
Resource-Aware Run-time Elaboration of Behavioural FPGA
Specifications

Author:
Malik, Usama; So, Keith; Diessel, Oliver

Publication details:
2002 IEEE International Conference on Field-Programmable Technology
(FPT'02), Proceedings
pp. 68-75
780375742 (ISBN)

Event details:
IEEE Internationial Conference on Field-Programmable Technology (FPT)
Hong Kong, China

Publication Date:
2002

DOI:
https://doi.org/10.26190/unsworks/500

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/39671 in https://
unsworks.unsw.edu.au on 2024-04-26

http://dx.doi.org/https://doi.org/10.26190/unsworks/500
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/39671
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Resource-Aware Run-time Elaboration of Behavioural FPGA Specifications

U. Malik, K. So, O. Diessel
Computer Science and Engineering

University of New South Wales�
umalik,keiths,odiessel � @cse.unsw.edu.au

Abstract

The Circal process algebra is being used to explore the
behavioural specification of systems that are mapped to
field programmable logic circuits. In this paper we report
on the implementation and performance of an interpreter
for system specifications given in the Circal language. In
contrast to the typical design flow for field programmable
technology in which designs are statically partitioned, syn-
thesised, and mapped to pre-allocated resources, in this sys-
tem the specified circuits are extracted from behavioural
specifications that are partitioned, elaborated, mapped, and
configured at run time as control passes through them. We
report on the details of a design that targets the Celoxica
RC1000 co-processor and assess preliminary performance
results for this implementation. The results clearly demon-
strate our method is a practical approach to overcome re-
source constraints, particularly in applications where these
change at run time. The results also establish a benchmark
against which to measure future improvements and alterna-
tive methods.

1. Introduction and related work

The Circal process algebra is a formal language suited to
the high-level specification, analysis, and construction of hi-
erarchical controller circuits. Historically, process algebras
such as Circal [10], CCS [12] and CSP [7] were used for
analysing and verifying properties of concurrent systems.
These features were then employed in the design and ver-
ification of VLSI hardware, and led to the investigation of
the use of the CSP-derived language Occam as a specifica-
tion language for FPGAs [14]. These early steps occurred
at a time when computing using programmable logic was
beginning to grip a section of the research community and
thus competed with VHDL and a raft of alternative method-
ologies that were proposed to solve the problem of readily
specifying and automatically generating efficient circuit de-
signs for programmable logic devices and systems.

At present there are several FPGA design paradigms
including JHDL [1], Handel-C [13], PAM-Blox [8], and
Lava [2], that principally target the design of mainstream
data-intensive FPGA computations such as signal and im-
age processing, encryption, and streams processing. These
paradigms generally expand on conventional imperative ap-
proaches towards describing hardware structures, and ad-
here to a relatively static view of the target architecture.
Reconfiguration is catered for via the off-line production of
bitstreams for static partitions that can at best be swapped
during the execution period of an application using purpose-
designed, application-specific controllers. In order to pro-
duce efficient designs, developers need to be familiar with
both digital design techniques and target technologies, and
the dynamic nature of current programmable technology is
not readily exploited. These factors have motivated us to
explore an alternative design approach with the goal of ex-
ploiting the potential of dynamically reconfigurable hard-
ware and providing high-level semantics for describing both
static and dynamic functionality that can automatically be
mapped to field programmable devices [6, 11].

Prior work in the use of Circal as a behavioural speci-
fication language for FPGA circuits resulted in the devel-
opment of a compiler that produced static circuit designs
targeting the Xilinx XC6200 device family [6]. In order
to cope with mapping large circuits to limited FPGA area,
methods for virtualizing the compiled designs were investi-
gated and resulted in the design of the interpreter reported
for the XC6200 circuit model in [5]. In tandem, the com-
piler was re-targeted to the Xilinx Virtex family and im-
plemented on an Annapolis Microsystem’s Wildcard [15].
This paper reports on the implementation of the interpreter
design targeting the Virtex XCV1000 chip embedded in a
Celoxica RC1000 card.

The ability to reconfigure circuits at run-time, as offered
by contemporary field-programmable devices, is not used
by our interpreter to increase the performance of applica-
tions over static implementations, but rather to overcome
resource limitations. We believe that our experimentation
with hardware virtualization will give us a better under-
standing of the costs involved in managing large partitioned

computations at run-time and hence allow us to gauge the
effectiveness of using programmable-logic as an alternative
implementation technology.

We present an assessment of the performance of our
method and draw some conclusions about the efficacy of
our techniques. Work is going on in generalising the spec-
ification language and the hardware mapping so as to im-
plement the full specification of the Circal process algebra.
Not only do we then expect to be able to explore in-circuit
verification of designs, we also anticipate expanding the de-
scriptive scope of Circal to encompass dynamic structures
and behaviours.

We conclude this section by describing two scenarios
where we see something akin to the Circal behavioural
specification paradigm in general, and automated hardware
virtualization in particular, being of use in the design of
FPGA circuits.

Ever increasing device densities open up the possibility
of managing FPGA tasks onto the chip itself. In such a
scenario it is expected that the chip area would be divided
into partitions consisting of user and operating system space
respectively. As most of the operating system tasks are con-
trol oriented there is increasing need for mapping general
controller circuits (i.e. ones that can be modelled with com-
posed finite state machines) to reconfigurable logic. More-
over, since the operating system will only have access to
limited chip area (as we typically want as much user space
as possible) we envisage virtualizing the operating system
area itself. The techniques presented in this paper could be
employed to realise this goal.

In order to implement recursive computations in hard-
ware, mechanisms for dynamically allocating and recover-
ing used hardware resources are needed. These functions
require sophisticated automatic control, are ideally speci-
fied in an abstract, high-level fashion, and demand some
form of run-time design and implementation of circuits. Not
only is Circal suited to the behavioural specification of such
recursive dynamic processes, the Circal interpreter marks
a beginning in the development of automated facilities to
support universal computations in programmable hardware.

Section 2 provides a background to Circal and intro-
duces the concept of a Circal interpreter. Section 3 details
the design, implementation and operation of the interpreter.
Section 4 presents an assessment of the interpreter’s perfor-
mance, and Section 5 presents our conclusions and outlines
directions for future work.

2. A Circal interpreter

2.1. Circal as an FPGA specification language

State transition diagrams, automata and similar models
are widely used to model simple dynamic behaviours of sys-

tems. Circal extends these concepts by introducing struc-
tural and behavioural operators. Structural operators allow
the decomposition of a system in a hierarchical and mod-
ular fashion down to a desired level of specification. Be-
havioural operators allow us to model the finite state be-
haviour of the system where state changes are conditioned
on occurrences of actions drawn from a set of events. This
set is called the sort of the process. Refer to [9] for a de-
tailed description of the Circal process algebra.

Circal processes can be looked upon as interacting finite
state machines where events occur and processes change
their states according to their definitions. These processes
can be composed to form larger systems with constraints on
the synchronisation of event occurrence and process evolu-
tion. Given a set of events, all composed processes must
be in a state to accept this set before any one of them can
evolve. If all agree on accepting this set, they all simulta-
neously evolve to the prescribed next state. This constraint
can be relaxed through the use of an abstraction operator
(encapsulating the event) or relabelling the event to a differ-
ent name. Events that are not in a process’s sort are ignored.

In the static compiler for Circal, the circuits are pro-
duced as blocks of modules that reflect the hierarchy and
interconnection of the system. The blocks implement indi-
vidual processes interconnected via global synchronisation
logic. The individual process blocks themselves are decom-
posed into blocks that reflect the system hierarchy. Within
a process block the finite state machine behaviour is im-
plemented using a finer grained rectangular block structure
where each component implements some single logic func-
tion. Refer to [6] for the details of the mapping of Circal
operators to digital circuits.

2.2. Interpreting Circal specifications

Circal can be used as a language for programming hard-
ware computational structures. For a system realising Circal
specifications on hardware to be generally useful it should
support large and dynamic behaviours. In this respect, the
current compiler is restricted by the size of the available
hardware and can only handle static processes.

Traditionally, the hardware size constraint is handled by
translating the specification into a netlist, then partitioning
the netlist either manually or semi-automatically, before fi-
nally producing configuration bitstreams for each partition.
At run time, the system selects the appropriate bitstream
and loads it onto the chip. This technique is limited in the
sense that it cannot deal with dynamic structures, i.e. pro-
cesses with time-varying hardware needs. Moreover, it can-
not exploit changing hardware availability to harness paral-
lel computation. In order to address these issues we have
developed an interpreter that can respond to run time condi-
tions.

An interpreter is a system that realises an algorithm on
an architecture, as directed by the flow of computation.
This allows adaptability to dynamic computational struc-
tures. Traditionally, interpreters are used as virtual ma-
chines to execute the same code on different hardware plat-
forms. However, an interpreter can also provide a virtual
hardware environment by exploiting the temporal locality
of computation. In other words, as opposed to a compiler
that translates a computation completely before execution,
an interpreter only needs to implement the required part of
the computation while storing the rest in a suitable format.
At run time, the required portion of the computation can
be implemented on the target architecture. In this manner
much bigger computations can be realised.

The Circal interpreter enhances the existing compiler
by incorporating virtual hardware management facilities.
Whereas the Circal compiler derives a monolithic circuit
and loads it onto an FPGA in a single configuration, the
interpreter elaborates and loads parts of the circuits as they
are needed. The issues to be addressed are:

1. Determining the granularity of a partition that can be
executed. If we look at microprocessors as interpreting
an instruction set architecture (ISA), resources to im-
plement at least one instruction are always available.

2. Developing the techniques to cope with the situation
where the required part of the computation does not fit
on the target architecture. The microprocessor solution
is to time multiplex hardware.

In Circal, even though all processes are updated simul-
taneously, the transitions within a process are strictly se-
quential. This means, at any time, a process only needs
enough hardware to implement a single state’s transition
logic. Hence, the unit of computation is a single process
transition. The actual size of the hardware is, of course, de-
termined by the requirements of the largest single state in
terms of the number of possible transitions. Currently, we
assume that the logic for at least a single state of all pro-
cesses can be implemented. However, the Circal interpreter
implements as much logic of each process as is permitted
by the available area. This results in:

1. Reduced reconfiguration costs if we overlap reconfig-
uration with execution.

2. The possibility of adapting to time-varying hardware
availability.

In the current implementation, hardware size is kept
fixed, with reconfiguration and execution as disjoint phases.
Currently, the interpreter only implements static processes.
However, we hope that our techniques will guide us towards
methods for handling dynamic processes as well. We now
describe the Circal interpreter in detail.

Process P
Process Q
Process R
Process Y

P*Q*R*Y

Specification
Circal

BackEnd

VHM

User

Circuit
Modules

P

Q

R Y

Event
Inputs

Synch
Logic

Driver

States
Event/

Bit streams

FPGA

Intermediate Circuit Representation

Events

Front End

Response

Figure 1. An overview of the interpreter

3. Interpreter operation

The interpreter improves on the compiler in the follow-
ing ways:

1. Whereas the compiler parses a Circal specification and
directly produces the bitstreams, the interpreter first
translates the specification into a state-transition graph
representation.

2. The compiler treats the chip area as a single 2D block
of cells within which process blocks are stacked in a
1D manner. This does not fully utilise the available
chip resource. The interpreter, on the other hand, par-
titions the chip area into strips and allocates a pre-sized
block to each process depending on its needs.

3. At runtime, the interpreter selects a subgraph of each
process, where the size of the subgraph depends on the
area allocated to that process. The selected subgraph
is then interpreted to produce a bitstream similar to the
existing compiler.

4. As processes evolve, different portions of their state-
graphs are selected and physically realised. In this
manner large specifications can be interpreted, thus au-
tomatically overcoming hardware limitations.

In order to achieve these goals, a virtual hardware man-
ager (VHM) is inserted between the front and back ends of
the static compiler to construct the Circal interpreter (see
Figure 1). After initialisation, the VHM interacts between
the user and the back end, while implementing the above-
mentioned functions (see Figure 2). These functions are
described below in more detail. For a complete description
of these functions, refer to [5].

3.1. Intermediate circuit representation

The specified circuits are modelled as state-transition
graphs. This representation is aligned with the interpreter’s

FE/BE
Interface

Circal

System

Subgraph
Selector

Manager
Runtime

objects
process
circal

state
blocks

state/
process

Ids

Back
End

events events

Interface
User

states states

Allocations
Resource

Figure 2. The VHM overview.

unit of computation and naturally follows from Circal’s se-
mantics.

In software, the data structure representing a single tran-
sition is called a state block. It consists of a state name and
guarded pointers to other state-blocks, thus representing the
transition graph.

The state block is the unit of partitioning. As many state
blocks are selected as can be accommodated by the area
allocated to that process.

3.2. Subgraph selection

The interpreter selects a subgraph of each process, at run
time, depending on how much chip area is allocated to that
process. This is done by traversing the graph rooted at the
current state in a breadth-first manner. In the extreme case,
only the current state of the process is implemented.

The function used to estimate the area depends upon the
implementation of the subgraph components in the target
architecture. For the Virtex implementation, given � con-
figuration logic block (CLB) columns, the state subgraph
must satisfy the following constraints:

number of minterms
� ��� �����
	����

number of edges
� ��� �����
	����

number of states
� � �

We define a boundary state to be a state that triggers a
circuit update in the interpreter as its corresponding logic is
not fully implemented.

3.3. Detecting the need for circuit swapping

During development, the system operates in a “debug”
mode whereby a human user inputs event triggers and re-
sponds to the controller state, as opposed to the controller
interacting with other systems in its embedded environment.
Embedding the controller involves replacing the user with
the controlled system which may or may not be on the same
chip as the controller.

The interpreter gets events from the user and presents
them to the system on chip. It then reads back the state
and reports it to the user. Since the interpreter has only
implemented a subgraph, there will be boundary states. A
new subgraph must be implemented if the process enters
one of these states.

Currently, we have implemented a polling mechanism
that checks after each synchronisation pulse whether a
boundary state has been entered. Before passing the next set
of events to the implemented system, the interpreter deter-
mines, by looking at a table of implemented states, whether
any of the processes has hit its boundary. If it has, it tra-
verses its state transition graph as described in the last sec-
tion. In an embedded system, the polling mechanism would
be replaced by an interrupt mechanism that is triggered if a
boundary state is entered by a process. This can be checked
by associating a boundary status flag with each state flip-
flop.

3.4. Chip partitioning

Chip partitions are static and are created during the anal-
ysis phase. The chip partitioner initially allocates sufficient
space to each process to implement the behaviour for a sin-
gle state, otherwise the system is terminated. Then it ex-
pands the initial partitions, if possible. The expansion fac-
tor is derived from an analysis of the possible expansion
of the process blocks if the interpreter implements more
states. Circal processes are therefore each allocated their
own region of the chip. These are then wired together using
a coarse-grained parallel wiring harness [3].

3.5. FPGA circuit design

The interpreter targets the Celoxica RC1000 co-
processor board [4], supplied with a Xilinx Virtex
XCV1000 FPGA [16].

Each process is allocated a rectangular block of CLBs
to implement an active subgraph on the FPGA. These cir-
cuit blocks are collated into vertical stripes on the FPGA
as depicted in Figure 3. The layout attempts to amortise
the reconfiguration cost when more than one process needs
to perform a circuit update. Since a configuration frame de-
fines behaviour over an entire column in the Virtex, the con-
figuration cost in terms of frames to be reconfigured will be
reduced if some of the processes being updated belong to
the same column.

In our current implementation, only a single composi-
tion of processes is supported. The synchronisation logic
consists of an AND gate for each column of processes; and
a root AND gate forms the conjunction of these column syn-
chronisation outputs that is then distributed to every process
on the FPGA.

The layout of intra-process circuits follows a similar
design rationale. The allocated area is sub-divided into
smaller rectangular blocks to implement different func-
tional circuits as shown in Figure 4. The Minterm block
determines whether a set of events that triggers a transition
is supplied. The Guard block then computes the possible
transitions that are triggered. The Requester block checks
whether the process is in one of the source states accepting
the set of supplied events. If so, the Asserter block asserts
the synchronisation request signal and the destination state
of the transition. The States block stores the sub-process
states in a one-hot encoding and has combinational logic to
accept a synchronisation acknowledgement signal. Refer to
[15] for a detailed description of the functionality and lay-
out of a process logic block as implemented in the Virtex
compiler.

Most of the combinational logic is laid out in single-slice
modules for two reasons: it exploits the dedicated fast-carry
chains present in the Virtex architecture and it minimises the
number of configuration frames required for a reconfigura-
tion. The state block is allocated a single CLB column, and
all state blocks of processes in the same column are aligned
so that the state of an entire column can be read with four
partial readback frames.

The layout uses complete routing between all logic
blocks thereby implementing a fine-grained version of the
parallel harness structure proposed in [3]. These routes are
static and do not change during subsequent updates. The ad-
vantage of using static routing is that it avoids the dynamic
un-routing and re-routing during circuit updates, which are
slow and contribute a significant overhead to the reconfig-
uration time. All routes between the logic blocks are fully
routed during the generation of the initial subgraph so that
only changes made to the bitstream during circuit updates
are changes to the LUT contents.

Since the layout is deterministic, the interpreter can de-
termine the subgraph that will fit in the allocated area. JBits
[17] was used as the interface to program and reconfigure
the FPGA. During a circuit update, the interpreter software
reconfigures as many LUTs as necessary using object refer-
ences saved during circuit initialisation.

4. Timing analysis

For a system that dynamically elaborates FPGA designs,
run-time performance is of main concern. In the case of
our interpreter, the time it takes to select a subgraph at run-
time and to implement it onto the chip are crucial factors in
determining its performance. Since these two are distinct
phases, we can measure their timings separately. We first
report the subgraph selection performance and then its im-
plementation on Virtex.

The subgraph selector (SGS) is the main component of

P

Q

R

S

Sync. Logic Bus

Event System Bus

Columns of
Processes

Events
from
Host

SRAM
Bank

Figure 3. The partition of the FPGA into pro-
cess blocks

V
==
m2

Event
vector

V

= 4-input LUT

= D Flip-flop

Minterm
Block

Guard
Block

V
==
m3

V
==
m4

I
N
A
C
T
I
V
E

I
N
A
C
T
I
V
E

s2
->
s2

s1
->
s2

s2
->
s1

I
A

I
A

&s1

buf
&s2 &s2&s1 buf buf

->
s1

->
s2

s1

s2

syn

&
ack

&
ack

Requester
Block

Synchronisation Request

Asserter
BlockState

Block

Sync. Accept

Figure 4. The internal layout of a process
block

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

5 10 15 20 25 30 35 40 45 50

T
im

e
(m

se
cs

)

Width (Columns)

Timings for variable width and branching factors

’bf=1’
’bf=2’
’bf=4’
’bf=6’
’bf=8’

Figure 5. Run-time subgraph selection

the VHM. Given a state, the time it takes to reach the next
states that will fit into the available area determines the exe-
cution time. Hence two factors influence the run time of the
SGS; the branching factor of the specification graph and the
size of the partition available to that process.

As the branching factor increases, more next states are
reachable in one step if the data structure implementing the
graph permits this operation. The interpreter takes a con-
stant amount of time to extract the next level, as all pointers
to the next states are stored in the state block. Hence for
a fixed partition size, the higher the branching factor, the
quicker the SGS will select the states that will fit and vice
versa.

The partition size determines how many states can be im-
plemented in that area. As the space available to a process is
increased, more states are expected to be selected and hence
a higher running time should be observed.

These predictions were confirmed by implementing a
large number of randomly generated single process specifi-
cations with fixed branching factors and averaging 500,000
graph selections to obtain the plots illustrated in Figure 5.
Here, only CLB column width is considered as the SGS
uses this parameter for determining the amount of the graph
to select. The system used for extracting the data was a
Linux-based Java system running on a 1.8 GHz Pentium-
IV.

The technology dependent backend was tested on a
1.6GHz Pentium-IV system running Java under Windows
2000. The initialisation time refers to the time taken to gen-
erate the bitstream from the initial Circal subgraph. The cir-
cuit update specification time refers to the time take to gen-
erate an updated bitstream from a new subgraph of the same
process. The partial reconfiguration run-time is the time
needed to load or partially reconfigure the FPGA. The re-
lationship between FPGA circuit width and these run-times

are shown in Figure 6.

These results show a � ����� 	 relationship between circuit
width and run time. For the initial bitstream generation,
this occurs because the parallel harness wiring structure,
consisting of fanout routes across the width of the circuit,
needs to be routed for a number of circuit modules propor-
tional to the width of the process block area. For the update
bitstream generation, a number of LUTs proportional to the
area of the FPGA circuit has to be changed. In the layout
schema, the height of the circuit area is proportional to the
width, causing the correspondence recorded. The reason
behind a similar relationship between partial reconfigura-
tion time and circuit width needs to be further investigated,
as it is expected that the partial reconfiguration time should
hold a linear relationship with circuit width due to our lay-
out schema and the column based nature of the Virtex con-
figuration frames.

The initial bitstream generation is significantly longer
than the update bitstream generation due to the router run-
time at initialisation. Indeed, a complete configuration takes
at least 31ms on our system. Circuit update times are in sub-
second domain for the circuit sizes tested. It may be pos-
sible that a bottleneck of programming configuration bit-
streams lies in performing bit-oriented manipulations of the
configuration bitstream in JBits that operates under a Java
virtual machine model of computation.

When the frontend timing results are compared with that
of the backend, we find that the time to update a circuit
specification and to partially reconfigure the chip is many
orders of magnitude greater than the VHM time. This is
because the VHM is much simpler as compared to the back
end. The VHM only traverses a state-graph at run time.
The backend, on the other hand, does bit manipulation in
Java which is a costly operation.

The main advantage of the layout schema is that it elim-
inates the problems of re-routing between updates. These
problems include configuration delay and the possibility of
contention. The tradeoff is that the proportion of CLBs
used in the computation is reduced by the fraction that are
configured as constants to propagate partial result signals
(minterms, requesters) across the FPGA. For example, in a
requester module, only one CLB is used to evaluate whether
the signal is in the required state for a transition, while the
other CLBs are merely propagating this signal up the FPGA
for the asserters.

The column-based nature of configuration frames in the
Virtex constrained the placement of circuit components for
rapid reconfiguration. The ability to address and reconfig-
ure individual LUTs using random addressing such as in the
XC6200 allows more freedom for dynamic reconfigurable
applications.

 0

 5

 10

 15

 20

 25

 30

 15 20 25 30 35 40 45 50

C
irc

ui
t I

ni
tia

lis
at

io
n

T
im

e
(s

ec
on

ds
)

FPGA Circuit Width (CLBs)

(a) Circuit Initialisation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 15 20 25 30 35 40 45 50

C
irc

ui
t U

pd
at

e
S

pe
ci

fic
at

io
n

T
im

e
(m

ill
is

ec
s)

FPGA Circuit Width (CLBs)

(b) Circuit Update Specification

 0

 1

 2

 3

 4

 5

 6

 7

 8

 15 20 25 30 35 40 45 50

S
yn

ch
ro

ni
sa

tio
n

an
d

P
ar

tia
l R

ec
on

fig
ur

at
io

n
T

im
e

(m
ill

is
ec

s)

FPGA Circuit Width (CLBs)

(c) Partial Reconfiguration

Figure 6. FPGA configuration run-times and
circuit width

5. Conclusions and Future Work

We have developed an FPGA interpreter for high-level
behavioural specifications given in the Circal process alge-
bra. This interpreter allows circuits that do not statically fit
into the available device area to be partitioned, mapped and
loaded as execution proceeds.

We exploit the Circal characteristics that systems are
composed of concurrently active processes and the temporal
locality of activity within process task graphs in order to be
able to effectively extend the design flow into the execution
period of a computation.

Providing an abstraction layer for automated hardware
virtualization for Circal designs goes a step towards increas-
ing the reusability of the hardware and thus bringing pro-
grammable logic into mainstream computing. We believe
that the concepts described in this paper can be applied to
systems working in a remote environment where hardware
upgrades are not that easy.

The performance analysis suggests that we have made
some useful progress towards having an effective hardware
management system for Circal designs. Not only does it re-
main to be seen how well these ideas translate to common
design paradigms, we also have considerable work ahead to
find more efficient ways of generating the partial bitstreams
needed for this approach to be more generally useful. Nev-
ertheless, the method is adequate for design space explo-
ration when the developer is wanting to interact with a de-
sign prototype.

It is our goal to leverage these concepts to extend the
semantic structures of Circal to have a simple yet pow-
erful syntax for describing dynamic processes that can be
mapped automatically to programmable logic devices. In
order to be able to create and destroy processes at run
time we will need to augment the concept of fixed routing
structures (imposed upon us by the overheads inherent in
the JBits router), with the ability to rapidly blank and/or
reroute potentially large areas of a device. Perhaps to facil-
itate dynamic re-routing a specialised router that maintains
a database of routing resources used needs to be developed.

While it is incumbent upon researchers and users to
demonstrate the potential benefits of run time design elabo-
ration (adapting to resource availability being one of them),
we believe it would be of more general and long-term bene-
fit were device vendors to open up their bitstream specifica-
tions to facilitate the development of tools that would allow
the possibilities to be explored.

References

[1] P. Bellows and B. L. Hutchings. JHDL - an HDL for recon-
figurable systems. In J. M. Arnold and K. L. Pocek, editors,

Proceedings of IEEE Workshop on FPGAs for Custom Com-
puting Machines, pages 175–184, Napa, CA, Apr. 1998.

[2] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava:
Hardware design in Haskell. In ACM International Confer-
ence on Functional Programming, 1998.

[3] G. Brebner. The swappable logic unit: a paradigm for virtual
hardware. In K. L. Pocek and J. M. Arnold, editors, The 5th
Annual IEEE Symposium on FPGAs for Custom Computing
Machines (FCCM’97), pages 77 – 86, Los Alamitos, CA,
Apr. 1997. IEEE Computer Society Press.

[4] Celoxica Ltd. RC1000 Hardware Reference Manual, 2001.
[5] O. Diessel and U. Malik. An FPGA interpreter with virtual

hardware management. In Proceedings, International Par-
allel and Distributed Processing Symposium, IPDPS 2002
Abstracts and CD-ROM, page 155, Los Alamitos, CA, 2002.
IEEE Computer Society Press.

[6] O. Diessel and G. Milne. A hardware compiler realizing
concurrent processes in reconfigurable logic. IEE Proceed-
ings — Computers and Digital Techniques, 148(4):152 –
162, Sept. 2001.

[7] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall International Series in Computer Science.
Prentice-Hall International (UK), first edition, 1985.

[8] O. Mencer, M. Morf, and M. J. Flynn. PAM-Blox: High
performance FPGA design for adaptive computing. In Pro-
ceedings of the 6th Annual IEEE Symposium on Field Pro-
grammable Custom Computing Machines, pages 167–174,
Apr. 1998.

[9] G. Milne. CIRCAL and the representation of communica-
tion, concurrency and time. ACM Transactions on Program-
ming Languages and Systems, 7(2):270–298, 1985.

[10] G. Milne. Formal Specification and Verification of Digital
Systems. McGraw–Hill, London, UK, 1994.

[11] G. Milne. A model for dynamic adaptation in reconfigurable
hardware systems. In A. Stoica, D. Keymeulen, and J. Lohn,
editors, Proceedings of the First NASA/DoD Workshop on
Evolvable Hardware, pages 161 – 169, Los Alamitos, CA,
July 1999. IEEE Computer Society Press.

[12] R. Milner. A Calculus of Communicating Systems, vol-
ume 92 of Lecture Notes in Computer Science. Springer-
Verlag, first edition, 1980.

[13] I. Page. Constructing hardware–software systems from a
single description. Journal of VLSI Signal Processing,
12(1):87 – 107, Jan. 1996.

[14] I. Page and W. Luk. Compiling Occam into FPGAs. In
W. Moore and W. Luk, editors, FPGAs: Proceedings of the
International Workshop on Field Programmable Logic and
Applications, (FPL ’91), pages 271–283, Abingdon, Sept.
1991. Abingdon EE&CS Books.

[15] K. So. Compiling abstract behaviours to Field Pro-
grammable Gate Arrays. Undergraduate thesis, School of
Computer Science and Engineering, University of New
South Wales, Oct. 2001. Available at
http://www.cse.unsw.edu.au/˜odiessel/
papers/kso-ugthesis.ps.gz.

[16] Xilinx, Inc. Virtex 2.5V Field Programmable Gate Arrays,
Oct. 2000.

[17] Xilinx, Inc. The JBits 2.8 SDK for Virtex, Sept. 2001. In
limited distribution release through Xilinx.

