
To appear in the 33rd International Conference on Field-Programmable Logic and Applications (2023).

Compiler Discovered Dynamic Scheduling of
Irregular Code in High-Level Synthesis

Robert Szafarczyk, Syed Waqar Nabi and Wim Vanderbauwhede
School of Computing Science
University of Glasgow, UK

Email: {robert.szafarczyk, syed.nabi, wim.vanderbauwhede}@glasgow.ac.uk

Abstract—Dynamically scheduled high-level synthesis (HLS)
achieves higher throughput than static HLS for codes with un-
predictable memory accesses and control flow. However, excessive
dataflow scheduling results in circuits that use more resources
and have a slower critical path, even when only a part of the
circuit exhibits dynamic behavior. Recent work has shown that
marking parts of a dataflow circuit for static scheduling can save
resources and improve performance (hybrid scheduling), but the
dynamic part of the circuit still bottlenecks the critical path.

We propose instead to selectively introduce dynamic scheduling
into static HLS. This paper presents an algorithm for identifying
code regions amenable to dynamic scheduling and shows a
methodology for introducing dynamically scheduled basic blocks,
loops, and memory operations into static HLS. Our algorithm is
informed by modulo-scheduling and can be integrated into any
modulo-scheduled HLS tool. On a set of ten benchmarks, we
show that our approach achieves on average an up to 3.7× and
3× speedup against dynamic and hybrid scheduling, respectively,
with an area overhead of 1.3× and frequency degradation of
0.74× when compared to static HLS.

Index Terms—HLS, dataflow, compiler, modulo scheduling

I. INTRODUCTION

High-level synthesis (HLS) tools transform code written in
a high-level software language, like C++, into a hardware
description of a custom architecture that can be realized on
FPGAs. Custom architectures can achieve a higher degree
of pipeline parallelism compared to superscalar CPUs and
GPUs, promising performance and efficiency improvements
[1]. This performance promise has led to wider adoption of
FPGA acceleration [2], [3]. The success of such acceleration
depends in part on the quality of HLS tools.

A major objective of HLS tools is loop pipelining. Loop
pipelining is the process of starting new iterations of a loop
while previous iterations have not yet finished. The number of
cycles between the start of two iterations is called the Initiation
Interval (II). A loop with a constant II, N iterations, and a
latency of L will execute in L+ (N − 1)× II cycles, which
for N ≫ L can be approximated as N × II . Thus, a low loop
II is crucial to achieving good performance in HLS.

Static HLS uses modulo scheduling to map operations to
cycles at compile time [4]–[6]. To calculate the II of a loop,
modulo scheduling goes over all recurrences (inter-iteration
dependencies) in its data dependence graph (DDG) and cal-
culates their delay (the number of cycles needed to traverse
the whole recurrence path), and its dependence distance (the
number of iterations between the definition of a recurrence

value and its use). The final recurrence constrained II is the
maximum over all recurrences in the DDG:

II = maxi⌈delayi/distancei⌉.

Crucially, static scheduling has to arrive at one II for a loop
that needs to accommodate all control-flow paths through the
DDG. For example, in the example from fig. 1a there is a
recurrence for x. Even if the x > 100 condition would be
satisfied only half of the iterations, modulo scheduling needs
to allocate cycles for the operations in the if body and will
produce the schedule in fig. 1c. In practice, control-dependent
operations are if-converted – they execute at runtime but their
result might be discarded depending on control flow.

Dynamic HLS uses dataflow scheduling to trigger the execu-
tion of operations based on the availability of data, similar to
the principles of first dataflow computers [7]. This allows the
II of a loop to naturally adapt to runtime conditions. For the
example code in fig. 1a, dynamic HLS would produce the ideal
schedule from fig. 1d. However, it would do so at the expense
of dynamically scheduling the whole circuit, even if only one
part of it exhibits dynamic behavior. When mapped to FPGA
technology, such dataflow circuits often use several times
more resources and have a significant critical path overhead
compared to static HLS [8]. There is a need to systematically
and intelligently combine static and dynamic HLS scheduling.
To this end, we make the following contributions:

• A compiler analysis informed by modulo scheduling for
discovering basic blocks, memory operations, and whole
loops suitable for dynamic scheduling (sec. III).

• A method for the automatic introduction of dynamic
scheduling inside modulo scheduled HLS. We show how
basic blocks and loops can be transformed into predicated
processing elements, and how the decoupled memory
access/execute technique can be combined with a Load-
Store Queue to achieve out-of-order dynamically sched-
uled memory operations in static HLS (sec. IV).

• An evaluation of our work against three other approaches
to HLS scheduling: static, fully dynamic (Dynamatic
[9]), and DASS [10] which introduces static islands into
otherwise dynamically scheduled HLS. On a set of ten
benchmarks, we show an up to 3.7× and 3× speedup
on average against Dynamatic and DASS, respectively,
while achieving a lower area overhead and critical path
overhead (sec. V).
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for (int i = 0; i < N; ++i)
  if (x > 100)
    x -= f(x)
  x += g(x)

(a) Motivating source code.
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(b) Data and control dependence graph.

g(x) x += x

 II = 5 
 II = 5 x > 100

f(x) x -= x g(x) x += xx > 100 f(x)

x -= xf(x)x > 100

(c) A static schedule: a new iteration started every 5 cycles for all iterations.

x += x

 II = 3 
 II = 5 x > 100

x > 100

x -= x g(x) x += xx > 100 f(x)

g(x) x += x

 II = 3 

g(x)

(d) An ideal schedule: x = x - f(x) is never allocated a slot if not required.

Fig. 1. A motivating example of code with an inter-iteration control-dependent data data dependency (a). Current modulo-scheduled HLS needs to create a
worst case schedule (c). We propose to enhance modulo-scheduled HLS with analysis and transformation passes which enable the dynamic schedule in (d).

II. BACKGROUND & RELATED WORK

A. Dynamic Scheduling

Carloni et al. formalized a theory of latency-insensitive
design [11]. Assuming that modules are stallable, their pro-
tocol separates module communication from their cycle be-
havior. Later, Cortadella et al. proposed a simplified latency-
insensitive protocol called SELF, which could be applied in
synchronous circuits [12]. The SELF protocol, or modifica-
tions thereof, has since been used as a basis for dynamically
scheduled circuits [9], [13]–[16]. Most commercial HLS tools
provide a latency-insensitive channel construct, e.g. SYCL
Pipes [17], or Xilinx Streams [18]. We use SYCL pipes in
this work to introduce dataflow scheduling across kernels.

Several HLS tools that automatically create dataflow cir-
cuits have been developed in academia [9], [15], [19], [20].
Dynamatic by Josipović et al. [9] is the most recent and most
general of them, introducing latency-insensitivity for every
def-use SSA value pair that spans across two basic blocks.
The resulting circuits perform well on irregular code, but
they use more dynamic scheduling than required. Instead,
we selectively introduce the minimum amount of dynamic
scheduling to achieve the same throughput by using the Data
Dependence Graph (DDG) and Control Dependence Graph
(CDG) to connect selected dynamically scheduled producer
and consumer pairs directly. In contrast, Dynamatic material-
izes dataflow constructs using the Control Flow Graph (CFG)
[21] order, which means that a token needs to flow through
all basic blocks between a producer and consumer (although
recent work started to address this issue [22]).

The work of Cheng et al. shares our goal of combining
dynamic and static scheduling [10], [23]. They extended
Dynamatic with the DASS methodology (Dynamic and Static
Scheduling) [10], which lets programmers manually identify
static islands in their otherwise dynamically scheduled circuit.
Later, the authors provided formal guidelines on where static
islands can be beneficial [23]. Static islands can be scheduled
statically on the inside and are wrapped in interfacing logic to
communicate results with the dynamic part of the circuit. The
performance and resource usage of such a hybrid approach

is promising, but the circuit critical path is still bottlenecked
by the dynamic part. Furthermore, some of the restrictions on
what can be marked as a static island are prohibitive, e.g. Load
Store Queue (LSQ) connections can only be made from the
dynamic part and an additional memory controller is needed to
arbitrate between the static and dynamic region if they access
the same part of memory [23]. Our approach has no such
restriction. A major difference between DASS and our work is
that we propose to introduce dynamic scheduling into modulo-
scheduled HLS using only constructs available in static HLS.

Xu et al. [8] proposed to use linear temporal logic (LTL)
to prove that certain handshaking signals in a dataflow circuit
will never be used or that they are equivalent to other signals
at the time of use, allowing them to be removed without losing
correctness. While this brings the resource usage of dataflow
circuits closer to static HLS, there is still a significant gap be-
tween the two, both in terms of resource usage and achievable
critical path. Furthermore, model checking of LTL formulas
is notorious for its exponential complexity in the number of
transitions in the system, e.g. [8] reports 80 min check time
for a code with two matrix multiply loops. The authors use the
abstraction technique to reduce the size of the state system,
but it remains to be seen how this approach performs on more
complex codes that result in a DDG with high connectivity
(and thus more states that cannot be abstracted away). We
propose to tackle the problem of resource usage by selectively
introducing dynamic scheduling into static HLS.

Our approach to dynamic scheduling resembles decoupled
software pipelining (DSWP) proposed by Ottoni et al. [24].
In DSWP, the DDG and CDG of a loop are partitioned into
strongly connected components (SCCs), which are decoupled
into separate threads communicating via FIFOs. Although
originally proposed for multicore CPUs, the decoupling ap-
proach works especially well on FPGAs where FIFO com-
munication is efficient, e.g. S. Cheng et al. used the DSWP
principle to minimize stalls resulting from cache misses on
reconfigurable accelerators [25]. Although similar in nature,
our approach is fundamentally different because our goal is the
selective introduction of dynamic scheduling and we perform
the decoupling inside an SCC, while DSWP decouples whole



SCCs. To illustrate the difference, consider the DDG and CDG
in fig. 1b. DSWP would decouple the whole recurrence SCC
1→ 2→ 3, while we would decouple only node 2.

B. Dynamic Dataflow Model of Computation in Static HLS
We use SYCL [17] HLS as a representative of modulo-

scheduled HLS in this work. Each SYCL kernel has its own
static schedule, and kernels can communicate with each other
via latency-insensitive SYCL pipes. In previous work, pipes
were used to implement the Synchronous Dataflow (SDF)
model of computation [26], which guarantees deterministic
execution by enforcing compile-time computability of pipe
read/write rates. To enable dynamic scheduling the Dynamic
Dataflow (DDF) model of computation is needed – pipe
read/writes should be allowed to depend on the program
control-flow [27]. This is possible in SYCL HLS, allowing the
construction of the switch/select dynamic dataflow primitives.
In the context of our work, SYCL is advantageous over
OpenCL because SYCL pipes are implemented as types, not
kernel arguments, making them easier to use in compiler
transformations. Furthermore, there is ongoing work on an
MLIR [28] SYCL dialect to make kernel fusion and fission
a first-class compiler transformation [29]. To the best of our
knowledge, there is no prior work that shows that the DDF
model of computation can be achieved in static HLS.

SYCL pipe operations can be blocking or non-blocking.
When using a non-blocking pipe operation, the pipe returns
a success code depending on whether the operation was
completed, without stalling the pipeline. A kernel can then
make control flow decisions based on the availability of data in
the pipe. This behavior enables the Dynamic Dataflow (DDF)
with Peeks model of computation [27]. Compared to vanilla
DDF, DDF with Peeks is non-deterministic. Non-determinism
can be used to, for example, implement a Load-Store Queue
(LSQ) connected to a variable latency memory system.

III. COMPILER DISCOVERED DYNAMIC SCHEDULING

This section presents how to find basic blocks, memory
operations, or whole loops amenable to dynamic scheduling.

A. Marking Basic Blocks
A loop schedule in static HLS is obtained using modulo

scheduling [4]–[6], which arrives at a minimum recurrence-
constrained loop initiation interval (II) by taking the maximum
over all SCCs in the DDG:

II = maxi⌈delayi/distancei⌉,

where the delay is the sum of instruction latencies on the SCC
path, and distance is the minimum iteration distance between
the definition of the value calculated by the SCC and its use.
Since modulo scheduling has to arrive at a single II, it has
to necessarily over-approximate the recurrence-constrained II
if there are control-dependent paths through the DDG with a
lower delay or a higher distance. The key idea of this paper is
to selectively decouple parts of the SCC into separate modulo-
scheduling problems, such that modulo scheduling doesn’t
have to over-approximate.

Algorithm 1 Marking Basic Blocks for Dynamic Scheduling
Input: DDG, CDG, CFG
for SCC ∈ DDG do

for every legal control-flow Path ∈ SCC do
PathII ← CalculateII(Path)
if PathII = 1 then continue
for Node ∈ Path do
BB ← BasicBlock(Node)
NodesBB ← AllDDGNodes(BB)
C1 ← CtrlDepSrc(BB) ̸= LoopHeader
C2 ← CalculateII(Path \NodesBB) < PathII
if C1 and C2 then

mark BB for dynamic scheduling

Alg. 1 describes our analysis for marking basic blocks for
dynamic scheduling. We propose to enumerate all possible
control-flow paths through the SCC and calculate their II. For
each SCC path with an II > 1, we collect instructions that are
control dependent on anything else but the loop header (every
instruction inside a loop body is trivially control-dependent on
the loop header). For every collected DDG node, we obtain
all other DDG nodes from the same basic block and calculate
their contribution to the II of the currently considered path.
Specifically, we check if without the collected nodes the path
delay decreases or the dependence distance increases. If
true, we mark that block for dynamic scheduling and collect
all instructions in the block that are part of the currently
considered SCC path. The block could contain instructions
that are not part of the currently evaluated SCC in which
case they will not be marked, or they will be marked when
evaluating a different SCC. One could set a threshold for the
delay decrease or dependence distance increase (e.g. to avoid
dynamic scheduling overhead if the II improvement is small),
however, this is beyond the scope of this paper.

Example: Consider the DDG in fig. 1b with two SCCs:
(1→ 4) and (1→ 2→ 3). (1→ 4) has a trivial II of 1, so it
is not marked. The second SCC has an II of 5, so we check if it
contains any control-dependent nodes by using the CDG [30].
The blocks containing nodes 1, 3 are control-dependent on the
loop header block, so they are ignored. The block containing
node 2, however, is control-dependent on a non-loop-header
block, so it is marked for dynamic scheduling.

B. Marking Memory Operations

Memory operations that cannot be disambiguated at com-
pile time form memory-dependency edges in the DDG [30].
Modulo scheduling treats these edges in the same way as
it treats register dependencies. The only difference is that
the dependence distance between memory operations can be
unknown, for example, if the access pattern is data-dependent
or the compiler doesn’t employ a strong enough alias analysis
[31], [32]. If the dependence distance is known, we employ the
same strategy as for marking basic blocks, namely, we check
if there is a control flow path through the DDG with a higher
dependence distance, and if yes, we check if it’s control



dependent on anything but a loop header. If the dependence
distance between dependent memory operations is unknown,
we immediately mark them for dynamic scheduling. For any
marked pair of memory operations, we also mark all other
memory operations that use the same base pointer.

C. Inter-Loop Pipelining

The opportunities for decoupling whole loops are rare. The
first scenario is a nested control-dependent loop that is control-
dependent on anything else than its parent loop header, and
where the parent loop is not perfectly pipelined because of a
dependency in the nested loop. That is, the decoupling of the
inner loop should improve the average II of the outer loop.

The second opportunity for decoupling whole loops is a
scenario with multiple sibling loops – loops at the same level
of nesting. If a loop L1 has a sibling loop L2, then we check
if it’s legal to start the second loop before the first one has
finished. We mark L2 for dynamic scheduling if:

1) There are no data dependencies between L1 and L2

calculated by a recurrence, and with a source in L1

and destination in L2. In other words, if the dependency
destination in L2 needs to wait for the whole L1 to
finish, then there is no benefit to decoupling L2.

2) There are no memory dependencies between L1 and L2

such that the address expressions in L1 and L2 cannot
be disambiguated at compile time.

Compile time memory disambiguation across loops is often
not possible. For example, in the polyhedral model [33] it
would require proving that the L1 and L2 polyhedra do not
overlap at all. Connecting memory operations in L1 and L2

loops to an LSQ would be of little benefit because the L2 loop
would have to wait for all allocations in L1 to finish. This has
also been noted by Cheng et al. [34] who proposed to statically
disambiguate memory accesses across loops for individual
iterations, rather than the whole iteration space. The idea is
that individual iterations of the second loop can start as soon
as possible, while iterations with offending memory operations
will stall. This is a promising approach and could be integrated
into our flow. However, codes amenable to dynamic scheduling
often have data-dependent address expressions, making the
applicability of this approach limited. Future work could
investigate if the approach can be extended to a lightweight
runtime mechanism, similar to the work of Liu et al. [35].

IV. ACHIEVING SELECTIVE DYNAMIC SCHEDULING

This section presents our main contribution: a method for
introducing dynamically scheduled code regions in modulo-
scheduled HLS via latency-insensitive channels.

A. Dynamically Scheduled Basic Blocks

Basic blocks marked for dynamic scheduling are trans-
formed into predicated Processing Elements (PEs). Fig. 2a
shows a possible CFG for our motivating example code from
fig. 1. Fig. 2b shows a high-level overview of how the
marked block B would be decoupled by our transformation.
All instructions collected in the marked block are moved from

A

B

C

path 2 
II=5

path 1 
II = 3

(a) Statically scheduled loop
with a worst case II.

data in

B
data out

predicate
A

B

C
Latency-Insensitive

Channel

(b) Decoupled unpredictable control-
dependent data dependency.

Fig. 2. Our main idea. Control-flow paths with a higher recurrence-
constrained initiation interval (II) are decoupled into separate modulo sched-
uled instances, with data dependencies communicated via latency-insensitive
channels. A recurrence through registers is decoupled into a predicated PE.

the original CFG to the predicated PE. We then collect the set
of input and output data dependencies between the PE and the
original CFG using a simple data flow algorithm: every SSA
value used in the PE but defined in the original CFG is an
input dependency from the original CFG to the PE, and vice
versa for output dependency from the PE to the original CFG.
All SSA values collected as input dependencies are replaced
with pipe writes in the original CFG, and with pipe reads in
the PE. The dual is done for output dependencies. Finally, we
insert a predicate pipe write to the beginning of the decoupled
block in the original CFG which will trigger our predicated
PE whenever control transfers to that block.

The PE is guaranteed not to access any memory directly.
If a memory access inside a marked block was itself marked
for dynamic scheduling, then it will be replaced by pipe read
or write (subsec. IV-B). If the access was not marked, we
keep it in the original CFG and communicate its operands as
dependencies between the PE and the original CFG – a load
used in the PE becomes an input dependency, a store operand
defined in the PE becomes an output dependency.

As presented so far, our transformation is local to a basic
block and doesn’t require updating SSA values in other blocks.
This can change after hoisting redundant pipe operations out
of loops. A pipe operations in the main CFG can be hoisted out
before or after the loop if the value it is carrying is only used
or defined in the predicated PE. For example, the code in fig 1a
would not have any pipe operations hoisted out, because the x
value would be used in both the PE and the original CFG. If,
however, the x += g(x) statement would be removed, then
the pipe operations supplying and receiving x could be hoisted
out because the original CFG would not use its value in the
communication sequence: CFG

x−→ PE
x−→ CFG

x−→ PE.
Effect of transformation: Since pipe operations do not form

inter-iteration dependencies, modulo scheduling will find that
the fig. 1 loop delay is now 3 and not 5. Whenever control
transfers to the decoupled basic block, the original loop
will trigger the predicated PE and communicate the required
input dependencies. It will then continue its execution until
it encounters an operation that is dependent on an output
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Fig. 3. An illustration of how a recurrence through memory is decoupled.

dependency from the decoupled block. If such a dependency is
encountered, then the original loop is stalled until the required
dependency is communicated from the PE. Thus, a variable II
is achieved which naturally adapts to runtime conditions.

Dynamic scheduling of whole loops is achieved in the
same fashion as for basic blocks, with the difference that the
dependencies are calculated for the whole loop.

B. Dynamically Scheduled Memory Operations

Memory operations marked for dynamic scheduling require
runtime memory disambiguation machinery, such as a Load-
Store Queue (LSQ) [36]. An LSQ can check for memory
conflicts at runtime by comparing load and store addresses
out-of-order with the actual memory accesses, and stall the
datapath if a true data hazard is detected. One can easily plug
any LSQ design into modulo-scheduled HLS, however, this
is not enough. For an LSQ to be most effective, it should be
able to accept load and store requests (address allocations)
ahead of store values. In a dataflow circuit, this happens nat-
urally since the production of memory addresses is decoupled
from the actual load and store operations. To achieve the
same effect in modulo-scheduled HLS, the address generation
should also be decoupled, similar to the principle of decoupled
access/execute architectures [37]. Decoupled memory accesses
have been studied before in the context of FPGAs, but only for
prefetching and hiding variable latency memory accesses [25],
[38]. We contribute the insight that this approach, together with
an LSQ, can enable dynamically scheduled out-of-order loads
in static HLS. Before describing the actual transformation,
we give an algorithm for automatically checking if decoupled
address generation can run ahead of memory accesses.

Given a set of address-generating instructions IGEN for a
given base address and a set of memory access instructions
IACCESS using addresses generated by IGEN , we decide to
decouple the IGEN instructions if:

∀i ∈ IGEN where i is used by a store, i is not control
nor data dependent on any instruction j, such that there
is a DDG path from an instruction k ∈ IACCESS to j.

In other words, if the execution of a store, or its address
calculation, depends on the value of a load from the same base
address, then decoupling is not possible. An example would be
bubble sort, where the store is conditional on the loaded values.
In such codes, LSQ store requests for a given iteration can

kernel.cpp clang LLVM IR Analysis report.json AST Transformation

kernel.tmp.cpp clang LLVM IR Transformation HLS toolLLVM IR

Fig. 4. Our tool flow. The analysis and transformation parts are described
in the paper (sec. III and IV). The AST transformation consists of creating
kernel copies, inserting LSQ kernels and creating latency-insensitive channels,
which are later used by the transformation operating on the LLVM IR.

only be issued once the loads from the previous iteration have
finished. This restriction is not a limitation of our approach,
since even a fully dynamic HLS tool would have to stall in
such a situation. Value-based disambiguation, as opposed to
an LSQ, might perform better on these codes, because both
the load and store could be executed speculatively [39].

If our analysis determines that decoupling of address gen-
eration is profitable, then we proceed with decoupling of the
memory-generating instructions. We copy the original loop
CFG and delete from it all instructions not needed by IGEN

(these can be easily obtained by walking the DDG). Pipes for
input and output dependencies are materialized similarly to
section IV-A. Regardless of whether the generation of memory
addresses is decoupled or not, we insert the required pipe
calls to supply load and store requests to the LSQ and to
supply to it and receive from it store and load values. Fig.
3 shows the resulting communication pattern if the address
generation is decoupled. Load and store instructions in block
Y have been replaced with latency-insensitive channel reads
and writes from and to an LSQ, respectively. The addresses to
the LSQ are supplied by a separate modulo-scheduled com-
ponent, which contains only address-generating instructions.
The generation of load and store addresses in this decoupled
component is control-flow equivalent to the consumption and
generation of load and store values in the original CFG.

C. Composability of Transformations

The presented transformations are composable. A decoupled
loop can have a number of its own basic blocks decoupled,
and the basic blocks can have dynamically scheduled memory
operations. The problem of LSQ request ordering across de-
coupled code regions is solved by the design of our LSQ. Our
LSQ is based on tagged memory operations – each load and
store request is tagged with an integer value which represents
the state of the memory at that point; stores increment the
tag before making a request, loads use the tag directly. The
function of the tag inside the LSQ is beyond the scope of
this paper, but it in effect produces a data dependency chain
between memory stores and other memory operations (similar
to what Elakhras et al. proposed for the Dynamatic LSQ [40]).
This tag dependency chain is picked up through our input and
output dependency collection, and as a result is communicated
between decoupled code regions according to runtime control
flow, naturally taking care of the correct order of LSQ requests.
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Fig. 5. Area overhead and speedup of Dynamatic [9], DASS [10] and this work against their respective statically scheduled (SS) baselines. The range bars
in the speedup plot represent the range of speedup as the data distribution changes. A speedup below 1 indicates a slowdown relative to static scheduling.

V. EVALUATION

A. Methodology

We implemented our compiler analysis and transformations
in the LLVM framework [41] and integrated them with the
Intel SYCL compiler. Fig. 4 shows an overview of our tool
flow. Our implementation is publicly available.1 We evaluate
our work against three other scheduling approaches: static
(SS), fully dynamic (DS) [9], and DASS [10], which allows the
marking of a function for static scheduling inside Dynamatic.
Dynamatic is based on Xilinx tools, while our approach is
implemented on top of Intel HLS, which makes a direct
comparison in terms of absolute area usage difficult. Because
of that, we compare the normalized area usage of Dynamatic,
DASS, and our approach against their respective static HLS
baseline. The register and LUT usage overhead are combined
using geometric mean into a single area overhead. For Dy-
namatic and DASS we used the post-synthesis report from
Vivado 2020.2 for the Xilinx xc7k160tfbg484; our approach
used Quartus 19.2.0 post-synthesis reports for the Altera
10AX115S. Clock cycles were obtained using ModelSim.

We applied our approach to ten benchmarks from the
HLS literature [9], [10] made publicly available by Cheng
et al. [42]. Where applicable, we report worst- and best-
case performance for different input data distributions. sparse-
MatrixPower has a control-dependent nested loop. getTan-
hDouble, filterSum and vecNormTrans are single loops that
have recurrences with control-dependent parts. histogram,
bubbleSort, getTanh and BNN have memory accesses with
unpredictable addresses. We also include two codes without
any dynamic behavior: a matrix covariance calculation and
gesummv which is a scalar, vector, and matrix multiply. In
codes with unpredictable memory addresses, we use an LSQ

1https://github.com/robertszafa/elastic-sycl-hls

adapted to our approach, while Dynamatic and DASS use the
Dynamatic LSQ [36]. Any difference in the experiments due
to the different LSQ designs is left out of the evaluation – we
don’t include the LSQ areas, while the throughput of the two
LSQs is the same. All codes use on-chip memory, although
we support off-chip memory addresses equally well.

B. Results
Fig. 5 shows the area overhead and speedup over static

scheduling of the fully dynamically scheduled approach,
DASS, and our work. Tab. I features detailed results of all
ten benchmarks, which we analyze in the next paragraphs.

Area: Dynamic scheduling incurs area overhead for hand-
shaking logic, and the missed opportunity for resource sharing:
if two hardware components become decoupled via latency-
insensitive channels, then the HLS tool cannot make as many
latency assumptions as it could if the two components were
following the same static schedule. On average, our approach
increases area usage by a factor of 1.3×, compared to 2.7× for
DS and 1.8× for DASS. In cases where dynamic scheduling
is not beneficial, our approach doesn’t make any changes to
the static hardware resulting in no resource usage increase,
while DS and DASS see a resource increase of 2.3× and
1.4×, respectively. The area overhead of DS and DASS in the
bubbleSort and BNN benchmark is the highest. BNN consists
of bit-level logic which we could get more aggressively
optimized in the more mature static HLS tools compared to
Dynamatic. bubbleSort on the other hand has a large number
of basic blocks compared to instructions in them, resulting
in a large ratio of dataflow components to functional units in
the Dynamatic generated circuit. We also note that DS and
DASS use on average 1.6× and 1.1× more DSPs than static
scheduling, while our approach doesn’t increase DSP usage.

Critical path: The biggest advantage of our approach is is
the higher frequency achievable by static HLS compared to

https://github.com/robertszafa/elastic-sycl-hls


TABLE I
EVALUATION OF OUR APPROACH AGAINST STATIC SCHEDULING (SS), DYNAMIC SCHEDULING [9], AND DASS [10]. THREE SETS OF BENCHMARKS: 1–4

HAVE CONTROL-DEPENDENT DATA DEPENDENCIES, 5–8 HAVE HAZARDS, AND 9–10 HAVE NO DATA-DEPENDENT BEHAVIOR.

Area ×SS DSPs ×SS FMax (MHz) Cycles (thousands) Execution Time (µs)
[9] [10] Us [9] [10] Us SS [9] [10] Us SS [9] [10] Us SS [9] [10] Us

sparseMatrix 2.5 1.3 1 2 1 1 415 161 161 334 1.8–11 0.3–11 0.3–11 0.1–11 4.3–26.5 1.9–68.3 1.9–68.3 0.3–32.9
getTanhDouble 1.1 1.2 1.5 1 1 1 371 161 161 372 38 1 1 1 102.4 6.2 6.2 2.7
filterSum 2.8 1.7 2 1 1 1 425 185 189 411 5 1–5 1–5 1–5 11.8 5.4–27 5.3–26.5 2.4–12.2
vecNormTrans 2.6 2.4 2 4 1.4 1 374 185 201 379 12 6.1 6.7 6.1 32.1 33 33.3 16.1
norm. geomean 1.9 1.5 1.4 1.7 1.1 1 1 0.43 0.44 0.94 1 0.14–0.34 0.14–0.34 0.09–0.34 1 0.33–0.78 0.33–0.78 0.12–0.36
histogram 2.1 2.4 1.2 1 1 1 356 146 146 168 9 1 1 1 25.3 6.8 6.8 6
bubbleSort 7.1 7.5 1.6 1 1 1 447 139 136 168 20 10–20 10–20 10–20 44.7 71.9-143.9 73.5-147.1 59.5-119
getTanh 3.5 1.3 1.7 2 1 1 368 119 119 161 44-56 2.5–66 2.5–56 1–56 120–152 21–554.6 21–470.6 6.2–331.3
BNN 6.8 2.9 1.4 3 1 1 447 124 119 174 60 30 30 10 134.2 241.9 252.1 57.5
norm. geomean 4.4 2.8 1.4 1.6 1 1 1 0.33 0.32 0.42 1 0.2–0.5 0.2–0.32 0.12–0.18 1 0.6–1.54 0.62–1.5 0.29–0.88
covariance 3.4 1.6 1 1.8 1.8 1 434 86 100 434 68 72.9 84 68 156.7 847.7 840 156.7
gesummv 1.6 1.3 1 2.2 1.7 1 410 113 163 410 65.8 262 68.8 65.8 160.5 2318.6 674.5 160.5
norm. geomean 2.3 1.4 1 1.4 1.3 1 1 0.23 0.3 1 1 2.07 1.13 1 1 8.84 4.75 1
norm. geomean 2.7 1.8 1.3 1.6 1.1 1 1 0.3 0.35 0.74 1 0.39-0.71 0.32-0.5 0.22-0.39 1 1.21-2.2 0.99-1.77 0.33-0.68

Dynamatic. On codes 1-4, which don’t require an LSQ, our
approach results in only an 0.94× frequency drop, compared
to 4× frequency reduction for DS and DASS. On codes 5-
8, the critical path is increased significantly by the LSQ in
all three approaches. Future work could investigate alternative
LSQ designs with a lower critical path [43]. On codes without
dynamic behavior, DS and DASS see frequency drops, while
our approach does not change the SS hardware.

Throughput: We achieve the same or better throughput as
SS, DS, and DASS. We perform better than DS and DASS
on getTanh and BNN because they involve nested non-trivial
control-dependent loops, which benefit from static scheduling.
DASS performs better than Dynamatic on getTanh when the
data distribution favors static scheduling, but it cannot achieve
perfect pipelining when there are no data hazards, because it
cannot start the next iteration of the outer loop until the inner
loop has returned from its static island. On codes without any
dynamic behavior DS and DASS incur non-trivial overheads,
while our approach doesn’t change the SS hardware.

Execution time is the product of the number of cycles and
circuit frequency, and since we benefit from the high frequency
of SS while achieving the same (or higher) throughput, our
approach performs better than DS and DASS. Across the
ten benchmarks our approach is on average up to 3.7× and
3× faster than DS and DASS, respectively. The performance
of our approach is also more stable across varying data
distributions. This is visible in fig. 5, where the speedup range
bars for DS and DASS dip below 1 more often (which means
a slowdown over SS). Our approach is only slower than SS
in the bubbleSort and getTanh benchmarks, and only when
the data distribution favors static scheduling. This is because
the frequency of our circuits for those codes is more than 3×
lower than SS due to the critical path overhead of the LSQ.

VI. LIMITATIONS AND FUTURE WORK

On codes that require an LSQ, the speedup of our imple-
mentation over SS is smaller because we suffer the same
frequency degradation as DS and DASS. Thus, a memory

disambiguation method with no critical path overhead but with
the same throughput as an LSQ is desired for our approach.

Our analysis for marking code for dynamic scheduling could
be inaccurate in some cases, because we don’t have access
to the model of operation latencies used in closed-source
back-end compiler. In this work, we used a simple model
for calculating the recurrence-constrained initiation interval
(II), which might, for example, underestimate the extent of
operator chaining performed in the compiler back-end. Ideally,
the analysis for finding opportunities for dynamic scheduling
should use the same modulo scheduling implementation and
latency model as the compiler back-end.

Similarly, in a production compiler, the implementation
of our decoupling transformation should not rely on SYCL
pipes and kernels, which are user-facing features. To this
end, future work could investigate open-source HLS tools.
A promising development is CIRCT [44]. CIRCT is based
on the MLIR compiler infrastructure [28] and uses different
dialects (intermediate representations) to represent hardware
with different semantics. For example, there exist separate
dialects for statically and dynamically scheduled circuits.

VII. CONCLUSIONS

We presented an algorithm for identifying code regions
amenable to dynamic scheduling in modulo-scheduled HLS
and contributed a novel method for realizing dynamically
scheduled basic blocks, loops, and out-of-order memory oper-
ations in modulo-scheduled HLS. Our main idea is to decouple
parts of control-flow paths that increase the loop initiation
interval into separate modulo-scheduled loops connected via
latency-insensitive channels. Our approach is on average 3.7×
faster than a fully dynamically scheduled HLS tool, while
using only 1.3× more area than pure static scheduling.
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