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Abstract—Convolutional Neural Networks (CNNs) reach high
accuracies in various application domains, but require large
amounts of computation and incur costly data movements.
One method to decrease these costs while trading accuracy is
weight and/or activation word-length reduction. Thereby, layer-
wise mixed-precision quantization allows for more efficient results
while inflating the design space. In this work, we present an in-
depth quantitative methodology to efficiently explore the design
space considering the limited hardware resources of a given FPGA.
Our holistic exploration approach vertically traverses the various
design entry levels from the architectural down to the logic
level, and laterally covers optimization from processing elements
to dataflow for an efficient mixed-precision CNN accelerator.
Our resulting hardware accelerators implement truly mixed-
precision operations that enable efficient execution of layer-wise
and channel-wise quantized CNNs. Mapping feed-forward and
identity-shortcut-connection mixed-precision CNNs result in com-
petitive accuracy-throughout trade-offs: 245 frames/s with 87.48%
Top-5 accuracy for ResNet-18 and 92.9% Top-5 accuracy with
1.13 TOps/s for ResNet-152, respectively. Thereby, the required
memory footprint for parameters is reduced by 4.9× and 9.4×
compared to the respective floating-point baseline.

Index Terms—design space exploration, FPGA based acceler-
ator, convolutional neural network, mixed-precision, layer-wise,
bit-level, processing element design

I. INTRODUCTION

Convolutional Neural Networks (CNN) excel in classification
and detection tasks. Some tasks, like autonomous driving,
require rapid decision making, hence, latency and throughput
of CNNs have to be optimized. To bring the classification
closer to the data, CNNs are accelerated on edge devices.
But the CNN’s high performance in quality-of-service comes
with high computational and data transfer cost [1]. On edge
devices with a limited energy budget the relevance of this cost is
even more pronounced. Hence, the execution of CNNs on edge
devices requires optimization steps in terms of CNN model and
supportive hardware.

Reduced precision provides one way to reduce the com-
putational and data transfer cost triggering a transition from
32 bit floating-point to limited fixed-point (e.g., 8 bit going even
down to binary operands [2]) representation in the inference of
CNNs. So the memory footprint can be reduced to a quarter
or less than its original size. Even though the goal is to reduce
the cost for processing CNNs, the quality-of-service should be
preserved. For this work the quality-of-service is accuracy, as
our application scenario is image classification, specifically the
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dataset ImageNet [3]. It is commonly accepted that 8 bit fixed-
point is sufficient to maintain accuracy [4]. However, recent
publications indicate a trend towards non-symmetric word-
lengths of activations and weights that offer accuracy gains
compared to their floating-point or symmetric word-length
counterparts [5]–[10]. This effect is attributed to the induced
quantization noise having a regularizing effect on the perfor-
mance of the CNN [10]. In the end, the optimal choice of word-
length per layer will remain a topic of research while being
subject to the adopted CNN model and application-dependent
accuracy requirements [11]. Hence, edge devices will certainly
benefit from hardware architectures that efficiently translate any
kind of word-length reductions to improvements in efficiency.

Today, hardware accelerators for CNNs are mostly optimized
for a specific word-length or even a specific CNN [12], [13].
Designing hardware accelerators based on FPGAs actually
offers, thanks to their reconfigurability, the opportunity to use
a hardware mapping optimized specifically for the type of
CNN under consideration. However, this opportunity spans
an extensive design space which has not been systematically
evaluated combining all levels from realization of processing
element (PE) up to the architectural level. To close this gap, this
work presents the first holistic Design Space Exploration (DSE)
for mixed-precision accelerators targeting efficient support of
varying word-lengths.

The main contributions of this paper are the following.

• Our work provides a proportionate increase in throughput
with word-length reduction for mixed-precision CNNs
while preserving flexibility to support variable word-
lengths and CNN models on an FPGA.

• Our holistic DSE combines all three, the PE realization,
the PE array dimensions, and the dataflow, to maximize
the throughput of feedforward CNNs as well as identity-
shortcut-connected CNNs.

• We assess in detail partial product processing by means of
a quantitative evaluation of Multiply-Accumulate (MAC)
PE architectures that support mixed-precision by segment-
ing the PE into multiple Partial Product Generators (PPG)
and an adder tree. With the segmentation, the word-length
of weights can be adjusted on-the-fly enabling layer-wise
or channel-wise quantization without changing the FPGA
image.

• We benchmark embedded DSP macros vs. FPGA’s logic
fabric in terms of consumed energy when executing
mixed-precision arithmetic.
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• Finally, we apply our holistic DSE methodology to differ-
ent mixed-precision ResNet models [14] and evaluate the
resulting set of specific hardware accelerators.

The paper is organized as follows. In Section II, an overview
of the related work is given. The DSE in Section III is divided
into the design dimensions on the PE level in Part A and on
the CNN accelerator dataflow in Part B. The results of this
DSE are presented in Section IV. Here, the accuracy-throughput
trade-off for mixed-precision CNNs on the created designs
are presented including a comparison to the state-of-the-art.
Section V concludes this work.

II. RELATED WORK

There is an extensive body of work addressing the design
of optimized hardware accelerators for CNNs. Most previous
works limit their DSE to the dataflow optimization by either
considering the memory hierarchy or options to unroll or tile
loops. Some works extend this design space to include the PE
array dimensions [15]–[26]. But there is only a small number of
previous works, which explore the design space for dataflow for
mixed-precision CNN accelerator implementations on FPGAs
[26], [27]. In [26], two different dataflows of either storing and
processing all weights of a small artificial neural network at
once on an FPGA or storing and processing only one layer of
a bigger CNN on an FPGA and then processing and storing
the next layer of this CNN are presented. The considered
PEs support weights and activations with 1, 2, and 3 bit. In
[27] the CNN layers are grouped according to their dominant
memory access pattern either into DRAM dominated (for fully
connected layers FC) or BRAM dominated (for convolutional
layers CONV). To increase the efficiency of CONV layers, most
weights are binarized, and only a few weights are kept at 8 bit.

An exploration combining the optimization on PE level
considering the intra-PE level up to inter-PE level (the PE
array) is found in [21], but focusing only on single-precision
32 bit floating-point representation. We define a PE as an entity
to facilitate MAC operations, hence, it consists of a multiply
and an accumulate unit. Its multiply unit can be sliced into
multiple PPGs (cf. Fig. 1), with each operand slice defining
how many bits of the input word can be processed in one
PPG. Hence, one PE comprises multiple partial products. If
the input word-length is equal to the operand slice, each PPG
processes a different word. If the input word-length is bigger
than the operand slice, it utilizes multiple PPGs, cf. Fig. 1 b.
And if the input word-length is smaller than the operand
slice, a part of the PPG stays idle. So far, such 2 bit× 2 bit
PPGs were introduced as BitBricks in BitFusion [28]. BitBlade
[29] extended BitFusion by exploring the array architecture
composed of such 2 bit× 2 bit PPGs. Finally, the MAC unit
review [30] utilized also only PPGs with operand slices of 2 bit.
In contrast to referenced research, we consider the size of the
operand slice as an explicit parameter in our DSE.

In conclusion, to the best of our knowledge, there is cur-
rently no DSE published considering the impact of all levels
from intra-PE to architectural on the efficiency of the overall
CNN accelerator. Our work uses the taxonomy introduced in
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Fig. 1: Schematic with an input word-length of 4 bit and (a) a
conventional MAC PE and (b) a MAC PE with PPG of a size
of 2 bit× 2 bit according to [28], [31].

[30] as baseline, which groups PE designs of previous works
with regards to their way of processing inputs and internally
consolidating the computed results. The work of [30] focussed
on the PE level, only. Our work extends the DSE by adding a
system-level perspective. The presented work firstly combines
for different word-lengths the exploration of PE realization,
PE array dimensions, and dataflow optimization in one holistic
DSE.

III. DESIGN SPACE EXPLORATION METHODOLOGY

In this work, the examined design space is spanned by the
following four dimensions: (1) the PE design options with
regards to their input processing and data consolidation styles
and the different operand slices of parallel multiplication units
(PPGs) in a PE, (2) the total number of PEs, (3) the PE
array dimensions, (4) and the dataflow optimizations (i.e., the
temporal and spatial data reuse).
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Fig. 2: Flowchart for DSE for the PE (blue dotted box), the PE
array (red dashed box), and the dataflow (green dashed-dotted
box), with hardware constraints (HWC) and bandwidth (BW).

The constraints and resources of our DSE are geared towards
FPGAs and comprise the selected set of supported input word-
lengths, the chosen mixed-precision CNNs, and the hardware



constraints including the available logic, memory, and band-
width. The specific hardware constraints considered in this
paper are set by the choice of a Stratix V FPGA. In any case,
the presented DSE methodology can generically be applied to
any FPGA architecture.

The DSE comprises three key phases with fully automated
blocks highlighted in gray (cf. Fig. 2). These phases are the
semi-automatic PE DSE, the fully automated PE array DSE,
and the fully automated system-level evaluation of the total
dataflow. Furthermore, selected highly regular structures were
handcrafted for best efficiency. Key interdependencies in the
DSE are indicated with dotted lines. We focus in this work
on the processing of CONV layers because of their dominant
contribution to total throughput and energy [26].

A. Precision Scalable Processing Element

The typical PE design of a MAC unit uses dedicated DSP
hardmacros of the FPGA to efficiently process the MAC oper-
ations. The highest efficiency is achieved by exploiting the full
word-lengths of such hardmacros. However, energy reduction
does not scale linearly with the reduction in word-length as
exemplified in Fig. 3 and indicated by comparing linear scaling
with actual numbers. A word-length reduction from 8 to 1 bit
only provides a 0.58× energy reduction instead of the ideal
reduction of 0.125×. Furthermore, exclusively relying on DSPs
limits the degree of parallelism to the number of available
hardmacros on a specific FPGA.
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Fig. 3: Energy of multiplication for Stratix IV DSPs, with
activations always 8 bit and varying word-length for weights.
Solution stands here for MAC product.

The design space of PEs is divided into four dimensions.
One dimension determines whether the input is processed in
serial or in parallel. Another dimension reflects the operand
slice of the PPG in the PE for the parallel case or the bits / cycle
for the serial case. The third dimension defines the option to
scale either both inputs, 2D (cf. Fig. 1) or only one input, 1D
(cf. Fig. 4). For the 2D case the operand slice is k bit× k bit
and for the 1D case the operand slice is N bit× k bit. With
N being the input word-length, only k is reported as operand
slice. Together they determine how many bits of the input
are multiplied in each partial product. And finally, the fourth
dimension describes the data flow of the accumulation, whether
the partial sums are accumulated in an adder tree or stored
individually. Fig. 4 visualizes this generic principle for the 1D
case, specific schematics of many variants can be found in [30].

Bit-Serial (BS) processing in time with k bit / cycle is shown in
Fig. 4 (left), for k equal to 1 the multiplication is only an AND
operation. Bit-Parallel (BP) processing on word-level is shown
in Fig. 4 (right) with the N -bit input bus split into N / k slices of
k bits. Accumulation is done independently per partial product
(cf. Sum-Apart (SA) in Fig. 4 bottom left) or across all partial
products using a preceding adder tree (cf. Sum-Together (ST)
in Fig. 4 bottom right). These different PE design options can
be mixed and matched with various PE designs.
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Fig. 4: Schematics of different PE design options for the case
of 1D scaling. The processing of inputs in Bit-Serial or Bit-
Parallel fashion as well as the data consolidation of the partial
sums by means of an adder tree, Sum-Apart, or its absence,
Sum-Together, are shown.

B. Dataflow

Dataflow comprises data reuse, data access, and data storage
patterns. An optimal dataflow maximizes the computational in-
tensity [26], [32] by either broadcasting data to multiple parallel
working PEs or by reusing data over time. Temporal reuse
requires additional registers, whereas spatial reuse requires
additional routing. With a decrease in spatial reuse the total
throughput declines, therefore, we focus on the maximization
of spatial reuse.

The spatial reuse comprises the reuse of weights, the reuse
of activations, and the reuse of partial sums in the PE array.
The reuse factor of each of them depends on tiling of the
convolutional loops along three dimensions: the input feature
map height IH, the input channel width IW, and the output
channel depth OD (cf. Table I). These dimensions differ in a
given CNN per layer. Since the PE array dimensions heigth
H , width W , and depth D are fixed for a given hardware
accelerator design they have to be optimally chosen according
to the CNN and the hardware constraints. The chosen PE array
dimensions determine on the one hand, the total number of PEs
(NPE) in the PE array expressed in Eq. 1, and on the other hand,
the total spatial reuse, i.e., the total number of parallel accessed
BRAMs (BRAMNPA), cf. Eq. 2, With N being the word-length



for activations and wQ being the word-lengths for weights. The
factor N

wQ
influences the BRAMNPA for activations.

NPE = H ×W ×D (1)

BRAMNPA = H ×D︸ ︷︷ ︸
BRAMpartial sums

+H ×W × N

wQ︸ ︷︷ ︸
BRAMactivations

+ W ×D︸ ︷︷ ︸
BRAMweights

with wQ ≥ k
(2)

U(l) =
Pideal(l)

Pactual(l)
=

I2
H×IW×OD×(K

S )2

H×W× N
wQ

×D

d IH
H e × d

IW
W× N

wQ

e × dOD
D e × IH × (KS )2

(3)

Temporal and spatial reuse form together the total reuse of
data, which is needed to process a CNN on a given hardware.
The ideal temporal reuse Pideal per layer l and actual temporal
reuse Pactual determine the utilization per layer U(l), cf. Eq. 3
with filter kernel K, stride S, and the ceil function d·e. Further-
more, the temporal reuse Pactual defines the required bandwidth,
which is fed back to the roofline model (cf. Fig. 2 green box).
This assures that the bandwidth limitations in the different
levels of the memory hierarchy are met. The overall dataflow is
automatically adapted with regards to the maximum throughput
of the design. Hence, the dataflow is majorly influenced by the
design of the PE array.

TABLE I: Spatial reuse for unrolling

PE array dimension reuse no reuse
H weights activations, partial sums
W partial sums weights, activations
D activations weights, partial sums

The PE array dimensions are optimized with regards to
maximizing throughput, i.e., minimizing Pactual, maximizing
U(l), and maximizing the operations per FPGA resources (cf.
Fig. 2 red box). The relevant FPGA resources are the available
memory resources, BRAMs, and the available logic, lookup
tables (LUTs). The greedy optimization approach for the PE
array dimensions explores all possible solutions for a certain
mixed-precision CNN, PE design, and hardware constraints.
These solution are then compiled to evaluate their feasibility
on the chosen FPGA by means of its compilation tool.

To maximize the throughput, the computational resources are
maximized, hence, all available logic is used for computation.
This is realized by choosing a flat memory hierarchy. The on-
chip memory is divided in three global buffers with their size
based on Eq. 2 to efficiently broadcast the currently required
weights, activations, and partial sums into the PE array. All
images, which have to be classified, as well as weights and
biases of the accelerated CNN are stored in the off-chip
memory and transferred only once to the on-chip memory. The
general design scheme of the mixed-precision CNN accelerator
is shown in Fig. 5. The PE array is depicted in 2D, although,
in reality the optimal PE arrays are always three dimensional

with different width W , height H , and depth D depending on
the mixed-precision CNN dimensions.
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Fig. 5: The general mixed-precision CNN accelerator scheme.
The colors correlate with the design space exploration in Fig. 2.

IV. RESULTS

Our DSE focuses on the utilization of the available logic of
Stratix V leaving a heterogeneous mapping including DSPs for
future work. As one drawback, there is currently no specific
gate-level timing simulation support for the Stratix V. Hence,
our DSE relies on scaled Stratix IV results to close this gap.
Energy numbers are extracted from gate-level timing analysis
using activity files assuming uniformly distributed input vec-
tors.

A. Design Space Exploration of Processing Elements

To start the PE DSE, objectives and boundary conditions
have to be defined as follows. First, the design space is
divided into whether both inputs or only one input should
offer flexible word-length, i.e., a 1D or 2D scalable design.
Second, either area or latency can be minimized by choosing
BS or BP processing, respectively. Because a BS design as in
Fig. 4 minimizes the required area per PE while reducing the
throughput per PE. This principle is reversed for the BP design.
Third, the minimum number of parallel processable bits has to
be set. In case of a BP design with different input word-lengths
as operand slice k, either the utilization of the PPGs drops or
the additional hardware overhead is not needed. For a BS design
with less bits accessible than required for processing per cycle,
the respective part of the logic is kept idle as well. Finally,
the dataflow of the partial sums has to be determined. Either
partial sums are saved in individual registers and added outside
of the PE (i.e., SA) to increase flexibility of the dataflow, or
added in an adder tree inside of the PE (i.e., ST) to decrease
the hardware overhead in form of registers.

We assumed that the optimal operand slice k depends on
multiple factors like the used precisions of the CNN or the
available logic. From a hardware perspective, powers-of-two
could lead to an efficient solution, while not overinflating
the design space. The maximum investigated operand slice k
should allow the possibility to efficiently process more than
one word-length option, with maximum weight word-length
wQ being 8 bit and activation word-length always set to 8 bit to
preserve accuracy [4]. Hence, we investigate the operand slices
of 1, 2, and 4 bit.

The quantitative comparison in Fig. 6 presents the results
of the PE DSE (cf. blue box in Fig. 2). The dotted lines link
related design points. Actual implementations are limited to a
discrete word-length. Typically, area efficiency is quantified as
GOps / s / area, which translates to GOps / s / LUT in the case
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i.e. k bit / cycle for BS and operand slice k for BP. The best
performing PE design is encircled and shown in (b).

of an FPGA. However, this metric does not take differences
in word-length into account. Hence, we use the processed
bits / s / LUT of a PE as quantitative optimization objective
(maximization). In Fig. 6 a, the PE design with the best operand
slice k for a given weight word-length is encircled. For all
design points considering asymmetrical word-lengths, the Bit-
Parallel Sum-Together one-dimensional-scaled design (BP-ST-
1D) provides the best results. This is in agreement with the
findings in [30]. Therefore, the chosen PE design is BP-ST-
1D, cf. Fig. 6 b.
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of word-length scaling, the use of DSPs is normalized to
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in bit as activations×weights. Bit normalized and solution
normalized refers to the energy needed to process either one
bit or one MAC solution, comprising all partial products. Both
is normalized by the respective reference energy needed for
processing either one bit or one final MAC.

Our gate-level-timing simulation indicated that the DSP
hardmacros are 1.7× more energy efficient than the LUT-

based PEs of identical word-length, while the former provides
no or limited flexibility. DSP and LUT-based PE designs are
normalized in Fig. 7 to their respective 8 bit× 8 bit reference.
The respective operand slice k per PPG is indicated in bit.
Energy efficiency is maximized using slices that match the
required word-length, e.g., comparing an 8 bit× 2 bit multipli-
cation against a fixed-width 8 bit× 8 bit LUT-based operation
provides an increase in energy efficiency of 2.1× (cf. Fig. 7).

As mentioned above, DSP resources are limited. Taking the
example of the Stratix V GXA7, it features 256 DSPs. LUT-
based PEs provide between 2.7× and 7.8× more computational
resources assuming word-lengths between 1 and 4 bit, thereby
providing a proportionate increase in peak throughput. As
much as the flexibility in functionality supports more CNN
variants (including layer- and channel-wise mixed-precision
networks), it comes at the cost of additional control logic.
So, the final choice of the operand slice k depends on the
average word-length used in the adopted CNN. Considering
the reconfiguration opportunities using an FPGA platform, a
dedicated image can be loaded that most optimally matches the
specific CNN. Hence, the results in Fig. 9 refer to individual
FPGA images.

B. Design Space Exploration of Dataflow

The maximum feasible number of PEs was determined
by assessing the PE architecture BP-ST-1D (cf. Fig. 6 b) of
different operand slices k, independently of the PE array
dimensions. This number of PEs serves as a threshold of PEs
bound for the design space. It is then searched for a PE array
that offers the maximum Ops / Logic and Ops / Memory, while
including hardware overhead and realizability with regards to
the FPGA. The choice of the operand slice k, as well as the
PE array dimensions, are concurrently optimized considering
the maximum number of realizable PEs and their respective
average utilization when executing a given mixed-precision
CNN. For this, all possible combinations in PE dimensions are
automatically evaluated. To reach highest throughput for each
uniquely quantized CNN, the DSE in Fig. 2 has to be repeated,
regarding the red and green box. As a result, a new FPGA
accelerator design is created.

min(BRAMNPA) = 3× 3

√
N2

PE

for H =W = D and N = wQ

(4)

Our investigation shows that not only the total number of PEs
is relevant for performance, but the PE array dimensions are as
well. The array dimensions dictate the average utilization of the
implemented PEs and determine the possible spatial reuse of
data fetched from the BRAM. Combining Eq. 1 and Eq. 2 for a
symmetric PE array, Eq. 4 shows the minimum BRAMNPA. The
total number of parallel BRAM accesses is lower for symmetric
PE array dimensions (height H , width W , and depth D of the
PE array are the same) than for asymmetric PE array dimen-
sions, cf. Fig. 8. Besides, if the number of BRAMs decreases,
the hardware overhead declines. Hence, the data points with
less parallel BRAM accesses are preferable for implementation.
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Nevertheless, the most optimal PE dimensions with regards to
the maximization of Ops / resources (cf. Fig. 2 red box) were
surprisingly not symmetrical (cf. Table II). Because the PE
array utilization highly depends on the CNN (cf. Eq. 3), which
typically does not provide symmetrical dimensions IH, IW, and
OD.

TABLE II: Chosen PE array dimensions

CNN model operand slice k PE array dimensions NPE
(bit) H W D

ResNet-18 1 7 3 32 672
2 7 5 37 1295
4 7 4 66 1848

ResNet-50 & 1 7 3 33 693
ResNet-152 2 7 5 37 1295

4 7 4 71 1988

C. System Level Performance

Our FPGA designs support numerous mixed-precision CNNs
and translates the word-length reduction directly into through-
put gains. Their accuracy-throughput trade-off is shown in
Fig. 9. It shows the benefit in accuracy for deeper CNN archi-
tectures as well as of higher word-lengths. For CNNs in this
work, we fix activations as well as first and last layer weights
to 8bit. The word-length of all other weights is set to wQ. For
inference, Eq. 5 quantizes activations and weights, here both
represented with ν, with the round to nearest function b·e and
saturated with the clamp function to its upper bound Qp and to
its lower bound Qn. Activations are quantized in an unsigned
fashion, hence, for activations Qn = 0 and Qp = 2b−1. Weights
are quantized as signed numbers, so, for weights Qn = −2b−1

and Qp = 2b−1−1. FP represents the floating-point value, quant
represents the quantized value, and int represents the integer
value. The quantizer step size γ is initialized and trained as in
[10] described. By quantization aware training of 30 epochs of
pretrained ResNets from Torchvision, the floating-point weights
are updated. For FP, all weights and activations are kept in 32 bit
floating-point. Mixed-precision CNNs can surpass floating-
point accuracy, as indicated in Fig. 9 for ResNet-18, ResNet-50
and ResNet-152 with wQ equals 4 bit. By further optimizing the

word-length per layer, the accuracy-memory footprint trade-off
(cf. Table III) could be even more pronounced, as shown in
[5]–[10]. We leave the optimization of word-length per layer
to future work, because we focus in this work on the hardware
accelerator. Those future optimizations could improve accuracy
while maintaining memory footprint.

νquant = νint × γ

with νint = b(clamp(
νFP

γ
,Qn, Qp))e

(5)

TABLE III: Accuracy versus memory footprint

CNN wQ memory footprint compression accuracy
(bit) (MB) factor Top-1 Top-5

ResNet-18 FP 352 1.0 69.69 89.07
1 69 5.1 40.42 65.29
2 72 4.9 67.31 87.48
4 77 4.6 69.75 89.10

ResNet-50 FP 662 1.0 76.00 92.93
1 111 6.0 61.87 83.95
2 118 5.6 74.86 92.24
4 134 4.9 76.47 93.07

ResNet-152 FP 1767 1.0 78.26 93.94
1 145 12.2 70.77 90.02
2 188 9.4 76.09 92.90
4 272 6.5 78.38 94.00

Table IV presents the energy / frame for four differently quan-
tized ResNet-18 on three different accelerator designs with one
image per batch. The accelerator designs are optimized for
ResNet-18 and PEs of the type BP-ST-1D with either operand
slice k of 1, 2, or 4 bit. The contributions to the energy figures
in Table IV are based on DDR3 accesses with 70 pJ / bit [33],
a BRAM memory model equivalent to the Stratix V M20K
memory block as well as the energy for processing estimated
by the available Quartus toolchain for Stratix IV and scaling to
Stratix V using results of [13].
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Fig. 9: ResNet-# (18, 50, 152) accuracy (%) versus performance
of our FPGA design with operand slice k = wQ. For the floating-
point ResNets only the respective accuracies are shown as FP.

Table IV highlights the impact of operand slices. Supporting
weights of 8 bit, a PE array with 2 bit operand slices features
less energy for BRAM accesses as compared to an array with
1 bit operand slices. This is due to an increased reuse of data



fetched from the BRAM in the first case. A larger PE array
contributes to more data reuse options. The energy for BRAM
accesses is dominated by the partial sum with 30 bit.

Besides, Table IV shows also the impact of operand slice k
as function of the predominant word-length used in a given
CNN. If the operand slice matches the average word-length of
a CNN, the total energy / frame is minimized for the 1 bit case.
Then again, a CNN with no binary weights does not benefit
from the PE design, hence it uses 6.36× more energy than
the CNN with mostly 1 bit weights. The factor of total energy
reduction between the 4 bit case and the 2 bit case is 1.34×,
but the factor of total energy reduction between the 2 bit case
and the 1 bit case is only 1.02×. This is caused by the high
efficiency of the PPG with 2 bit operand slice (cf. Fig 7).

To conclude, if the word-length is smaller than the operand
slice, PPGs are not fully utilized. Furthermore, a smaller
operand slice reduces the total energy / frame for input word-
lengths of same size. Then again, higher operand slices reduce
the shift logic and decrease the size of the adder tree, so more
PEs can be implemented with the same resources. Hence, the
peak throughput increases.

TABLE IV: Impact of operand slices processing ResNet-18

operand slice k (bit) 1 2 4 1 2 4
inner layers wQ (bit) 8 1 2 4
Top1 accuracy (%) 70.40 40.42 67.31 69.75
Top5 accuracy (%) 89.62 65.29 87.48 89.10

kLUTs 392.24 327.68 243.94 380.35 331.52 243.94
BRAM 2470 1644 1762 1998

frequency (MHz) 124 127 96 124 127 96
energy / frame for
computation (mJ) 100.90 47.06 23.40 11.80 11.76 16.06
energy / frame for

BRAM accesses (mJ) 7.59 5.42 5.85 1.35 1.55 3.21
energy / frame for

DDR3 accesses (mJ) 6.24 6.24 6.24 4.90 5.10 5.48
total energy / frame (mJ) 114.73 58.72 35.49 18.05 18.41 24.75

frames/s 46.86 83.81 97.25 271.68 245.23 165.63
GOps/s 159.87 285.94 331.77 926.84 836.61 565.05

GOps/s/W 0.066 0.418 0.930 14.142 11.320 3.831

Table V provides a comparison of architectures supporting
layer-wise mixed-precision CNNs processing ImageNet. Please
note, only reference [15] uses an identical FPGA. In any
case, none reports energy numbers. Our designs abstain from
using DSPs given their limited number (256 on Stratix V).
Furthermore, only the work of [27], [34], and our work support
channel-wise mixed-precision CNNs. But [27] is limited to
binary and 8 bit, whereas our implementation supports 1, 2,
4, and 8 bit, resulting in better accuracy-throughput trade-offs.
As a common practice, we count one MAC operation as two
operations. For references, that do not follow this practice, Ops
numbers are multiplied by a factor of 2.

Our work outperforms for ResNet-152 with 1.13 TOps / s by
1.56× Nguyen et al. [27] and by 4.09× Ma et al. [15], and it
outperforms for ResNet-50 with 938 GOps / s Maki et al. [34]
by 9.84×. Embracing logic-based MAC realizations as in [34],
PE count is increased by 2.63× (for ResNet-18 with k = 1 bit)
up to 7.77× (for ResNet-152 with k = 4 bit) when compared

to the 256 DSPs on a Stratix V (cf. Table II). This increase is
visible in the total PE array dimensions and, therefore, in the
total throughput as well as data reuse and with this in the total
BRAM access reduction.

TABLE V: State-of-the-art comparison

Metrics [26] [34] [15] [27] this work
DoReFa ResNet ResNet ResNet ResNet ResNet ResNet

CNN Net/PF -50 -152 -152 -50 -152 -152
Top1a

accuracy 50.3 - - - 74.86 76.09 78.17
Top5a

accuracy 74.0 91.9 - - 92.24 92.90 93.96
word-length

weights 1 1-16 16 8d 2b 8
word-lenght
activations 2 8 16 8d 8

FPGA PYNQ-Z1 ZCU 102 Stratix V Virtex 7 Stratix V
node (nm) 28 16 28 28 28
f (MHz) 100 100 150 200 127

operand slice: 2× 1 8× 1 16× 16 8× 1 & 8 x 2
N bit× k bit 8× 8 c

BRAMs 278 900 2385 716 1762 2470
DSPs - 0 256 2515 0
kLUT 35.7 57 370 280.4 331.5

BRAM in % 99 98 93 69 69 96
DSPs in % - 0 100 90 0
LUT in % 67 21 78 92 71
channel e no yes no yes yes
flexible f yes yes no yes yes

CONV only no yes no yes yes
GOps / s 258g 95.4g 276.6 726.0 938.33 1131.38 311.16
frames / s - - 12.23 32.1 129.38 51.19 14.08
mJ / frame - - - - 36.56 97.71 367.69

GOps / s / W 102g - - - 198.39 226.20 60.11
a ImageNet b first and last layer are 8 bit c equivalent to PE size

d Folding two 8x8 mult per 16bit DSP to achieve fclk×DSPs×2×efficiency
= 200MHz × 2515 × 2 × 72.2% = 726GOps

e supports channel-wise mixed-precision
f unknown input word-length can be processed

g Ops / s in reference refer to MACs / s, so the value is multiplied by two

V. CONCLUSION

The design space of mixed-precision CNN hardware accel-
erators is enormous. In a structured approach, the flexibility-
throughput-energy trade-off was quantitatively assessed along
the design dimension on the bit-level, PE-level, and architec-
tural level. Considering the granularity of natively supported
word-lengths from 1 to 8 bit, a dedicated optimum exists as
a function of the distribution of word-lengths in the targeted
CNN model. A reduction in energy up to 6.36× is reached
when comparing a mixed-precision CNN against a CNN with
fixed word-length of 8 bit. This work enhances flexibility by
supporting processing varying precision of a given CNN as
well as taking advantage of the FPGA platform to adjust
the accelerator design in accordance to a specific CNN for
maximum hardware utilization, and hence, to achieve maximum
throughput. Compared to state-of-the-art in mixed-precision
FPGA accelerators, this work increases its frames / s by 1.56×
for ResNet-152 compared to [27] and achieves 9.84× more
GOp / s for ResNet-50 compared to [34].
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