff,n is 1 if the sign of
the result located at roff,n−1 is negative (due to the sign bits).
The ideas is then that the sign of a result located at roff,n−1

can be anticipated by checking the sign of the operands. Thus,
adding the sign bit of the operands that generated the result
located at roff,n−1 resolves some of the errors. This addition
can be performed using the DSP’s accumulator that is accessed
through the C-Port (see Fig. 4). In some rare cases, this does
not resolve the errors, e.g. when one operand is zero.

VI. OVERPACKING

In the domain of digital signal processing, many appli-
cations do not require computations to be exact. Reducing
computational accuracy often allows for improvements on
energy efficiency, resource utilization or execution speed [11].
If approximation is acceptable and to what degree depends
on the application. Typical applications are in the domain of
image processing and machine learning, since the underlying
algorithms in these domains are often of an approximate nature
themselves. The general idea for approximate multiplication
on DSPs is to reduce the amount of padding bits δ below the
minimum. If δ is reduced below the minimum, some bits of the
individual results are being merged together and errors occur.
The benefit of this technique is that more multiplications with
a higher bit precision can be fitted on a single DSP block.
The minimum required amount of δ-bits is determined by
how many results are supposed to be accumulated. For easier
interpretation of the results, Overpacking experiments have
been performed with no accumulation of results. Therefore,
the minimum padding is δ = 0. Thus, Overpacking can be
introduced by setting δ = −1,−2, etc.

A. Errors introduced by Overpacking

For Overpacking, the individual results are separated by
less δ-bits than required. Thus, the individual results aiwj
overlap. The mathematical operation that fuses the overlapping
results to the final output vector P is an addition (according
to Eqn. (4)). This has the effect that the LSBs of a results r1

4

𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿3456$ 012 3456$ 012 3456$ 012 3456$ 012

Fig. 3: Hardware circuit for implementing the round half up function using additional hardware. The orange dots denote the
imaginary decimal points of the results that have to be extracted.

3456$ $12 3456$ $12 3456$ $12 3456$ 012

Fig. 4: 48-Bit correction term that is fed into the DSP’s accumulator port C for the approximate error correction technique.
Shown here for INT4 packing.

XXX11 X

xxx 00x

x xxx X11 XXX

xxxx11 11XXXX

(a) LSB contamination

XXX00 X

xxx 01x

x xxx X01 XXX

xxxx10 10XXXX

(b) MSB contamination

Fig. 5: Errors introduced by Overpacking. The result r1 and
r0 overlap because of the negative padding δ = −2. r′1 and
r′0 are the corrupted results extracted from the output vector.
X and x denote don’t care bits of r1 and r0, respectively.

located left of a result r0 affect the MSBs of r0. For example,
Fig. 5a shows how non-zero MSBs of r0 contaminate the LSBs
of r1. Fig. 5b shows how non-zero LSBs of r1 contaminate
the MSBs of r0. An approximate computing technique where
the MSBs of a result are contaminated leads to very high
errors and is therefore not desirable. We present a technique
to correct these errors with very little hardware overhead.

B. MR-Overpacking

Most Significant Bit Restoring (MR) Overpacking is an
improvement to the naive Overpacking technique introduced
above. The idea of MR-Overpacking is to let the MSBs get
contaminated (Fig. 5b), but to restore the MSBs after extrac-
tion. The reasoning behind this is: erroneous MSBs lead to a
high error, erroneous LSBs are not having a large impact on
the result. To restore the MSBs, the inverse process of the MSB
contamination must be performed. As illustrated in Fig. 5b, δ
MSBs of a result rn that is located at roff,n are contaminated
by adding δ LSBs of another result rn+1 that is located at
roff,n+1. Thus, the MSB contamination is an addition which
can be inverted using a substraction. MR-Overpacking restores
the δ MSBs of a result roff,n by substracting the δ LSBs
of roff,n+1. To perform the restoration, the contaminating
LSBs have to be known. Therefore, the contaminating LSBs
must be calculated. The first LSB (Eqn. (8)) and the second
LSB (Eqn. (9)) of a result can be calculated with a little

hardware overhead. Eqns. (8), (9) are simply the rules for
binary multiplication.

aiwj [0] = ai[0] ∧ wj [0] (8)

aiwj [1] = (ai[0] ∧ wj [1])⊕ (ai[1] ∧ wj [0]) (9)

Consider the following example where δ = −2, a0 =
10102 = 1010, a1 = 00112 = 310, w0 = 10012 = −710,
w1 = 11002 = −410, with w0, w1 being signed integers in
2’s complement notation. For Overpacking, set δ = − 2.
The expected result for a0w0 would be 1011 10102 = −7010.
However, due to Overpacking, a0w

′
0 = 0111 10102 = 12210.

The two LSBs of a1w0 that corrupt a0w0 are calculated
using Eqn. (8), (9): a1w0[0] = a1w0[1] = 1. The correction
is performed by subtracting the corrupting LSBs : a0w0 =
a0w

′
0 − 1100 00002. Fig. 6 shows how this scheme can be

implemented with extra hardware (LUTs and FFs). Note that
this scheme must be adapted according to δ. For example, if
δ = −1, only the implementation of Eqn. (8) is required. When
δ is increased further, the respective LSBs must be calculated
according to the rules of binary multiplication. For example,
setting δ = −4 requires the calculation of the first four LSBs.
Note that the hardware cost for implementing the correction
logic increases exponentially with the number of LSBs.

The catch of the proposed scheme is as follows. Multi-
plication is very expensive in terms of hardware resources
with two exceptions: the first and the second LSBs are very
cheap to implement (see Eqns. (8), (9)). This means, that the
expensive multiplication is performed in the optimized DSPs,
the correction of corrupted MSBs is cheap to implement with
additional hardware. The corruption of the LSBs only leads to
small errors, as will be discussed in Section VIII.

VII. ADDITION PACKING

In Spiking Neural Networks (SNNs), the main computa-
tional operation is an addition [12], [13]. In contrast, standard
Neural Networks (NNs) are based on Multiply-Accumulate
operations (MAC) [14]. This means that SNN-accelerators
require the implementation of thousands of adders, placing
a high load on the FPGA’s LUT and FF resources. In the
following, we propose a method to pack multiple small-bit

5

3456$ 012 3456$ 012 3456 0 345 012

01

01

LS
B

ca
lc

0000000

01

01

LS
B

ca

lc

0000000

01

01

LS
B

ca

lc

0000000

Fig. 6: Hardware circuit for implementing MR-Overpacking with δ = −2. The boxes “LSB calc” implement the Eqns. (8), (9)
for the construction of the correction terms that are then subtracted from the extracted results. To obtain this packing, the
following setup is used: wwdth = awdth = {4, 4}, rwdth = {8, 8, 8, 8}, woff = {0, 12}, aoff = {0, 6}, roff = {0, 6, 12, 18}.

additions into the large 48-bit adders of the DSP48. Consider
the example in Fig. 7 where two 8 bit additions are mapped
to a single 16 bit addition. One 8 bit addition is mapped
to the lower 8 bits and the other 8 bit addition is mapped
to the upper 8 bits. The addition in the upper bits is still
connected to the addition in the lower bits by the carry chain.
Thus, if the addition in the lower 8 bits causes a carry, this
carry is propagated to the addition in the upper 8 bits. The
propagated carry causes an error in the least significant bit
of the upper addition. This has the following implications: a)
the addition located in the lower bits never has errors. (b) If
a carry occurs from one addition to another, only the least
significant bit of a result is corrupted. Therefore, the worst
case absolute error is bounded to 1. To completely prevent
errors, an extra guard bit with the value of 0 can be added
between all additions. This guard bit is used to prevent that
a carry signal can propagate from one addition to another (as
illustrated in Fig. 8). This guard bit is additional overhead as
it cannot be used for addition. This scheme can be generalized
to different bit widths and more additions. The DSP48 features
a 48-bit adder. For example, five 9 bit adders can be packed
into a single DSP leaving room for three guard bits. Therefore,
only a single adder is approximating in the sense that some
results may have errors. To maximize the utilization, two 9-bit
adders and three 10-bit adders can be mapped to a single DSP,
leaving no space for guard bits.

VIII. EXPERIMENTS AND RESULTS

To analyze the techniques and their errors described in
the previous chapters, the following error metrics are used
to compare an an expected output Oexpect to an actual output
Oactual [15]. All N possible input combinations were tested.

EP =

∑N

∀n:O
(n)
expect 6=O

(n)
actual

1

N
· 100% (10)

MAE =
1

N
·
N∑
n=1

∣∣∣O(n)
actual −O

(n)
expect

∣∣∣ (11)

Addi�on 1Addi�on 2

1 0 0 01 011

1 1 0 10 111

0 1 1 00 100

0 0 1 00 100

1 1 0 00 1110 0 1 11 100

=

+

25

9

15

-28

-13

-15
=

+

Carry

Fig. 7: Strategy for packing two small bit with additions to
a large one. Shown is the origin of the error where the carry
signal of addition 1 propagates to the least significant bit of
addition 2.

Addi�on 1Addi�on 2

1 0 0 01 011

1 1 0 10 111

0 1 1 00 100

0 0 1 00 000

1 1 0 00 1110 0 1 11 000

=

+

24

9

15

-28

-13

-15
=

+

Carry
0

1

1

G
u

ar
d

B
it

Fig. 8: Addition packing with no errors using a guard bit
between the individual additions. The guard bit “catches” the
carry signal and prevents it from propagating to addition 2.

WCE = max
∀n

∣∣∣O(n)
actual −O

(n)
expect

∣∣∣ (12)

Note that the error statistics listed above are calculated for
each result aiwj individually. The result calculated over all
individual results is indicated by a bar accent (e.g., MAE).
To evaluate the hardware cost of the individual circuit imple-
mentations, each circuit was implemented on the the Xilinx
Zynq UltraScale+ MPSoC (XCZU7EV-2FFVC1156). For best
comparability with the related INT4-approach by Xilinx, all

6

TABLE I: Results of the various presented multiplication
packing approaches, compared to the approach proposed by
Xilinx [4]. All operands are 4-bit with four multiplications on
a single DSP.

Approach MAE EP WCE LUTs FFs

Xilinx INT4 [4] 0.37 37.35% 1 0 0
INT4 Full Correction 0.00 0.00% 0 27 32
INT4 Approx. Correction 0.02 3.13% 1 0 0
Overpacking δ = −1 24.27 49.85% 129 0 0
Overpacking δ = −2 37.95 58.64% 194 0 0
Overpacking δ = −3 45.53 78.26% 228 0 0
MR-Overpacking δ = −1 0.37 37.35% 1 4 6
MR-Overpacking δ = −2 0.47 41.48% 2 6 20
MR-Overpacking δ = −3 0.78 49.95% 4 17 30

TABLE II: Detailed error statistics of the individual results
aiwj for INT4 Packing and MR-Overpacking.

INT4 Packing MR-Overpacking δ = −2

Result MAE EP WCE MAE EP WCE

a0w0 0.00 0.00% 0 0.00 0.00% 0
a1w0 0.47 46.87% 1 0.60 52.34% 2
a0w1 0.50 49.80% 1 0.64 55.41% 2
a1w1 0.53 52.73% 1 0.66 58.20% 2
for all aiwj 0.37 37.35% 1 0.47 41.48% 2

TABLE III: Results of the addition packing scheme.

Approach MAE EP WCE LUTs FFs

Addition Packing 0.51 51.83% 1 0 0

tests in Table I and II have been performed with 4-bit operands
and four multiplications. Note that the approaches introduced
in this paper can be generalized to arbitrary bit widths and
number of multiplications, restricted only by the DSPs archi-
tecture. Table III shows the result of a single 9-bit adder that
is implemented along with four other 9-bit adders in a single
DSP using the addition packing scheme without guard bits. To
measure the effectiveness of the different packing schemes, we
introduce the packing density ρ = bused/btotal, where btotal is the
number of output bits (e.g., 48 bits for the DSP48) and bused
is the number of bits that are occupied by the multiplication
results. Fig. 9 compares the multiplication packing density
for the different approaches. To evaluate INT-N, the following
packing configuration is used: Padding δ = 0, wwdth = {3, 3}
awdth = {4, 4, 4}, rwdth = {7, 7, 7, 7, 7, 7}, woff = {0, 21},
aoff = {0, 7, 14}, roff = {0, 7, 14, 21, 28, 35}. The packing
configuration for Overpacking is: δ = −2, wwdth = {5, 5}
awdth = {4, 4, 4}, rwdth = {9, 9, 9, 9, 9, 9}, woff = {0, 21},
aoff = {0, 7, 14}, roff = {0, 7, 14, 21, 28, 35}. Note that many
more configurations for INT-N and Overpacking are possible
(Eqn (4)), that can be adapted according to the application at
hand.

IX. CONCLUSION

DSP-Packing offers a way to effectively use DSPs for small
width multiplications. The INT4-approach as proposed by
Xilinx [4] for multiplication packing has multiple limitations.
First, the bit widths of the individual multiplications and the

0.4 0.6 0.8 1 1.2 1.4
INT4
INT-8

Huang et al.
INT-N

Overpacking

0.67

0.67

0.56

0.88

1.13

Packing Density ρ

Fig. 9: Multiplication packing density for different techniques.

amount of operands is fixed. The padding is δ is also fixed to 3
and it introduces a rounding-related error. We showed that this
technique can be generalized to arbitrary packings. While the
rounding error introduced by INT4-packing is relatively small
(MAE = 0.37), it adds a small bias towards negative infinity
to the results which might be an issue for some applications.
The full error correction requires the implementation of addi-
tional adders, introducing an overhead as additional resources
are required. Approximate error correction uses the internal
accumulator of the DSP48E2, requiring no external hardware.
The error that is still present is very small (MAE = 0.02)
making approximate error correction an ideal solution. Over-
packing can be used to improve the utilization of DSP blocks
significantly. Overpacking itself introduces a very large error
since the MSBs of the extracted results are corrupted. MR-
Overpacking reduces the error significantly with a very small
hardware overhead. This makes MR-Overpacking an interest-
ing solution, for example for Convolutional Neural Networks
(CNNs), because they are inherently resilient to quantization
and approximations. For example, MR-Overpacking can be
used to map 6 individual 4-bit multiplications on a single
DSP48E2, allowing 50% more 4-bit multiplications compared
to INT4-packing while achieving the same MAE = 0.37.
MR-Overpacking can also be used to increase the precision
of multiplications. For example, setting δ = −2 allows 4
individual 6-bit multiplications on a single DSP, resulting in an
increase in bit precision of 50% compared to INT4-packing. In
the future, we plan to explore methods to dynamically change
the DSP packing during runtime according to the requirements
of the computational task at hand.

REFERENCES

[1] Xilinx Inc., “Ultrascale architecture dsp slice user guide (ug579).”
[Online]. Available: https://www.xilinx.com/support/documentation/
user guides/ug579-ultrascale-dsp.pdf

[2] ——, “7 series dsp48e1 slice user guide (ug479).” [Online].
Available: https://www.xilinx.com/support/documentation/user guides/
ug479 7Series DSP48E1.pdf

[3] ——, “Deep learning with int8 optimization on xilinx devices white
paper (wp485).” [Online]. Available: https://www.xilinx.com/support/
documentation/white papers/wp486-deep-learning-int8.pdf

[4] ——, “Convolutional neural network with int4 optimization on xilinx
devices white paper.” [Online]. Available: https://www.xilinx.com/
support/documentation/white papers/wp521-4bit-optimization.pdf

[5] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in 2013 18th IEEE European Test
Symposium (ETS), 2013, pp. 1–6.

[6] S. Mittal, “A survey of techniques for approximate computing,”
ACM Comput. Surv., vol. 48, no. 4, mar 2016. [Online]. Available:
https://doi.org/10.1145/2893356

https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug579-ultrascale-dsp.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_DSP48E1.pdf
https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
https://www.xilinx.com/support/documentation/white_papers/wp486-deep-learning-int8.pdf
https://www.xilinx.com/support/documentation/white_papers/wp521-4bit-optimization.pdf
https://www.xilinx.com/support/documentation/white_papers/wp521-4bit-optimization.pdf
https://doi.org/10.1145/2893356

7

[7] Z. Huang, S. Zhang, and W. Wang, “An efficient method of parallel
multiplication on a single dsp slice for embedded fpgas,” IEEE Access,
vol. 7, pp. 100 993–101 008, 2019.

[8] A. C. Mert, H. Azgin, E. Kalali, and I. Hamzaoglu, “Efficient multiple
constant multiplication using dsp blocks in fpga,” in 2018 28th Inter-
national Conference on Field Programmable Logic and Applications
(FPL), 2018, pp. 331–3313.

[9] E. Kalali and R. Van Leuken, “Near-precise parameter approximation
for multiple multiplications on a single dsp block,” IEEE Transactions
on Computers, pp. 1–1, 2021.

[10] S. Lee, D. Kim, D. Nguyen, and J. Lee, “Double mac on a dsp:
Boosting the performance of convolutional neural networks on fpgas,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. PP, pp. 1–1, 04 2018.

[11] Q. Xu, T. Mytkowicz, and N. S. Kim, “Approximate computing: A
survey,” IEEE Design & Test, vol. 33, no. 1, pp. 8–22, 2016.

[12] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz,
E. Vianello, and E. Beigne, “Spiking neural networks hardware imple-
mentations and challenges,” ACM Journal on Emerging Technologies in
Computing Systems, vol. 15, no. 2, pp. 1–35, 2019.

[13] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Con-
version of continuous-valued deep networks to efficient event-driven
networks for image classification,” Frontiers in neuroscience, vol. 11,
p. 682, 2017.

[14] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[15] V. Mrazek, R. Hrbacek, Z. Vasicek, and L. Sekanina, “Evoapprox8b:
Library of approximate adders and multipliers for circuit design and
benchmarking of approximation methods,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017, 2017, pp. 258–261.

	I Introduction
	II Related Work
	III Preliminaries: INT4-Packing
	IV Generalization of INT4-Packing: INT-N
	V Error analysis of multiplication packing
	V-A Full Error Correction
	V-B Approximate Correction

	VI Overpacking
	VI-A Errors introduced by Overpacking
	VI-B MR-Overpacking

	VII Addition Packing
	VIII Experiments and Results
	IX Conclusion
	References

