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Abstract—Sparse Matrix-Vector multiplication (SpMV), com-
puting y = α · A × x + β · y where y, x are dense vectors, α, β
two scalar constants, and A is a sparse matrix, is a key kernel
in many HPC applications. It exhibits a kind of memory access
that is extremely hard to perform efficiently, due to its random
access. In this paper, we present a new approach to accelerate
SpMV on FPGAs. As FPGAs lack a default memory hierarchy,
they can adapt to specific applications better. Also, an increasing
number of FPGAs include High Bandwidth Memory (HBM),
making the SpMV problem especially appealing to tackle on
these kind of devices. We define a new sparse matrix encoding
format (b8c) and its corresponding SpMV implementation using
OmpSs@FPGA and HLS. This format allows us to leverage many
of the FPGA strengths for intensive data processing, such as
data streaming, customizable datapaths widths, parallel memory
access for off-chip memory in the case of multiple memory
channels (like in HBM), parallel memory access for on-chip
memory and pipelining. We tested our proposal for both DDR
and HBM memories to show the adaptability and scalability of
our design. The presented b8c SpMV implementation is able
to achieve higher performance than the state-of-the-art FPGA
implementation of SpMV over all the matrices in the data set,
achieving 3.52x performance on average with a minimum of
1.82x and a maximum of 6.28x even when running at 75% the
frequency.

Index Terms—FPGA, SpMV, HBM, HLS, FP64, double-
precision, High-performance computing, Sparse matrix repre-
sentation.

I. INTRODUCTION

In recent years, we have witnessed how Moore’s Law is
getting harder and harder to achieve. Clock frequencies and
integration in microprocessor manufacturing are reaching a
physical limit that prevents performance improvements as the
ones we have observed during the previous decades. This
scenario has led to the emergence of what we know as ”accel-
erators”: compute devices that are tailored for specific kinds of
workloads, to which a microprocessor can offload parts of the
execution. Field Programmable Gate Arrays (FPGAs) can be
seen as blank canvases of unconfigured hardware, memories
and I/O resources that can be connected in order to implement
logic functions in hardware and reconfigured as many times
as needed. The need for specialized accelerators combined
with the flexibility of FPGAs has made them an interesting
technology for developing such accelerators.

Sparse Matrix-Vector multiplication (SpMV) is a key kernel
in a wide range of applications: from scientific computing

(linear algebra solvers) [1] to artificial intelligence (sparse
neural networks) [2] or graph processing [3], and is of such
importance that it has been included among the seven dwarfs
of parallel computing research (Sparse Linear Algebra) and is
a core kernel in the HPCG benchmark [4]. SpMV exhibits
a kind of memory access that is extremely hard to fulfill
efficiently, due to its random access. In the case of FPGAs,
which lack a ”default” memory hierarchy including caches to
hide the latency of main memory, obtaining good performance
when running SpMV is especially challenging. However, for
large matrices, caching can be arguably ineffective without
further cache optimization. In this sense, FPGA’s ability to
customize the memory hierarchy is an interesting feature
compared to conventional architectures.

In this paper, we present a new approach to accelerate the
computation of the SpMV operation on FPGAs, specially,
but not exclusively, using HBM [5], [6]. We define a new,
FPGA-friendly, sparse matrix encoding format (b8c - block-8-
compress) and its corresponding SpMV implementation using
OmpSs@FPGA [7], a directive-based programming model that
resembles OpenMP tasking [8], [9] originally based on OmpSs
[10]. Our implementation targets the general case of SpMV
(y = α · A × x + β · y) and does not restrict the size of
the source or destination vectors and makes no assumption
about the sparsity pattern of the matrix. Specifically, it assumes
a worst-case scenario where neither the matrix data nor the
source/destination vectors fit into on-chip memory (SRAM,
BRAM/URAM) and, thus, the only limitation on the data
size is the off-chip memory (DRAM) capacity. b8c SpMV
implementation allows us to leverage many of the FPGA
strengths for intensive data processing, such as stream process-
ing, customizable datapaths widths, parallel memory access
for off-chip memory in the case of multiple memory channels
(specially in the case of HBM), parallel memory access for on-
chip memory (via BRAM/URAM partitioning) and pipelining.

We have focused our implementation on the FP64 data
type (double-precision IEEE), but both the b8c algorithm and
the matrix representation could be easily adapted to support
narrower data types. This approach has been implemented
entirely in C++ on top of OmpSs@FPGA and HLS and
tested on a Xilinx Alveo U280 FPGA making use of its
32 HBM memory channels and, without modifications, on a
Xilinx Alveo U200 FPGA using its 4 DDR memory chips,
which shows the adaptability and scalability of our design. In
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order to evaluate the performance of our approach, we have
compared it with Xilinx’s own SpMV implementation for the
Alveo U280, which is included in the vendor’s BLAS Vitis
Accelerated Libraries [11].

II. BACKGROUND AND MOTIVATION

A. Double-precision SpMV on FPGAs with HBM

Vitis Sparse Library’s double-precision SpMV (VSpMV)
[12] is, to the best of our knowledge, the only performance-
oriented 64-bit floating point implementation of SpMV on
FPGAs equipped with HBM. However, unlike our design, even
VSpMV architecture, as is, is not able to perform the generic
form of SpMV (y = α·A×x+β ·y) and does not fully exploit
available HBM bandwidth. Other works have experimented
with double-precision SpMV implementations on FPGAs with
HBM [13], [14]. In both cases, however, their main goal is to
evaluate different aspects of memory bandwidth management,
not to improve SpMV arithmetic performance.

Zhuo et al. [15] designed a double-precision SpMV ac-
celerator but it presented some limitations: they were not
targeting HBM, the proposed architecture did not implement
the generic form of SpMV and it was limited by the size of the
y vector, which was computed and stored entirely on on-chip
memory. Fowers et al. [16] proposed an SpMV accelerator
on FPGA, but it was targeting DDR and single-precision
arithmetic. Besides, the design was limited to problem sizes
where x could fit into the aggregate on-chip vector buffer.
Grigoras et al. [17] proposed an optimized SpMV. However,
it is domain-specific, targeting dense block diagonal sparse
matrices. Jain et al’s SpMV design [18] is also demonstrated
only in single-precision arithmetic and DDR memory, and only
with problem sizes that fit into the on-chip buffers. Kestur et
al. [19] proposed a generic architecture for SpMV that was
able to perform on-the-fly conversion from different matrix
input formats. This design, however, relied on DMA and a run-
time coalescing and cache mechanism for x memory accesses,
which results in sub-optimal memory performance compared
to burst memory access, while consuming more hardware
resources.

Serpens [20] and HiSparse [21] are two state-of-the-art
SpMV accelerators on FPGAs and both target HBM. In both
cases, however, the data type of their architecture is either fixed
point or single-precision floating point. None of them has been
demonstrated in dual-precision floating point, a change which
is not trivial to perform, since it implies deep modifications on
the overall architecture that can result in substantial changes
in performance [22].

GraphLily [23] and ThunderGP [24] are FPGA accelera-
tors for graph processing that can implement, but are not
specialized in, SpMV. In both cases, however, they utilize
DDR memory and single-precision or integer arithmetic. Sadi
et al. [25] proposed a 2-way SpMV algorithm. It is also
very graph-oriented and their main target is ASIC; their
FPGA implementation limits maximum problem sizes and
uses simulated HBM characteristics.

B. Sparse matrix representation formats

Sparse matrix representation formats on microprocessors
(either standard, SIMD or Vector), such as CSR [26],
ELL(PACK), CSR2 [27] or SELL-C-σ [28] don’t work well
for FPGA implementations, neither do GPU formats [29]: all
of them assume an efficient cache hierarchy plus a mechanism
for a relatively high number of outstanding, non-blocking,
memory requests, which are hard to implement in high-level
synthesis (HLS).

There have been different proposals for FPGA-specific ma-
trix encodings and algorithms [16], [20], [21], [23], [25]. Some
of these even allow on-the-fly transformation from multiple
formats inside the FPGA [19]. Most of these FPGA-specific
format proposals, however, target low-level kernel implemen-
tations using transfer-level languages (RTL) that are hard to
customize and include in high-level synthesis by non-expert
users. In many cases, they also require complex architectures
(e.g. cache hierarchies, banked buffer with arbitration) that
consume a high number of resources and introduce stalling
mechanisms, making them difficult to scale in number and
limiting performance.

C. Motivation

The lack of double-precision, HBM-focused, SpMV imple-
mentations for FPGAs and the limits of the existing implemen-
tations (such as not implementing the generic SpMV form or
the underuse of HBM bandwidth) motivates us to develop b8c
and address all those limitations.

III. B8C MATRIX ENCODING

A. b8c (Co)design constraints

Many good practices need to be followed in order to fully
exploit FPGAs capabilities [30]. The most relevant ones that
we consider for our co-design process are: a) fully pipelined
design, ideally with an initiation interval (II) of 1, b) maximize
the use of on-chip memory, c) maximize datapath width
to off-chip memory, d) reduce the number of independent
off-chip memory requests and use burst accesses as much
as possible in order to reduce latency penalties, e) maximize
parallelism at the low level (processing element): process as
many elements per cycle as possible, f) easily parallelizable at
the high (matrix) level in order to fully exploit multi-channel
memory systems and/or be easily partitioned into tasks among
different OmpSs@FPGA accelerators instances.

Besides these architectural considerations, additional con-
straints apply, specific to the target workloads. The size of
the problems involved in HPC in the last years (and, thus,
the size of the sparse matrices within them) has been growing
[19]. Considering this fact, and our will to develop an SpMV
algorithm not limited to a specific matrix size or pattern,
additional constraints can be added to our co-design process:
g) the size of the data structures involved in the SpMV process
will be limited only by off-chip DRAM, h) assume that M
does not fit into on-chip SRAM, i) assume that neither x nor
y vectors fully fit into on-chip SRAM, j) assume x vector
indexes in the original (CSR) representation to be 64 bits
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Fig. 1: CSR and b8c encodings for a sparse matrix

integers, k) assume values in the sparse matrix and dense
vectors to be double-precision floating point (64 bits IEEE).
The four last points are also enforced by the context in which
we are developing this implementation: the porting of the
HPCG benchmark into HBM FPGAs. The last two, however,
as we will see later, could be parametrized in order to adapt
our implementation to narrower data types.

B. The b8c matrix format representation

Figure 1.a includes an example of a matrix sub-block of
size 16×16 that we will use to illustrate the steps in the b8c
transformation. Figure 1.b shows the CSR encoding that would
correspond to that subblock.

1) Blocking on x and y: In the first place, assuming neither
x nor y will fit into on-chip SRAM, we decided that a blocking
process of the matrix would be a good approach. This enables
prefetching to load x values needed to process a sub-block
of the matrix. Blocking on y allows also us to use the same
technique for that vector.

2) M rows compression and the idea of super-rows: For
each matrix sub-block, we divide it into vertical stripes of
contiguous columns of size C. In the case of b8c, C =
DW/Be = 8, where DW is the maximum data path width
from off-chip memory (512 bits in the case of the Alveo
boards) and Be is the size of each element of the matrix (64
bits). For each stripe we apply an iterative process: for each
row of C elements in that stripe, we try to merge it with any
of the previous rows. The conditions for two of these rows
to be merged are that they are, at most, at a (parametrizable)
row-distance l and that they are disjoint: they do not share
any non-zero element in the same position (column) and
ri (mod R) 6≡ rjk (mod R), where ri is the row index
corresponding to the row being merged and rjk are the row
indexes corresponding to each row k already merged into row
j (the only exception is when ri = rjk for any k). As x
and y block sizes, and l distance, R is an input parameter
to b8c that defines the maximum number of matrix rows that
can be modified in parallel in each accelerator at each cycle.
Once a stripe has been processed, the transformation algorithm

continues with the next one. Empty sub-blocks or stripes are,
of course, not considered.

Each row resulting from this compression process is what
we name a super-row, and they constitute the foundations
of the b8c encoding: data structures able to enclose matrix
values coming from different, conflict-free, rows and columns
in the original matrix. Figure 1.c includes a set of super-rows
grouped in the ”Values” data structure.

3) b8c metadata: Each super-row has a corresponding
set of metadata associated to it: row/column information for
each element relative to the first row/column of its block.
As the current implementation forces elements in a super-
row to have consecutive column indexes, only the column
information for the first element is kept. Finally, for each sub-
block, we need pointers to the starting indexes in y and x
and the number of super-rows resulting from that sub-block.
Figure 1 shows an original sparse matrix (a) represented in
both CSR (b) and b8c (c), with (c) including the matrix values
in the ”Values” structure and a set of metadata associated
to each super-row (”RowBase”, ”RowDelta”,” ColBase”) and
to the whole sub-block (”FirstRow”, ”FirstCol”, ”Length”).
New metadata indexes are now relative to their subblock,
allowing us to reduce the storage needed for them. For a 8192
block size, only 13 bits would be needed. Being SpMV a
well-known memory-bound problem, this fact helps alleviate
memory pressure, since it reduces the bytes/flop ratio. Our
current implementation, however, does not fully exploit this
possibility, and fixes 16 bits as the size for them, allowing
theoretical block sizes up to 64K elements. With that setup,
the theoretical metadata/data ratio that can be achieved is 3/16
(3 rows of 64 bytes of metadata for every 16 rows of 64 bytes
of values), which translates to ∼84% of the data transferred for
the matrix being useful data and a peak limit of 4.75 bytes/flop
(versus 8 bytes/flop for a naive CSR implementation). Our
current implementation, again, does not fully exploit this
possibility and uses a 5/16 ratio, which corresponds to ∼76%
of useful data transfers for M in b8c encoding, resulting in a
peak limit of 5.25 bytes/flop.

4) b8c data layout in off-chip memory: In order to be
able to process all matrix data in streaming mode (since it
is single-use data), b8c super-rows are stored contiguously
in memory. Since we also need the corresponding metadata
to process each super-row, our implementation keeps that
metadata combined with its corresponding data. Having this
data layout allows us to read b8c data and metadata using
burst mode, reducing the number of read requests and the
associated latency. The algorithm implementation (and the
corresponding architecture) takes care of decoupling data from
metadata and feeding each one to the appropriate component
of the hardware architecture. We chose to combine data and
metadata in a single stream instead of having two dedicated
memory ports to separated data that could be read in parallel
not only because it is easier to place&route, but also because
using two AXI channels for two combined-data accelerators
offers a peak performance 52% higher than a single ac-
celerator with parallel AXI channels for data and metadata



Fig. 2: b8c SpMV hardware diagram

(speedup = 2×Tcombined

Tparallel
=

2×Tparallel×0.76
Tparallel

= 1.52).

C. Task partitioning in OmpSs@FPGA using b8c

Our implementation leverages multiple HBM (or DDR)
channels by placing, ideally, as many accelerators in the
FPGA as channels are available, and mapping them 1:1. Each
subblock of the matrix (in its b8c super-rows representation) is
considered a task in OmpSs@FPGA, so it will be executed by
an accelerator that will take care of all the needed processes.
Moreover, in our case, in order to benefit from locality on
y, we instruct OmpSs@FPGA (using the onto clause) to
schedule all tasks updating the same segment of y on the same
accelerator.

For assigning rows to accelerators, instead of computing
the number of rows per accelerator, we compute the number
of nnz (non-zero elements) per accelerator, as the number of
total non-zero elements in the matrix divided by the number
of accelerators we want to use to partition the work [31], [32].
This policy, called ”adaptative nnz” in b8c, results in better
balanced workloads in cases where the structure of the matrix
is not naturally balanced.

IV. B8C ACCELERATOR ARCHITECTURE AND OPERATION

Figure 2 depicts the (simplified) hardware block diagram
for the b8c SpMV algorithm implementation. It is important to
remember that this hardware is inferred by the synthesis tool,
after OmpSs@FPGA process and transformations, from ∼375
lines of C++ code, OmpSs@FPGA and HLS pragmas. We
will use the simplified representation of a transformed matrix,
corresponding to a single b8c block, depicted on the left hand
side of the same figure, in order to illustrate how data/metadata
usage occurs.

A. x and y prefetching

For each task, the corresponding segments of y and x are
loaded into on-chip memory (steps a and b) before processing
the elements of the sub-matrix. This process also takes care
of skipping the data load if it is already present in the local
memory of the accelerator due to previous tasks executions.
Since x and y are the only reused data when processing

a matrix sub-block, prefetching them into on-chip memory
reduces the number of memory requests to off-chip memory.
We also benefit from the fact that values for each x and y
segments will be accessed with lower latency due to on-chip
SRAM access when processing each matrix block (ideally, at
1-cycle latency). Leveraging FPGAs’ ability to define parti-
tioned memory structures, we instruct the HLS toolchain to
use a cyclic partition of factor Fx for the on-chip memory for
x (Fx = C

2 ) and also for y (Fy = R), assuming dual-port on-
chip memory. Thanks to memory partitioning, the off-chip to
on-chip load process can be performed using the maximum
bandwidth available: C elements per cycle after an initial
latency due to off-chip memory access.

B. computation phase

Computation is implemented using dataflow. b8c values and
metadata are read using burst reads from a single, combined,
data stream in memory (in Figure 2, light grey corresponds to
metadata rows while dark grey corresponds to matrix values
rows). At each computation cycle, due to the pipelined design
of the accelerator (II=1), the following operations take place:

1) A × x partial products computation: Metadata of each
super-row is used in (c.1) to select the x values (matrix
columns) that must be multiplied by the corresponding ele-
ments of the matrix which the accelerator is streaming from
memory (c.2). Due to the partitioned memory and conflict-
free design of b8c, C elements of x can be read in parallel to
compute C partial products per cycle.

2) Partial results grouping and addition: Partial products
are routed into an interconnect that allows the accelerator,
using again the meta-data information (c.3), to group values
from partial results that belong to the same original row in
order to add them using a set of R adder trees. In the example,
eight accumulator trees are used, since we assume the super-
rows in this example can hold values belonging to up to
eight different rows in the original matrix, so any sub-product
computed up to that point can be routed to any of the eight
accumulator trees.

It is worth mentioning that advanced transformations like
b8c naturally change the order in which accumulation over y
is performed. This fact, combined with the adder tree reduction
and small differences in each vendor’s implementation of
floating-point operations, may lead to slightly different results
due to rounding errors. This needs to be considered when
checking results (comparing against the golden reference, for
example by using relative errors instead of absolute errors).
This fact may result also, in the case of iterative solvers, in a
different number of iterations to converge.

3) y update: Once the adder tree phase is finished, the
results are used to update the corresponding positions of y,
using the row indexes in the meta-data (c.4). This is a pipelined
floating point operation which takes more than one cycle to
execute (actually, it can take L, depending on the frequency,
since it is implemented using a soft IP that is being pipelined),
and that can generate carried dependences. During the b8c
transformation phase, our algorithm checks, when merging a



new row into a super-row that no other super-row at a distance
L updates the same position of y. If the algorithm detects that
situation, it adds zero padding rows to the transformed data.
Again, b8c design and implementation allow reading/updating
R elements of y in parallel at each cycle.

C. y write-back

Once the whole sub-matrix has been processed, if no further
processing needs to be done in the same segment of y, it gets
written back to memory. As in the case of x and y preload,
the partitioned memory plus the segmented design allows the
accelerator to store C elements per cycle.

V. EXPERIMENTAL RESULTS

In this section, we present an analyze the results achieved
by b8c, comparing them to those obtained by the vendor’s
SpMV reference implementation using HBM [11].

A. Experimental setup

Our implementation has been tested on an Alveo U280
from Xilinx equipped with 8GB of HBM2 memory acces-
sible through 32 parallel channels. The FPGA is installed
in an AMD server running Linux (Ubuntu 20.04, kernel
version 5.8.0-38-generic). The server’s CPU is an AMD
Ryzen 7 3800X 3.9GHz AM4 (8 cores/16 threads), and it is
equipped with 4×32GiB DDR4 3200 MHz 64 bits (Kingston
HyperX Fury). For b8c, the host binary is compiled with
OmpSs@FPGA 3.3.0 and g++ 9.4.0, while the bitstream is
generated using Vivado 2020.1. VSpMV host binary and
bitstream are generated using Vitis 2021.1. The theoretical
maximum throughput of HBM memory on the Alveo U280
is 460.8 GiB/s. The U280 is connected to the AMD host via
PCIe. Since we are focusing on large iterative problems that
will be completely off-loaded into FPGAs, we have decided to
ignore memory transfers and measure performance exclusively
of in-FPGA computations. This also allows us to make a fair
comparison with VSpMV, since in their benchmarks, PCIe
transfer time is also ignored, and so is matrix transformation
time, which is assumed to be amortized in large iterative
problems [4], [33].

B. AXI bonding for b8c in the Alveo U280

We designed b8c to be able to process 512 bits per cycle.
The HBM in the Alveo U280 FPGA offers 32 channels with
a native port width of 256 bits that can yield 512 bits per
cycle when clocked at twice the frequency of the user logic.
In order to reduce pressure on the place&route algorithm and
also foreseeing a possible scalability issue due to the small
size of some matrices in the VSpMV test data set, we opted
to implement AXI bonding. This solution bonds together two
256 bits channels of HBM into a single 512 bits channel. This
new ”virtual” U280, now, offers us 16 AXI channels of 512
bits running at the same frequency as the user logic, which
is an exact match with our b8c design. Using AXI bonding,
we can reduce from 32 to 16 the maximum number of HBM
channels while keeping the original bandwidth available. We
will come back to this in the results evaluation section.

Board Design LUT FF DSP BRAM URAM
U280 VSpMV 28.1% 22.7% 10.0% 20.6% 13.3%

b8c-8acc 30.6% 18.8% 15.0% 16.6% 7.4%
b8c-10acc 37.0% 22.7% 18.7% 18.9% 9.1%
b8c-16acc 55.1% 34.7% 29.9% 25.9% 14.1%

U200 b8c-4acc 26.7% 16.7% 10.2% 18.3% 4.1%
U280e b8c-4acc 24.2% 15.5% 7.7% 19.6% 4.1%

TABLE I: Resource utilization. VSpMV and b8c-4acc
@333MHz, b8c-{8,10,16} @250MHz. U280e represents ex-
trapolated U280 resource usage: resources used U200

resources available U280 .

C. VSpMV / b8c architecture comparison

VSpMV design is composed of 24 Compute Units (CUs)
and uses 20 256-bit HBM channels. 16 CUs are devoted to
computing 4 double-precision M × x products in parallel per
cycle, each one. 3 CUs are in charge of accumulating row
values and assembling/storing y using one HBM channel as
output. 1 CU is in charge of loading and distributing row
metadata using one HBM channel, and 3 CUs are in charge of
loading x data and parameters using two HBM channels and
distributing them to the 16 x multipliers. VSpMV pre-process
matrices using python, dividing the input matrix into blocks
of N ×M (rows, columns), further subdividing each block
into HBM-channels and stores the partitioned data on disk.
We have been able to compile and generate the corresponding
bitstream using Vivado, and we have used it to generate the
performance numbers, which match those posted by Xilinx
in the case of the original dataset. Without modifying the
downloaded repository, VSpMV design is synthesized for a
333MHz clock frequency.

Our U280 design is composed of 16 accelerators (equivalent
to Xilinx’s CUs) devoted to b8c SpMV block computation
(each one is connected to an AXI-bonded HBM channel), and
one additional small accelerator in charge of creating tasks
for each one of the b8c blocks that need to be processed. We
placed AXI SmartConnects in front of HBM channels being
shared by more than one CU/IP (QDMA IP and Scheduler
CU plus 1 SpMV block CU in each case). The maximum
block size for x and y in our case has been set to 8K
elements. Using Xilinx’s Vivado in order to synthesize our
design, we have been able to obtain bitstreams running at
250MHz clock frequency. Resource usage for each design is
depicted in Table I. 8 and 10 instance cases of b8c are included
for completeness: all performance metrics for the U280 in this
section were obtained using the 16 instances bitstream, since
we can selectively use from 1 to 16 accelerators of it. We
also show resource usage for a 4-instances, 8K blocksize, b8c
implementation for an Alveo U200, clocked at 333MHz.

D. Dataset

We have taken the set of 22 matrices used by Xilinx in its
benchmark, coming from the SuiteSparse Matrix Collection
[34], and we have augmented it with 12 matrices generated
using HPCG’s matrix pattern. For the added matrices, we use
different sizes and non-MPI/MPI structures, in order to be able
to evaluate both size and pattern impact on performance. The



ID Name nrows ncols nnz ID Name nrows ncols nnz ID Name nrows ncols nnz

M1 bcsstk15 3948 3948 117816 M13 nasa2910 2910 2910 174296 M25 hpcg 24-1 13824 13824 343000
M2 bcsstk24 3562 3562 159910 M14 nasasrb 54870 54870 2677324 M26 hpcg 24-27 13824 17576 373248
M3 bcsstk28 4410 4410 219024 M15 nd3k 9000 9000 3279690 M27 hpcg 32-1 32768 32768 830584
M4 bcsstk36 23052 23052 1143140 M16 nd6k 18000 18000 6897316 M28 hpcg 32-27 32768 39304 884736
M5 bodyy4 17546 17546 121550 M17 olafu 16146 16146 1015156 M29 hpcg 48-1 110592 110592 2863288
M6 bodyy6 19366 19366 134208 M18 raefsky4 19779 19779 1316789 M30 hpcg 48-27 110592 125000 2985984
M7 cbuckle 13681 13681 676515 M19 s2rmq4m1 5489 5489 263351 M31 hpcg 64-1 262144 262144 6859000
M8 ct20stif 52329 52329 2600295 M20 s3rmt3m3 5357 5357 207123 M32 hpcg 64-27 262144 287496 7077888
M9 ex9 3363 3363 99471 M21 ted B 10605 10605 144579 M33 hpcg 80-1 512000 512000 13481272
M10 gyro k 17361 17361 1021159 M22 ted B unscaled 10605 10605 144579 M34 hpcg 80-27 512000 551368 13824000
M11 msc10848 10848 10848 1229776 M23 hpcg 16-1 4096 4096 97336
M12 msc23052 23052 23052 1142686 M24 hpcg 16-27 4096 5832 110592

TABLE II: Matrices dataset properties.

b8c Avg. Max. Min.
U200-4acc 1.39x/1.18x 2.82x2.51x 0.57x0.57x
U280-8acc 2.16x/1.79x 3.66x/3.38x 0.98x/0.98x

GFLOP/s U280-10acc 2.56x/2.10x 4.07x/3.82x 1.22x/1.22x
U280-16acc 3.52x/2.75x 6.29x/4.52x 1.82x/1.82x

GFLOP/Watt U280-16acc 2.43x/1.86x 4.11x/3.22x 1.15x/1.15x

TABLE III: Improvement of b8c over VSpMV on the aug-
mented dataset/original dataset. b8c U280 designs @250MHz,
U200 designs @333MHz, VSpMV design @333MHz.

properties of the dataset are shown in Table II. We will show
results in both, the augmented and the original dataset (M1-
M22), in order to avoid the illusion of bias.

E. Performance results and analysis

In order to separate the contributions provided by
OmpSs@FPGA versus b8c, we implemented a vanilla CSR
SpMV on the same FPGA. Performance obtained by b8c
version was ∼3 orders of magnitude better than the naive
CSR implementation, thus we can state that performance of
b8c shown in this section comes entirely from itself. Figure 3
shows the performance comparison between VSpMV and b8c
for the U280 board in three specific cases: 8, 10, and 16
accelerators in the case of b8c. These three cases correspond,
respectively, to the case with the same number of per-cycle
M × x operations, the case with the same number of HBM
channels used and the case with the maximum scalability of
each implementation. As can be observed in Figure 3 and
Table III, b8c improves VSpMV results in all the cases but
one, including the 16 VS 8 scenario (in which the worst result
is 0.98x, which can be considered on-par), even though our
design runs at 75% the frequency of VSpMV. We also include
the results obtained using our same implementation on an
Alveo U200 using 4 DDR modules and consequently only
4 accelerators, and 4K blocksize. Even with those limitations,
it achieves better performance than VSpMV for half the cases.
Scalability problems observed in Figure 3 in the case of small
matrices when a large number of accelerators is used, support
our decision to use AXI bonding to use fewer, but wider,
accelerators, while keeping the peak bandwidth.

Many differences make our design perform better than
VSpMV. Useful data ratio in the transformed matrix in the b8c
matrix encoding is higher than VSpMV’s in many cases, mean-
ing that data streamed from memory contains less padding

and, thus, can be processed faster. b8c format, as explained,
is designed to expose row and column parallelism inside each
super-row without the need for arbitration and stalling, which
VSpMV may require, since their partition scheme does not
guarantee conflict-free x index access. The only alternative to
be able to perform parallel access to x without that guarantee
is to replicate buffers to store multiple copies of x [35], which
would probably translate into smaller buffers in order to keep
resource usage on limits and alleviate pressure on place&route.
Actually, block size and block scheduling are also relevant
in the comparison. The default implementation of VSpMV
uses 4K elements as block size but (probably to maximize
x reutilization), each block is further divided into 16 HBM-
channels or subblocks (the number of CUs in charge of M×x
multiplications). That translates into an effective block size per
CU of 256× 4096, increasing blocking/scheduling overhead.

F. Bandwidth usage efficiency

Raw arithmetic performance is an important metric but,
given the memory-bound behavior of SpMV, the amount of
memory bandwidth used is also relevant. Figure 4a shows the
absolute memory bandwidth used by b8c in two platforms
(Alveo U200 and Alveo U280) for the largest and fastest
implementations (4 accelerators at 333MHz and 16 accelera-
tors at 250MHz, respectively). The peak achievable bandwidth
for each design is also plotted (85.248 GiB/s for the Alveo
U200, 256 GiB/s for the U280). Due to the combination of
the number of instances, frequency and bus width (4 instances
× 333 MHz × 64 bytes/cycle = 85.248 GiB/s), the U200’s
design peak bandwidth is higher than the platform’s (77 GiB/s)
and, thus, unachievable.

We can observe how, in the U200 case, b8c achieves
very good bandwidth usage compared to the design’s peak,
averaging a 71% bandwidth usage with a maximum of 78%
and a minimum of 62%. These numbers improve by comparing
with the platform’s peak bandwidth (average 79%, maximum
86%, minimum 69%), something to be expected, since we used
a design that can use more bandwidth than the one provided
by the board.

In the U280 case, using 16 accelerators, average memory
bandwidth usage compared to the design’s peak is 67%, with
a maximum of 90% and a minimum of 38%. Compared with
the platform’s peak bandwidth, the average, maximum and
minimum achieved are, respectively, 37%, 50% and 21%. This



Fig. 3: b8c VS VSpMV performance comparison. 8K blocksize, adaptative-nnz policy for b8c.

(a) Bandwidth usage (b) Performance

Fig. 4: b8c bandwidth usage and performance obtained per dataset
for the maximum accelerators/frequency scenarios (4 accelerators
running at 333MHz in the case of the U200, 16 accelerators running
at 250MHz in the case of the U280). Data is shown for the original
dataset, the HPCG dataset and the augmented (including both)
dataset.

is also an expected result, given that, in this case, the design’s
peak bandwidth is very low compared with the platform’s peak
bandwidth (256 GiB/s VS 460.8 GiB/s, ∼55%). In fact, unlike
in the case of the U200, saturating the U280 HBM memory
would require a design running at 450MHz.

Figure 4b shows the performance obtained for each matrix
subset using the bandwidth shown in Figure 4a. As it can
be observed, the HPCG subset is able to better exploit the
bandwidth to obtain performance due to the suitability of the
b8c encoding to this particular problem.

G. Energy efficiency

Energy consumption for the 16 CUs/accelerators cases was
obtained using xbutil for VSpMV and OmpSs@FPGA’s
power monitor for b8c. As can be noted in Figure 3 and

Table III, b8c yields also better performance per Watt ratio
across all matrices, improving VSpMV results in every case.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have introduced b8c, a sparse ma-
trix representation and its corresponding SpMV FPGA co-
designed implementation using OmpSs@FPGA and HLS. Our
implementation can leverage most of the unique features
of FPGAs: data-streaming and processing, 1-cycle memory
accesses to on-chip SRAM and simultaneous processing of
memory width/element size elements per cycle per in-
stance in order to outperform previous FP64 FPGA versions of
SpMV. b8c simplifies hardware implementation by generating
a conflict-free matrix representation that removes the need
for caches or arbitration on the x and y accesses, while
enabling prefetching. The results obtained, compared with the
vendor’s reference implementation, show that our approach
achieves significantly higher performance either using HBM
or DDR. We have also demonstrated how by using AXI
bonding, the reconfigurable size/number of memory channels
may benefit specific workloads that naturally suffer when
trying to scale to a large number of accelerators. We plan to
continue working on this line in order to further optimize the
matrix representation and the SpMV algorithm using it and to
test them against a wider data set.
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