
Building a Reusable and Extensible Automatic
Compiler Infrastructure for Reconfigurable Devices

Zhenya Zang†, *
†Codeplay Software Ltd.

*School of Computing,
Engineering and Build

Environment,
Edinburgh Napier University
Edinburgh, United Kindom
zhenya.zang@codeplay.com

Uwe Dolinsky†
†Codeplay Software Ltd.

Edinburgh, United Kindom
uwe@codeplay.com

Pietro Ghiglio†
†Codeplay Software Ltd.

Edinburgh, United Kindom
pietro.ghiglio@codeplay.com

Stefano Cherubin*
*School of Computing,
Engineering and Build

Environment
Edinburgh Napier University
Edinburgh, United Kindom

s.cherubin@napier.ac.uk

Mehdi Goli†
†Codeplay Software Ltd.

Edinburgh, United Kindom
mehdi.goli@codeplay.com

Shufan Yang*
*School of Computing,
Engineering and Build

Environment
Edinburgh Napier University
Edinburgh, United Kindom

s.yang@napier.ac.uk

Abstract— Multi-Level Intermediate Representation (MLIR)
is gaining increasing attention in reconfigurable hardware
communities due to its capability to represent various abstract
levels for software compilers. This project aims to be the first to
provide an end-to-end framework that leverages open-source,
cross-platform compilation technology to generate MLIR from
SYCL. Additionally, it aims to explore a lowering pipeline that
converts MLIR to RTL using open-source hardware intermediate
representation (IR) and compilers. Furthermore, it aims to couple
the generated hardware module with the host CPU using vendor-
specific crossbars. Our preliminary results demonstrated the
feasibility of lowering customized MLIR to RTL, thus paving
the way for an end-to-end compilation.

Keywords—Open-source FPGA compiler infrastructure, Multi-
Level Intermediate Representation (MLIR), Hardware description
language (HDL)

I. INTRODUCTION

 Intermediate representation (IR) and compilers of FPGA
bridge the gap between software programming languages and
the hardware domain. A novel HDL [1] was reported to
simplify hardware design using its compiler and Medium-Level
IR. Besides, open-source, software-defined HDL and compilers
become emerging technologies for FPGAs and application-
specific integrated circuits (ASIC). Chisel [2] is successful in
modeling digital circuits using a high-level, objective-oriented
language and has launched a high-performance, open-source
CPU [3], and ASIC [4]. FIRRTL [5] is Chisel’s IR and can be
lowered to hardware primitives, i.e., combinational and
sequential logic, and memories. Despite Chisel’s agility for fast
RTL prototyping, the program compilation for CPU and GPU
has not been well-developed. An HDL that can target CPUs,

1 https://github.com/cucapra/calyx/issues/1470

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

GPUs, and FPGAs is demanding. Equipped with powerful
compilers, SYCL has been adopted to accelerate computing for
CPUs and GPUs. Herein, we adopt SYCL and DPC++ [6] as
the front-end to generate Multi-Level Intermediate
Representation (MLIR) [7]. In essence, MLIR aims to provide
a common representation for different levels of abstraction,
including high-level algorithmic descriptions. However,
mapping these high-level abstractions to efficient
reconfigurable hardware implementations is challenging. This
involves translating the MLIR representation to RTL and fine-
grained control over hardware primitives. We have explored a
lowering pipeline for converting MLIR to RTL by using open-
source circuit compilers CIRCT [8] and Calyx [9] to generate
RTL. Our work has already led to several fixes and
improvements1 in the Calyx toolchain. The ultimate objective
of the project is to encapsulate all the compilation and lowering
processes to form an automated end-to-end framework for
reconfigurable heterogenous platforms.

II. ON-GOING WORK TO DATE

A. Framework architecture

The sketch of our compilation framework is shown in Fig. 1.
The framework begins with input SYCL code, which is
processed by DPC++ to generate the corresponding MLIR
compatible with CIRCT. The output Calyx dialects produced
by CIRCT are then passed to Calyx to generate System Verilog.
Using established EDA tools, we can acquire synthesized and
simulation results. Additionally customized hardware drivers
must be written to facilitate the booting of the heterogeneous
platform on an FPGA.

Fig. 1. End-to-end pipeline mapping SYCL code to System Verilog, and
silumation path. Dashed lines denotes generate files.

B. Preliminary Results

We selected general matrix multiplication (GEMM) as our
case study to evaluate the performance in terms of hardware
utilization and time consumption. The preliminary results
demonstrated that our approach successfully generates accurate
output matrices from MLIR and achieves improved speeds by
applying for-loop unrolling to the inner for-loop. We have
encapsulated the lowering pipelines using a script, enabling the
generation of a hardware module wrapped with an AXI-full
interface and a synthesizable intellectual property (IP) core.
This encapsulation facilitates seamless integration of
heterogeneous platforms with CPUs in the future.
 The generated System Verilog was simulated and synthesized
using Vivado 2020.2 with a ZCU106 evaluation board.
Consumed clock cycles of the two versions of GEMM are
presented in TABLE I, where GEMM with inner-unrolled for-
loop yields fewer clock cycles. The corresponding hardware
consumption is illustrated in Fig. 3 (a) and (b). GEMM with a
nested for-loop utilized time division multiplexing, allowing
the reuse of data paths and DSPs. However, in the flattened for-
loop in Fig. 3 (b), the hardware consumption is directly
proportional to the size of matrix.

III. CONCLUSIONS AND FUTURE WORK

 Our ongoing work has successfully incorporated the input
MLIR into the open-source HDL compilers prompting various
improvements, simulated the results, and evaluated the
performance. The future work is threefold.

1) We will integrate DPC++ as the front-end of the
framework, enabling the conversion of SYCL kernels into
hardware via MLIR.

2) Since the Calyx tool is tailored for the Xilinx Runtime
Library (XRT), which is dependent on Xilinx platforms, we
will replace XRT with a standalone platform to extend the
application on other lightweight, low-power hardware.

3) We plan to develop more complex application
algorithms based on GEMM, such as tensor operations for
machine learning algorithms.

Fig. 2. GEMM MLIR with 32×32 input matrix size and nested for-loops

Fig. 3. (a). Hardware consumption of nested and (b) inner-flattened for-loops
of GEMM MLIRs with different size.

TABLE I. CONSUMED CLOCK CYCLES (1NS PER CYCLE) OF COMPUTING
GEMM WITH DIFFERENT SIZES

 4×4 8×8 16×16 32×32 64×64 128×128

Nested
for-loop

1,498 10,762 81,802 867,594 5,042,698 38,324,504

Inner
Flattened
for-loop

1,114 7,946 60,298 470,282 3,527,115 26,806,047

ACKNOWLEDGEMENT

 We would like to acknowledge Calyx’s developer for
answering technical questions on GitHub.

REFERENCES
[1] F. Skarman and O. Gustafsson, ‘Spade: An HDL Inspired by
Modern Software Languages’, in 2022 32nd International Conference on
Field-Programmable Logic and Applications (FPL), IEEE, 2022, pp. 454–455.
[2] J. Bachan, ‘Constructing Hardware in a Scale Embedded
Language’, Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United
States), 2014.
[3] Y. Xu et al., ‘Towards Developing High Performance RISC-V
Processors Using Agile Methodology’, in 2022 55th IEEE/ACM International
Symposium on Microarchitecture (MICRO), IEEE, 2022, pp. 1178–1199.
[4] M. H. Khan, A. A. Jalal, S. Ahmed, A. A. Ansari, and S. R. Naqvi,
‘IBTIDA: Fully open-source ASIC implementation of Chisel-generated System
on a Chip’, 2021.
[5] A. Izraelevitz et al., ‘Reusability is FIRRTL ground: Hardware
construction languages, compiler frameworks, and transformations’, in 2017
IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
IEEE, 2017, pp. 209–216.
[6] J. Reinders, B. Ashbaugh, J. Brodman, M. Kinsner, J. Pennycook,
and X. Tian, Data parallel C++: mastering DPC++ for programming of
heterogeneous systems using C++ and SYCL. Springer Nature, 2021.
[7] C. Lattner et al., ‘MLIR: A compiler infrastructure for the end of
Moore’s law’, ArXiv Prepr. ArXiv200211054, 2020.
[8] ‘CIRCT: Circuit IR Compilers and Tools’. [Online]. Available:
https://circt.llvm.org/
[9] R. Nigam, S. Thomas, Z. Li, and A. Sampson, ‘A compiler
infrastructure for accelerator generators’, in Proceedings of the 26th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2021, pp. 804–817.

The work is funded by a knowledge transfer partnership (reference 13191)
from Innovate UK with the grant number 10027750. Shufan Yang is supported
by the SHED project RAEng (IF2223-172).

