
Abstract
Large circuits, whether they are arithmetic, digital signal
processing, switching, or processors, typically contain a
greater portion of highly regular datapath logic. Datapath
synthesis algorithms preserve these regular structures, so
they can be exploited by packing, placement, and routing
tools for speed or density. Typical datapath synthesis algo-
rithms, however, sacrifice area to gain regularity. Current
algorithms can have as much as 30% to 40% area inflation
when compared with traditional flat synthesis algorithms.
This paper describes a datapath synthesis algorithm with
very low area overhead, which is an enhancement to the
module compaction algorithm proposed in [8] . We propose
two word-level optimizations — multiplexer tree collapsing
and operation reordering. They reduce the area inflation to
3%–8% as compared with flat synthesis. Our synthesis
results also retain significant amount of regularity from the
original designs.

1. Introduction

As FPGAs are used to implement ever-larger applica-
tions, it has become compelling to complement the tradi-
tional flat synthesis technology with more advanced
datapath synthesis techniques. Although flat synthesis is
ideal for small control-logic type circuits, it is not efficient
for larger circuits, which typically contain a greater portion
of datapath logic [11]. Whether it is arithmetic, digital sig-
nal processing, switching, or processors, datapath logic has
highly regular structures. These structures are usually
destroyed during flat synthesis. Datapath synthesis algo-
rithms, on the other hand, preserve the regularity, so it can
be exploited by packing, placement, and routing tools to
achieve greater speed or density. By preserving regularity,
datapath synthesis also preserves carry chains, which are
specially supported by many commercial FPGAs. From a
user perspective, FPGA users are accustomed to fully auto-
mated design flows. Since datapath synthesis significantly

increases the level of automation for datapath design, it is
particularly suitable for FPGAs. For these reasons, there
has been increased interest in implementing efficient data-
path synthesis for FPGAs.

Previous studies, [4] [7] [8] [9] [12] [13] [16], have
shown that the logic density of FPGAs can be substantially
increased by exploiting regularity at the placement, rout-
ing, and architecture levels. However, there are no exten-
sive studies focusing on the effects of datapath synthesis on
FPGA area. Existing datapath synthesis techniques can be
roughly classified into four categories: regularity preserv-
ing logic transformations [10] [11], hard boundary hierar-
chical synthesis (synthesis that performs optimizations
strictly within user-defined module boundaries), template
mapping [5] [6] [14] [15], and module compaction [8] [9].
Among these four synthesis techniques, only regularity
preserving logic transformations do not incur significant
area overhead [10]. However, their goal is to extract regu-
larity from flattened datapath logic, rather than preserving
a given hierarchy. As the result, their effectiveness is lim-
ited by the amount of regularity that can be discovered by
the extraction process.

Hard boundary hierarchical, template mapping, and
module compaction synthesis techniques, all make use of
user-defined regularity information. We observed that two
of the techniques — hard boundary hierarchical and tem-
plate mapping — trade area for speed and regularity. For
example, when we used Synopsys to synthesize a series of
15 datapath circuits using the hard boundary hierarchical
methodology, we measured an average area increase of
38% compared to flat synthesis. For the template mapping
methodology, the technique presented in [6] has an area
increase of over 48%.

A module compaction algorithm was first proposed by
Koch in [8] and [9]. The algorithm consists of two basic
steps. First, it selectively merges user-defined datapath
modules together. Then, each merged module is synthe-
sized using regular flat synthesis techniques. Area results
on only two circuits are published in [8] and [9]. One cir-
cuit has 712 4-LUTs and the other has 112 4-LUTs (post

Synthesizing Datapath Circuits for FPGAs with Emphasis on Area Minimization

Andy Ye, Jonathan Rose, David Lewis
Department of Electrical and Computer Engineering, University of Toronto

Toronto, Ontario, Canada M5S 3G4
{yeandy, jayar, lewis}@eecg.utoronto.ca

datapath-synthesis area). The module compaction algo-
rithm is shown to have an area inflation of -0.08% to 17%
on the 712 LUT circuit and -16% for the 112 LUT circuit
when mapped onto the Xilinx XC4000 architecture. In
both cases, the module compaction algorithm uses the ded-
icated carry logic of XC4000, while the flat synthesis does
not. One would expect a higher LUT count for the module
compaction algorithm, if the dedicated carry logic is not
used.

In this paper, we present an enhanced module compac-
tion algorithm, which is augmented with two word-level
transformations (by word-level we mean operations that
optimize across multiple bits of datapath) — multiplexer
tree collapsing and operation reordering. Currently, these
two word-level transformations are performed manually,
but the algorithms presented here can be easil y automated.

Unli ke Koch’s algorithm that uses placement informa-
tion to selectively merge datapath modules, our module
compaction algorithm does not require placement informa-
tion. Instead, we merge modules together based on inter-
module connectivity. As the result, our algorithm can be
more easil y integrated into existing CAD flows. Our
enhanced algorithm is shown, empirically, to be able to
preserve regularity while incurring an average area over-
head of only 3%–8% versus flat synthesis.

In the next section, we describe our synthesis flow in
detail. Section 3 presents the experimental results on a
series of 15 benchmark circuits, comparing flat, hard-
boundary hierarchical, and our enhanced module compac-
tion synthesis. We also show that our synthesis maintains
various regular structures from the input netlists. The effect
of synthesis granularity on LUT count inflation is also pre-
sented. We conclude in Section 4.

2. Enhanced Module Compaction Algorithm

This section describes our datapath synthesis algorithm
in detail. It first gives an overview of the input representa-
tion and the overall flow of our algorithm. It then discusses
each synthesis/optimization step in detail.

2.1 Datapath Circuit Representation

The input to the synthesis algorithm is a netlist of datap-
ath components, described in VHDL or Verilog, which we
call the top-level netlist. All datapath components used in
the netlist are instantiated from a predefined datapath com-
ponent library. This library contains fundamental datapath
building blocks such as multiplexers, adders/subtracters,
shifters, comparators, and registers.

These datapath components are in turn composed of bit-
level structures that we call bit-slice netlists. A bit-slice

netlist is a netlist of logic gates, representing the function
of a single bit-slice of a datapath. The bit-sli ce netlist is
instantiated multiple times and all i ts instantiations are
interconnected into another netlist that describes the func-
tion and structure of the datapath component. We call this
netlist the datapath component level netlist.

The number of bit-slice netlist instantiations corre-
sponds to the width of the datapath. All instantiations are
assigned a unique bit-slice number from one to the width of
the datapath with the least significant bit-slice labeled one.

An example of a datapath component is shown in Figure
1. This datapath component is a 4-bit ripple carry adder.
The bit-slice netlist of this datapath component is a netlist
of logic gates defining a full adder. This design is instanti-
ated four times to form the 4-bit adder.

2.2 Synthesis Overview

The overall synthesis flow is shown in Figure 2. The
flow consists of four major stages. First, the top-level
netlist is passed through a three-stage optimization process

Instantiation #1 of
Bit-Slice Netlist

Instantiation #2 of
Bit-Slice Netlist

Instantiation #3 of
Bit-Slice Netlist

Instantiation #4 of
Bit-Slice Netlist

cin

cout

a0

b0

a1

b1

a2

b2

a3

b3

o0

o1

o2

o3

cin
a

b

cout

o

Figure 1: 4-bit Ripple Adder Datapath
Component

Bit-Slice Netlist

Netlist of Datapath Components

Optimization
Bit-Slice Netlist I/O

Compaction
Module

Optimization
Word-Level

Figure 2: Overall Synthesis Flow

Flat Synthesis & Optimization
of Bit-Slice Netlists

m

where new datapath components are created by transform-
ing and merging bit-slice netlists. During the optimization
process, some logic will be created which does not belong
to specific bit-slices, for example, logic generating signals
that fan out to several bit-slices. This is called irregular
logic (to distinguish it from logic that fits nicely into a
datapath) and is represented directly as logic gates in the
top-level netlist. Each distinct optimization type is dis-
cussed in the sections below.

After the three-stage optimization, each bit-slice netlist
is synthesized and mapped into 4-input lookup tables (4-
LUTs) and D-type Flip-Flops without set and reset signals
using a traditional flat synthesis algorithm. The irregular
logic gates are also synthesized and mapped into LUTs
independently from datapath components using the same
flat synthesis algorithm.

2.3 Word-Level Optimization

The first set of optimizations that we perform are word-
level optimizations. Two types of word-level transforma-
tions are performed. One is used to extract common sub-
expressions across bit-slice boundaries. The other uses
operation reordering to reduce area. Currently, these two
optimizations are performed manually. Their algorithms,
which are suitable for automation, are presented here.

Each datapath component represents a set of arithmetic
operations. In a top-level netlist, datapath components are
connected together to form mathematical functions. Each
of these functions has multiple bit outputs, where the out-
put bits can be individually described using logic expres-
sions. Often, common sub-expressions exist across these
logic expressions. More precisely, let both
x ([x0 , x1 , ... , xn]) and y ([y0 , y1 , ... , yn]) be bit vectors of

width n. Let y = f(x) be a mathematical function of x. Each
individual bit of y can be expressed in terms of bits of x as
follows:

y0 = f0 (x0 , x1 , ... , xn)

y1 = f1 (x0 , x1 , ... , xn)

...
yn = fn (x0 , x1 , ... , xn)

There can exist a function g (x0 , x1 , ... , xn), such that:
y0 = f ’0 (g (x0 , x1 , ... , xn) , x0 , x1 , ... , xn)

y1 = f ’1 (g (x0 , x1 , ... , xn) , x0 , x1 , ... , xn)

...
yn = f ’n (g (x0 , x1 , ... , xn) , x0 , x1 , ... , xn)

We call g(x) the common sub-expression of f0(x), f1(x), ... ,

fn(x). The implementation area of mathematical functions
can be reduced by properly discovering and extracting
these common sub-expressions so that they are only imple-
mented once.

In a flat synthesis process, common sub-expressions are
extracted through logic transformations. This extraction
process usually destroys the regularity of datapath circuits,
since flat synthesis independently transforms logic expres-
sions one bit at a time. We have found that many of these
common sub-expressions can be discovered at the word-
level. Furthermore, datapath regularity can easily be pre-
served by extracting these common sub-expressions at the
word-level where datapath structures remain clearly identi-
fiable.

For our benchmarks, the most effective word-level
transformation that extracts common sub-expressions is
multiplexer tree collapsing. In a multiplexer tree, the multi-
plexers, their data inputs, outputs, and the interconnection
signals form a tree topology. Each node of the tree, which
has multiple inputs and a single output, represents a multi-
plexer. Each input of a node corresponds to a multiplexer
data input. The output of a node corresponds to a multi-
plexer output. An edge in the graph represents a net con-
necting a multiplexer output to a multiplexer data input, a
primary input, or the primary output of the multiplexer
tree.

A multiplexer tree sometimes can be substituted by a
single multiplexer, which requires much less logic to
implement. An example is shown in Figure 3. Here the
multiplexer tree in the left circuit is substituted by a single
multiplexer in the right circuit. To implement the two mul-
tiplexers and the and gate in the left circuit we need two 4-
input LUTs for every bit-slice as indicated by the shaded
regions in the figure. To implement the multiplexer and the
and gate in the right circuit, we need only one 4-input LUT
for every bit-slice. The extra random logic in the right cir-
cuit is the common sub-expression extracted by the trans-
formation. It usually is shared by several bit-slices, so its
area cost is small in wide datapath circuits.

The algorithm used to collapse multiplexer trees is as
follows: First we identify multiplexer trees in the top-level
netlist. This is easy to perform since the functionality of
each datapath component is known. We then identify the
total number of unique data inputs to each tree. We replace
each tree by a single multiplexer whose width is equal to
the number of unique data inputs of the tree. Each input of
the new multiplexer is connected to a unique multiplexer
tree primary data input. The output of the new multiplexer
is connected to the primary output of the tree. Finally, the
select signal of the new multiplexer is generated using the
select signals of the original multiplexer tree. If the
replacement reduces the area cost, it is retained. Otherwise,
the replacement is rejected.

A second word-level transformation that we perform
uses operation reordering to reduce area. In particular, the
optimization reorders result selections into operand selec-
tions. Arithmetic operators such as multiplications are, in

general, much more expensive than multiplexers. In the
event that several identical operations are performed on
independent data sets and only one result is used, it usually
is much cheaper to preselect the input data than to perform
all operations in parallel and select the final results.

An example is shown in Figure 4. Here the result of two
addition operations is selected by a 2:1 mux. The operation
can be more efficiently performed by preselecting adder
inputs and using a single adder instead of two. Before opti-
mization, five 4-input LUTs are needed to implement the
function. After optimization, only four 4-input LUTs are
needed to implement the same function. This optimization
is not obvious at the bit-sli ce level. Since cout0a and
cout0b appear to be two independent signals at this level.
However, when viewed from the top-level netlist, the opti-
mization is clearly identifiable.

More generally, assume that we have a function y = f (x)
where x ([x0 , x1 , ... , xn]) is an n bit wide bit vector and
y ([y0 , y1 , ... , yp]) is a p bit wide bit vector. The function:

if (s == 0) then
 z = f (u)
else
 z = f (v)

can be more cheaply implemented as:
if (s == 0) then
 w = u
else
 w = v
z = f (w)

if f(x) requires more area to implement than the extra multi-
plexers. Our algorithm searches for multiplexers whose
data inputs are from the outputs of identical functions
where these outputs have no other fan-outs. It then com-
pares the area implementation cost of f(x) with the area
implementation cost of the multiplexers. If the area cost of
f(x) is greater than the area cost of the additional multiplex-
ers, the transformation is performed.

2.4 Module Compaction

In the second stage of optimization, we perform module
compaction. Here we iteratively merge two connected bit-
slice netlists together to form a larger bit-slice netlist. Also,
by creating larger bit-slice netlists, we create more optimi-
zation opportunities for the flat synthesis stage shown in
Figure 2, where synthesis is restricted to the boundaries of
bit-slice netlists. This merging process is similar to the
module compaction algorithm proposed by Koch in [8].
Our algorithm differs from Koch’s algorithm in its merging
criteria; unlike Koch’s algorithm, our algorithm does not
depend on any placement information.

The basic merging operation is a pattern identification
process. Two groups of bit-slices from two datapath mod-
ules are merged if the following conditions are met:
1. These two groups contain equal numbers of bit-slices.
2. All bit-sli ces in each group have consecutive bit-slice

numbers as defined in Section 2.1.
3. All bit-sli ces in one group are identically connected to

their corresponding bit-slices in the other group. Here
we define two corresponding bit-slices to be bit-slices
from two distinct groups, each with the same offset
from the lowest bit-slice number in its group.

FF

AS1

S2

R

A

R

rl

S1

S2

rl — random logic

Figure 3: Mux Tree Collapsing Example

FF

+ +

+

Figure 4: Result Selection to Operant Selection
Transformation

s

s

Before Optimization After Optimization

a b c d

e

a bc d

e

a0 b0 c0 d0

e0

s0

cin0a

cout0a
sum carry sum carry

cin0b

cout0b

s0
a0 c0 b0 d0

sum carry

cin0

cout0

e0

Bit-Slice Netlist Before Optimization

Bit-Slice Netlist After Optimization

Each merging operation creates a new datapath compo-
nent. The bit-slice netlist of the new component combines
the two original bit-slice netlists. If a merging group does
not include all the bit-slices of its datapath module, the
remaining slices in the module are split into two modules
— one module with all the bit-slices whose bit-sli ce num-
bers are smaller than the bit-sli ce numbers of the merging
group, the other module with all the bit-slices whose bit-
slice numbers are larger than the bit-slice numbers of the
merging group.

An example of module compaction is shown in Figure
5. Here, we start with two modules. One module contains
five slices of full adders labeled FA0 to FA4. The other
module contains four slices of single-bit 2:1 multiplexers
labeled mx0 to mx3. Based on the merging rules stated
above, two full adders, FA1 and FA2 can be merged with
two single-bit 2:1 multiplexers, mx0 and mx1, to form a
new datapath module. The remaining three full adders are
broken into two new modules after merging. The four new
modules created by the merging process is indicated in
shades in the figure. They are labeled A, B, C, and D.

We impose two extra conditions to prevent a carry type
signal from causing all bit-slices connected to it to be
merged into a single module. For example, consider a sec-
ond merging iteration on the circuit of Figure 5 after the
initial merging described above. Module A will be quali-
fied to be merged with the first sli ce of module B since
they are connected by the carry signal. Then in the third
merging iteration, module A and B will be completely
merged into a single bit-slice. After two more iterations,
the carry chain will cause A, B, and D in the figure to be
merged into a single bit-slice, which completely destroys
the regularity of our datapath.

To prevent this, first, we order merging operations, so
that operations that will create the widest datapath compo-
nents are performed first. Second, for every bit-sli ce netlist
we define an ancestors field, which is a set of bit-slice
netli sts. Initially each bit-slice netlist has only itself in its
ancestors set. When two bit-slice netli sts are merged, the
ancestors set of the new bit-slice netli st is the union of the
ancestors sets of the two merging bit-slice netlists. If the
intersection of the ancestors of two bit-slice netlists is not
empty, these two bit-slice netlists cannot be merged
together.

With the ancestors field, nothing can be merged during
the second merging iteration in Figure 5, since all mergable

module pairs, (A, B) and (B, D) share at least one common
ancestor.

2.5 Bit-Slice Netlist I/O Optimization

Each bit-slice netli st has a set of predefined I/O signals
that enter and exit the netlist. Depending on the usage of
these signals, some of them can be eliminated and con-
verted into internal signals of the netlist. Since each bit-
slice netli st is flat synthesized in our synthesis flow, con-
verting I/O signals into internal signals can reduce the
implementation area of bit-sli ces by providing extra infor-
mation to the flat synthesizer. In our optimization process,
four types of bit-slice I/O signals are converted into inter-
nal signals of bit-slices. Each type is discussed below.

Before any I/O optimization is performed, each datap-
ath component in the top-level netli st is first divided into
m-bit wide subcomponents, where m is specified by the
user. Each subcomponent is a self-contained datapath com-
ponent with its own bit-slice netlist definition and a netlist
of m instantiations of the bit-slice netlist. The division
starts from the least significant bit of each datapath compo-
nent and groups adjacent m bit-slices into a subcomponent.
If the width of the datapath component is not an integer
multiple of m, the subcomponent containing the most sig-
nificant bits will be less than m-bits wide. We call m the
granularity of the synthesis flow. A larger m preserves
more datapath regularity at the expense of increased area,
while a smaller m decreases area at the expense of preserv-
ing less datapath regularity. After division, each original
datapath component in the top-level netlist is substituted by
its corresponding subcomponents.

The first type of I /O optimization is constant absorption.
When an input of a bit-sli ce netlist is always connected to
the same constant value (either zero or one) for all instanti-
ations of the netlist in a datapath component, we convert
this input signal into a constant internal signal of the
netlist.

FA0 FA1 FA2

Figure 5: A Bit-Slice Netlist Merging Example

FA3 FA4

mx0 mx1 mx2 mx3

A

B

C

D

D
at

ap
at

h
C

om
po

ne
nt

 A

Before Optimization After Optimization

Figure 6: Feedback Absorption Example

Ai1

Ai2
Bit-

Slice A1

D
at

ap
at

h
C

om
po

ne
nt

 A

Ai2
Bit-

Slice A1

Ai2
Bit-

Slice A2

Ai2
Bit-

Slice A3

Ai2
Bit-

Slice A4

Ao Ao

Ai1

Ai2
Bit-

Slice A2

Ai1

Ai2
Bit-

Slice A3

Ai1

Ai2
Bit-

Slice A4

Ao

Ao

AoAo

Ao

Ao

The second type of I/O optimization is feedback absorp-
tion. When a connection exists between a bit-slice netlist
input and a bit-slice netlist output for all instantiations of
the netlist, we convert this input signal into an internal sig-
nal and reconnect it to the corresponding output inside the
netlist.

An example of feedback absorption is shown in Figure
6. Here Datapath Component A consists of four bit-
slices, which are all instances of the same bit-slice netlist.
Since each of the slice inputs labeled Ai1 is connected to a
corresponding slice output labeled Ao from the same slice,
Ai1 is eliminated as an input of the bit-slice netlist and is
converted to an internal signal. Ai1 is reconnected to Ao
inside the netlist.

The third type of I/O optimization is duplicated input
absorption. When two bit-slice netlist inputs are connected
together for all instantiations of the design, we convert one
of the input signals into an internal signal and reconnect it
to the other input signal inside the netlist.

An example of duplicated input absorption is shown in
Figure 7. As before, Datapath Component A consists of
four bit-slices, which are all instances of the same bit-slice
netlist. Since each of the slice inputs labeled Ai1 is always
connected to a corresponding slice input labeled Ai2 in the
same slice, Ai2 is eliminated as an input of the bit-slice
netlist and is converted to an internal signal. Ai2 is recon-
nected to Ai1 inside the netlist.

The last type of I/O optimization that we perform is
unused output elimination. When a bit-slice netlist output
does not connect to any other signals in all instantiations of
the bit-slice netlist, this output signal is converted into an
internal signal of the bit-slice netlist.

3. Experimental Results

In this section, we present experimental results of
applying the enhanced module compaction synthesis on

fifteen datapath benchmarks. These fifteen circuits are
from the Pico-Java processor [1]. Note that the word-level
optimizations, described in Section 2.3, were performed
manually. The other optimizations were done by automated
algorithms implemented in the C-language. We used the
Synopsys Design Compiler and FPGA Compiler [2] to per-
form flat synthesis. Unless specified otherwise, all the data
presented here are synthesized using a granularity value
(m), as defined in Section 2.5, of 4.

For every benchmark circuit, we compared the final
LUT and flip-flop count of our enhanced module compac-
tion synthesis with the counts achieved by Synopsys flat
synthesis. In order to assure that the best achievable flat
synthesis results are used to compare with our synthesis,
we use the best flat synthesis result from two flows: the flat
synthesized input netlist, and the flat synthesized output
netlist of our enhanced module compaction synthesis. In
some cases, one flat synthesis flow offers slightly better
results than the other.

Table 1 summarizes the LUT and flip-flop inflation of
each benchmark for flat synthesis, hard-boundary hierar-
chical synthesis, and our new enhanced module compac-
tion synthesis. Each inflation figure is calculated by
comparing the enhanced module compaction synthesis
with the best flat synthesis. The formula,

Figure 7: Duplicated Input Absorption

D
at

ap
at

h
C

om
po

ne
nt

 A

Before Optimization After Optimization

Ai1

Ai2
Bit-

Slice A1

Ai1

Ai2
Bit-

Slice A2

D
at

ap
at

h
C

om
po

ne
nt

 A

Ai1Bit-
Slice A1

Ai1Bit-
Slice A2

Ai1Bit-
Slice A3

Ai1Bit-
Slice A4

Ai1

Ai2
Bit-

Slice A3

Ai1

Ai2
Bit-

Slice A4

Ao

Ao

Ao

Ao

Ao

Ao

Ao

Ao Table 1: LUT & Flip-flop Inflation for Structured
Synthesis

Best Flat
Synthesis LUT

and flip-flop
Count

Inflation of Structured Synthesis

Hard-
Boundary

Hierarchical

With Cross
Boundary

Optimization

LUT FF LUT FF LUT FF

dcu_dpath 960 288 24% 0.0% 0.63% 0.0%

ex_dpath 2530 364 39% 0.0% 0.91% 0.0%

icu_dpath 3120 355 42% 0.28% 3.7% 0.0%

imdr_dpath 1182 170 31% 0.0% 3.1% 0.0%

pipe_dpath 443 218 24% 0.92% 6.3% 0.0%

smu_dpath 490 190 16% 0.0% 0.61% 0.0%

ucode_dat 1243 224 9.6% 0.0% 4.9% 0.0%

ucode_reg 78 74 121% 8.1% 5.1% 0.0%

code_seq_dp 218 216 68% 4.6% 2.3% 0.0%

exponent_dp 477 64 52% 0.0% 5.0% 0.0%

incmod 779 72 55% 0.0% 11% 0.0%

mantissa_dp 846 192 38% 0.0% 3.8% 0.0%

multmod_dp 1558 193 46% 0.0% 4.9% 0.0%

prils_dp 377 0 79% 0.0% 2.9% 0.0%

rsadd_dp 346 0 52% 0.0% -12% 0.0%

Total 14647 2620 38% 0.73% 3.2% 0.0%

, is used to calculate the inflation for

both LUTs and flip-flops. In the formula, DA represents the
datapath-oriented synthesis area; FA represents the flat syn-
thesis area.

Column one of the table li sts the name of each bench-
mark circuit. Columns two and three give the LUT and
fli p-flop count of each circuit from the best flat synthesis.
Columns four and five give the inflation figures of hard-
boundary hierarchical synthesis. Here, synthesis is per-
formed without any of the optimizations described in Sec-
tion 2. The inflation figures of enhanced module
compaction with full optimization are listed in columns six
and seven. The average LUT inflation without optimiza-
tion is 38% and the average flip-flop inflation is 0.73%.
With the optimizations, the average LUT inflation is
reduced to 3.2% and the fli p-flop inflation is zero. These
numbers show that our algorithm does not significantly
increase the LUT and fli p-flop count for these benchmarks
and is much more area efficient than hard-boundary hierar-
chical synthesis. For the circuit, rsadd_dp, our synthesis
even discovered more optimizations than flat synthesis,
resulting in much smaller area.

We now present measurements of various aspects of the
datapath regularity of the circuits after enhanced module

compaction as a mean of showing how much regularity is
preserved by the synthesis. The granularity of the synthe-
sis, m, is again set at 4. Higher granularities typically result
in higher regularity.

First we measure the number of LUTs that remain in
datapath components. Several optimizations described in
Section 2 create irregular logic during the optimization
process. In our representation, regular logic is represented
by LUTs that belong to datapath components; and irregular
logic is represented by LUTs that do not belong to any
datapath component. Before synthesis, near all logic in our
benchmark is regular.

After synthesis, 94% of the LUTs remain in datapath
components, while only 6% of the logic resides in irregular
logic. This shows that our synthesis flow preserves regular-
ity for logic blocks. We also measured the regularity of nets
after synthesis. Table 2 shows two major types of two ter-
minal connections exist in datapath benchmarks after syn-
thesis - bus and control signals. The first column of Table 2
lists the name of each benchmark circuit. The second col-
umn li sts the total number of two terminal connections in
each circuit.

A two terminal bus is defined as an m-bit wide bus (4 in
this table) that connects one datapath component to another
and obeys the following two conditions: First, each bit of
the bus must be generated by a distinct bit-slice in the
source datapath component and absorbed by a distinct bit-
slice in the sink datapath component. Second, the source
bit-slice and the sink bit-slice must have the same bit-slice
number. The topology of a 4-bit wide bus is shown in Fig-
ure 8. On average 48% of two terminal connections in
these benchmarks can be grouped into 4-bit wide busses.
The percentage number for each benchmark is summarized
in column three of Table 2.

Table 2: Percentage of Two Terminal Connections
that are 4 Bit Wide Busses and Percentage of Two

Terminal Connections that are Fan-Out Four
Control Signals

Total Two
Terminal

Conn.

Percentage of
Two Terminal

Conn. that are 4
Bit Wide Busses

Percentage of
Two Terminal
Conn. that are
Fan-Out Four

Control Signals

dcu_dpath 2232 49% 43%

ex_dpath 6547 52% 39%

icu_dpath 8047 47% 36%

imdr_dpath 3100 50% 36%

pipe_dpath 1049 48% 42%

smu_dpath 1167 48% 25%

ucode_dat 3143 52% 41%

ucode_reg 194 72% 21%

code_seq_dp 799 58% 18%

exponent_dp 1362 32% 23%

incmod 2013 42% 33%

mantissa_dp 2533 47% 36%

multmod_dp 3380 39% 25%

prils_dp 864 41% 32%

rsadd_dp 722 52% 27%

Total 37152 48% 35%

inflation
DA
FA
-------- 1–=

4-bit wide bus

sink datapath component

source datapath component

bit-slice

Figure 8: 4-bit Wide Bus Topology

4-bit control net

datapath component
bit-slice

Figure 9: 4-bit Control Net Topology
control logic (can be either datapath or random)

A control net is a single net that enters a datapath com-
ponent and fans out to all m bit-sli ces (4 in this table). The
topology of a 4-bit control net is shown in Figure 9. The
control nets on average consist of 35% of the total two ter-
minal connections in these benchmarks. The detailed per-
centage number for each benchmark is shown in column
four of Table 2.

Overall, there are 83% of two terminal connections that
belongs to either a bus or a control net. There are few two
terminal connections that belong to both a bus and a con-
trol net at the same time.

Finally, Table 3 presents LUT count inflation as a func-
tion of m. DFF count did not increase with increasing m.
Here we see that the LUT inflation increases from 3.5% to
7.4% as m, the granularity of synthesis, is increased from 4
to 32. The cause of this increase is the less efficient I/O
optimization as described in Section 2.5.

4. Conclusion

This paper presented an enhanced module compaction
synthesis algorithm targeting FPGAs. We empiricall y dem-
onstrated that our datapath-oriented synthesis is nearly as
efficient as the regular flat synthesis. In terms of LUT
count, our algorithm produces circuits on average with
only 3%–8% LUT count inflation and no increase in regis-
ter count. We also measured the regularity of the fifteen
benchmark circuits. We found that there is a high degree of
regularity in these synthesized benchmarks, with 48% of
two terminal connections that can be grouped into 4-bit
wide busses and 35% of two terminal connections from
highly regular control signals with at least 4-bit fan-out.

References

[1] Pico-Java Processor Design Documentation, Sun Microsys-
tems Inc., 1999.

[2] Synopsys Design Compiler Manual, Synopsys Inc., 1999.
[3] Vaughn Betz, Jonathan Rose, Alexander Marquardt, Archi-

tecture and CAD for Deep-Submicron FPGAs, Kluwer Aca-
demic Publishers, 1999.

[4] Don Cherepacha, David Lewis, “DP-FPGA: An FPGA
Architecture Optimized for Datapaths” , Proceedings of
Ninth International Conference on VLSI Design, Pages 329-
343, 1996.

[5] Timothy J. Callahan, Philip Chong, Andre DeHon, John
Wawrzynek, “Fast Module Mapping and Placement for

Datapaths in FPGAs”, Proceedings of the 1998 ACM/
SIGDA Sixth International Symposium on Field Program-
mable Gate Arrays, Pages 123–132, 1998.

[6] Miguel R. Corazao, Marwan A. Khalaf, Miodrag Potkonjak,
Jan M. Rabaey, “Performance Optimization Using Template
Mapping for Datapath-Intensive High-Level Synthesis” ,
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, Pages 877–888, August 1996.

[7] Scott Hauck, Thomas W. Fry, Matthew M. Hosler, Jeffrey P.
Kao, “The Chimaera Reconfigurable Functional Unit” , IEEE
Symposium on FPGAs for Custom Computer Machines,
Pages 87–96, 1997.

[8] Andreas Koch, “Structured Design Implementation — A
Strategy for Implementing Regular Datapaths on FPGAs”,
Proceedings of the 1996 ACM Fourth International Sympo-
sium on Field Programmable Gate Arrays, Pages 151–157,
1996.

[9] Andreas Koch, “Module Compaction in FPGA-based Regu-
lar Datapaths” , Proceedings of the 33rd Design Automation
Conference, Pages 471–476, 1996.

[10] Thomas Kutzschebauch, Leon Stok, “Regularity Driven
Logic Synthesis” , Proceedings of IEEE/ACM International
Conference on Computer Aided Design, Pages 439–446,
2000.

[11] Thomas Kutzschebauch, “Eff icient Logic Optimization
Using Regularity Extraction” , Proceedings of 2000 Interna-
tional Conference on Computer Design, Pages 487–493,
2000.

[12] Alan Marshall, Jean Vuillemin, Brad Hutchings, “A Recon-
figurable Arithmetic Array for Multimedia Applications” ,
Proceedings of the 1999 ACM/SIGDA Seventh International
Symposium on Field Programmable Gate Arrays, Pages
135–143, February 1999.

[13] Ethan Mirsky, Andre DeHon, “MATRIX: A Reconfigurable
Computing Architecture with Configurable Instruction Dis-
tribution and Deployable Resources” , Proceedings of IEEE
Symposium on FPGAs for Custom Computing Machines,
Pages 157–166, April 1996.

[14] A. R. Naseer, M. Balakrishnan, Anshul Kumar, “FAST:
FPGA Targeted RTL Structure Synthesis Technique”, Pro-
ceedings of the Seventh International Conference on VLSI
Design, Pages 21–24, 1994.

[15] A. R. Naseer, M. Balakrishnan, Anshul Kumar, “Direct
Mapping of RTL Structures onto LUT-Based FPGAs”, IEEE
Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, Pages 624–631, July 1998.

[16] Satnam Singh, “Death of the RLOC”, 2000 IEEE Sympo-
sium on Field-Programmable Custom Computing Machines,
Pages 145–152, April 2000.

[17] Ell iot Waingold, Michael Taylor, Devabhaktuni Srikrishna,
Vivek Sarkar, Walter Lee, Victor Lee, Jang Kim, Matthew
Frank, Peter Finch, Rajeev Barua, Jonathan Babb, Saman
Amarasinghe, Anant Agarwal, “Baring It All to Software:
Raw Machines” , IEEE Computers, Pages 86–93, September
1997.

Table 3: Granularity vs. LUT Count Inflation

m 1 4 8 12 16 20 24 28 32

Avg. LUT
Inflation (%)

0.0 3.5 4.6 6.3 6.7 6.5 6.7 6.8 7.4

