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Abstract— Various high level hardware description languages 
have been invented for the purpose of improving the productivity 
in the generation of customized hardware. Most of these 
languages are variants, usually parallel versions, of popular 
software programming languages. In this paper, we describe our 
effort to generate hardware from OpenMP, a software parallel 
programming paradigm that is widely used and tested. We are 
able to generate FPGA hardware from OpenMP C programs via 
synthesizable VHDL and Handel-C. We believe that the addition 
of this medium-grain parallel programming paradigm will bring 
additional value to the repertoire of hardware description 
languages. 
 

I. INTRODUCTION 
Along with Moore’s Law and the need to contain recurring 

engineering cost as well as a quick time to market, there has 
been a significant push for the use of high-level hardware 
description languages for the purpose of hardware synthesis. 
The holy grail in this front is to be able to automatically 
generated hardware from programs written and debugged in 
traditional software programming languages. Years of 
development in software engineering and programming have 
made it possible for a large number of software designers to 
collaborate and produce very large applications. However, 
even after overcoming the barriers of behavioral synthesis 
[11], there is still the issue that much of the traditional 
software code is written in sequential languages. Research in 
automatic parallelization has only met limited success. 

To overcome the above issues, many high-level hardware 
description languages have been proposed. Many of these are 
essentially parallel versions of traditional programming 
languages such as C together with bit-width extensions. 

In this paper, we describe the use of OpenMP [10] as a 
hardware description language. OpenMP works on the basis 
of pragmas – or “active” comments – added to a sequential 
program with the aim of parallelizing the code. There are 
several key advantages in taking this approach. First, the 
programs themselves will execute “as is” on any processor. 
This helps enhance the productivity of the software 
development process by leveraging on software functional and 
performance debugging facilities. Secondly, OpenMP is 
supported on a wide range of multicore, shared memory 
processors, clusters as well as compilers, including 
forthcoming versions of GCC. With the rise of multicore 
processing in the main stream processor market, one would 
expect that a parallelization paradigm such as OpenMP that 

already enjoyed significant support will be gaining further 
grounds. 

 We have created backends that generate 
synthesizable VHDL [12] or Handel-C [13] code from 
OpenMP C programs. We have successfully executed these on 
a FPGA platform. We shall first give a very brief introduction 
of OpenMP. This will be followed by the descriptions of our 
Handel-C and VHDL backends. In the Section 5, we will 
describe results from experimenting with our tool. This will be 
followed by a description of the related works and the 
conclusion. 

 

II. OPENMP 
OpenMP [10] is a specification jointly defined by a number 

of major hardware and software vendors. It is a set of 
compiler directives, runtime library routines and environment 
variables that can be used to specify shared memory 
parallelism in Fortran and C/C++ programs. It uses a thread-
based shared memory programming model where objects in 
an OpenMP program are either shared or private to each 
thread. Shared objects are accessible by all threads but private 
objects are only accessible to the thread that owns the objects. 
Any data transfer between the shared memory and the thread’s 
local memory is transparent to the programmer and most 
synchronization are implicit.  

Every OpenMP directive has the following grammar in 
general: 
 

#pragma omp directive_name [clause[[,]clause]…] 

 
The directives, shown in Table I can be divided into the 

following categories: parallel constructs, worksharing 
constructs, parallel worksharing constructs, master and 
synchronization directives. If a directive allows some clauses, 
then these clauses can control the number of threads executing 
a parallel region, the scheduling for a loop construct and the 
OpenMP data environment. The memory model used by 
OpenMP follows a memory consistency model where each 
thread has its own view of the shared memory. 
Synchronization can take place to make a thread’s view of 
memory consistent. 

Parallelism in OpenMP can be modeled as a fork and join 
model where a parallel region of code is replicated for each 
thread executing the parallel region. The number of threads 
executing the parallel region is determined on entry to the 
parallel region. The master thread spawns a team of slave 



TABLE I 
OPENMP DIRECTIVES 

OpenMP Directive/Clause Explanation 
#pragma omp parallel Parallel construct 

#pragma omp for Worksharing construct 
#pragma omp sections Worksharing construct 

#pragma omp parallel for Parallel Worksharing construct 
#pragma omp parallel sections Parallel Worksharing construct 

#pragma omp single Worksharing construct 
#pragma omp master Master construct 

#pragma omp critical Critical construct, used for critical sections of code 
#pragma omp atomic Atomic construct, similar to critical construct, but a critical section has only one 

statement 
#pragma omp ordered Ordered Construct, for ordered execution in a loop or parallel loop construct 
#pragma omp flush Flush directive, for memory synchronization 

#pragma omp barrier Barrier directive, for thread execution synchronization 
#pragma omp threadprivate Threadprivate directive, for global private variables to a thread 

if(expression) Decides whether parallel region is serialized 
num_threads(expression) Number of threads for a parallel region 

schedule(kind,expression) Scheduling for a loop or parallel loop construct 
ordered Indicates the presence of an ordered region for a loop and parallel loop construct 
nowait Indicates that a worksharing construct has no implicit barrier 

private(variable_list) Declares local variables for each thread 
firstprivate(variable_list) Same as private clause, but local variables are initialized 
lastprivate(variable_list) Same as private clause, but original variables are updated 
copyprivate(variable_list) The thread that executes the single construct broadcasts the values of its copies of the 

variables in variable_list to other threads 
default(shared | none) Indicates sharing attributes for visible data 
shared(variable_list) Indicates that variables in variable_list are shared 

reduction(op:variable_list) Reduction operation 
copyin(variable_list) A mechanism to copy the master thread’s threadprivate variables to other threads. 

 

threads to execute the parallel region. The code in the parallel 
region is replicated for each thread executing the region. On 
exit from the parallel region, the threads are synchronized and 
the slave threads are kept in a thread pool to be reused for 
another parallel region.  

OpenMP is ideally suited for medium granularity, loop 
parallelism. Given that a lot of behavioral synthesis works 
have focused on loop-level parallelism, we believe that this is 
the right level of approach the problem from a high level 
perspective. 

 

III. GENERATING HANDEL-C CODE FROM  
OPENMP PROGRAMS 

Handel-C is a C-based behavioral hardware description 
language sold by Celoxica. The advantage of using Handel-C 
is that it comes with various board support packages and tools 
that enables us to perform rapid prototyping on FPGA boards. 
Since we chose the C-variant of OpenMP, the exercise is 
therefore one of translation. To facilitate this, we used C-
Breeze [7], a C compiler infrastructure. C-Breeze parses a C 
program into an abstract syntax tree (AST). The lexer and 
parser in the C-Breeze was extended to parse OpenMP C 
pragmas in accordance to the OpenMP API 2.5 standard. New 
AST node classes are added to represent each OpenMP 
construct, including the data clauses that come with some of 
the constructs. We shall now highlight some interesting cases 
in the translation process. 

 We start with a parallel construct. The following is 
an OpenMP parallel construct: 
 
 

#pragma omp parallel 
{ 
 /* Code executed in parallel */ 
} 

 
This is translated simply as: 
 

par(tid = 0;tid < np;tid++) { 
seq { 
   { 
     /* Code executed in parallel */ 
   } 
  } 
} 

 
The number of threads is determined by the 

OMP_NUM_THREADS environment variable. At the exit 
from the parallel construct, there is an implicit barrier. This is 
already indirectly taken care of by Handel-C’s par replicator, 
which has an implicit barrier on exit from the par replicator. 
Nested parallelism and dynamic adjustment of threads are not 
supported at the moment. 
 The parallel-for construct is used to describe parallel loops 
in OpenMP: 
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Fig. 1. Function call implementation. 

#pragma omp for 
for (i = 0;i < 50;i++) 
{ 
    /* parallel code */ 
} 

 
This is translated into the following Handel-C code: 
 
int 32 start; /* start of chunk */ 
int 32 end; /* end of chunk */ 
 
end = 50/np; 
start = (0@tid)*end; 
end = end * np; 
end = 50 - end; 
 
if ((unsigned)tid < (unsigned)end<-2) 
{ 
   if (start != 0) 
      start += 0@tid; 
   end = start + 50/np + 1; 
} 
else if (end != 0 &&  
     (unsigned)tid >= (unsigned)end<-2) 
{ 
   start += end; 
   end = start + 50/np; 
} 
else if (end == 0) 
   end = start + 50/np; 
 
for (i = start;i < end && i < 50;i++) 
{ 
   /* parallel code */ 
} 
 
barrier(tid); 

 
The iteration space is divided among the threads as follows: 

• Each thread is assigned one chunk of iterations.  
• The size of each chunk assigned to each thread is 

approximately the same.  
• Since the for construct does not have the nowait 

clause, a barrier function call is inserted. 
 The code snippet below illustrates how a log(n) barrier is 
implemented. 
 

unsigned int 1 comm[np][np] = {0}; 
macro proc barrier(tid) { 
   unsigned int 2 i; 
   unsigned int 3 j; 
   unsigned int 1 input; 
 
   /* Each thread synchronizes with tid + 2^i 
       where i is the round number*/ 
   i = 0; 
   while(i != 2) { 
      // precompute tid + 2^i 
      // decode computes 2^i 
      j = (tid<-3) + (decode(i)<-3); 
      while(comm[i][j<-2]) 
        delay; 
      // set partner's flag 
      if (j < np) 
        comm[i][j<-2] = 1; 
      else 
        comm[i][(j-np)<-2] = 1; 
      while(!comm[i][(unsigned)(tid<-2)]) 
          delay; 
        comm[i][(unsigned)(tid<-2)] = 0; 
        i++; 
    } 
} 

 
 In addition to the above, we have also implemented 

translation for parallel sections, master-slave, critical sections, 
data sharing and log(n) reduction constructs.  

The implementation in Handel-C shows how readily 
OpenMP code can be mapped to an existing C-based 
hardware description language. There are still some 
components missing in OpenMP when we compare it to a 
hardware description language like Handel-C that was 
designed from “ground up” for the purpose of specifying 
hardware. In particular, there is an absence of bit-width 
specifications, bit-wise and bit-parallel operations. We believe 
these operations may be too low level when coding in 
OpenMP. However, in the spirit of OpenMP, it is possible to 
achieve bit width specifications by means of pragmas. Bit-
wise and bit-parallel operations can be realized as macros or 
(inlined) procedure calls. 

 

IV.  GENERATING SYNTHESIZABLE VHDL FROM OPENMP 
PROGRAMS 

In order to widen the choices of platform, we implemented 
a translation to synthesizable VHDL as well. Our 
implementation of OpenMP in VHDL uses the one-hot 
method. Each C function is initialized as a VHDL component 
using a pass-by-value implementation. The input parameters 
of a function are specified as input ports to the component. In 
addition to these ports, the ports in Table II are common to all 
generated components. 

 Fig. 1 is a visual representation of the generated 
VHDL component for a function call in which main() calls 
f(). The CLK and RST signals are globally routed to all 
components, while F_MAIN_RST, F_START, F_DONE and 
F_OUTPUT are internal signals of the main() component 
used to control its child component f(). 

A. Private and Shared Variables 
We have only implemented the int type, which represent 

32-bit integers. This corresponds to the integer type in 
VHDL. Arrays of integers are also allowed, but only up to two 
dimensions, as the synthesis tool we used only allowed a 
maximum of three dimensional bit arrays (two dimensions for 
actual array and one dimension of 32 bits for integer).  



TABLE II  

COMMON INPUT AND OUTPUT SIGNAL FOR ALL VHDL COMPONENTS 

CLK a global clock signal used to 
drive all components for the 
circuit; 

RST a synchronous global reset 
signal which is set to high for 1 
clock cycle at the start of the 
execution of a VHDL program 
to reset all FSMs to their initial 
states; 

MAIN_RST a local reset signal used to 
reset a child component or 
process to its initial state; 

START a signal sent by a parent 
component to a child 
component to signal the start 
of its execution; 

DONE a signal sent by a child 
component to a parent 
component to signal the end of 
its execution; 

OUTPUT return value of a component, 
which is set together with the 
DONE signal when a child 
component completes 
execution. 
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Fig. 2. Clock cycle analysis of a shared array write. 

 Global variables are currently not supported due to 
the absence of a memory system in VHDL. However, a 
restricted form of shared variables internal to a function is 
allowed, namely shared variables written to by different 
threads. Due to the fact that in actual hardware registers, only 
a single signal input source is allowed, a register cannot be 
directly written to by more than one thread. To overcome this 
limitation, we implemented explicit multiplexing. A thread 
writing to a shared variable sends request signals together 
with their data to a multiplexer which we call a coordinator. 
The coordinator chooses a thread request in a clock cycle and 
sends an acknowledgement signal to the chosen thread.  

 Array writes are implemented as exclusive writes 
across all elements in an array. That is, only a particular 
element of an array may be written in a clock cycle. For arrays, 
the thread needs to supply the indices as the address to select 
the element of the array to write to.  This is illustrated in the 
following code snippet. 
 

Coordinator Thread Process i 
State 0: 
1. Scans request signal array, 

chooses thread process i 
 
2.  if (has_request == 1) 
         ack[i]  1; 
         x[x_dim1[i],  
              x_dim2[i]]  
                    x_data[i]; 
       Go to State 1. 
 
State 1: 
1. Do nothing. Wait for chosen 

thread process to de-assert 
request signal. 

2. Go to State 0. 

State n: 
1.  req[i]  1; 
 x_data[i]  10; 
 x_dim1[i]  1; 
 x_dim2[i]  2; 
2.  if ack[i]== 1 then 
    req[i]  0; 
    go to State n+1; 
 
State n+1:  
  (next statement to execute) 
 …. 
 …. 

 
 

In Fig. 2, we show the clock cycle analysis diagram for the 
following array write to a shared array x. Thread 0 is 
attempting to write the value 22 to x[1][2] while thread 1 
wants to write 44 to x[5][6]. 

 



 At the end of clock cycle 1, the coordinator sees that 
both thread 0 and thread 1 has req[0] and req[1] 
asserted. It selects the value of thread 0 to write, and at the 
start of the clock cycle 2, it asserts ack[0] to inform thread 
0 that the write is complete. x[1][2] is also updated with 
the value of data[0] by the coordinator. At the end of clock 
cycle 2, thread 0 sees that the coordinator has asserted 
ack[0], hence at the start of clock cycle 3 it de-asserts 
req[0] to stop its request, and proceed on to the next state. 
At the end of clock cycle 3, thread 1 finally gets a chance to 
write to the array. The coordinator selects thread 1 as the next 
write, asserts ack[1] and write data[1] to x[5][6]. At 
the end of clock cycle 4, thread 1 sees that ack[1] is 
asserted, hence at the start of clock cycle 5 it de-asserts 
req[1] to stop requesting, and moves to the next state. 

B. Dealing with control flows 
Due to the differences in the paradigms, there is a need to 

reduce control flows in the original C program into state 
machine operations. This is illustrated by the following code 
template: 
 

1) Original C code 
 
     if (a) then stmt1 else stmt2; 

2) C-Breeze’s MIR code  
    after dismantling 
 
        If (a) then goto label1; 
        goto label 2; 
   label1: 
       stmt1; 
       goto label3; 
   label2: 
        stmt2; 
   label 3: 

3) Our modified MIR code  
    after dismantling 
 
   Label0: { 
       if (a) then goto label1; 
       else goto label2; 
   } 
   Label1: { 
       stmt1; 
       goto label3;  
   } 
   Label2: { 
       stmt2; 
       goto label3;  
   } 
   Label3: 
       ……. 

4) Final VHDL code 
 
    case state is 
        when S0=> 
           if (a) then 
                state <= S1; 
           else 
                state <= S2; 
           end if; 
       when S1=> 
           stmt1; 
           state <= S3; 
       when S2=> 
           stmt2; 
           state <= S3; 
       when S3 => 
           …….. 

C.  Dealing with OpenMP pragmas 
The subsections below give the details on how we dealt 

with the OpenMP pragmas. In most cases, one-hot finite-state 
machines are used. 
 Each computational expression is assigned a state. When 
the control FSM goes into that state, the logic circuit 
implementing that expression will be executed. Currently, each 
state only has one executing statement, but future optimization 
efforts can greatly reduce the number of states so as to reduce 
the clock cycles needed to run the program. 
 

1)   #pragma omp parallel 
Each thread is implemented as a separate FSM, with the main 
thread controlling the execution of its child threads. There is an 
implicit barrier at the end of the parallel region. Currently a 
parallel region is restricted to its static region; it does not apply 
to functions called within a parallel region. Also, nested 
parallelism is currently not supported. 
 

2)  #pragma omp for 
This construct distributes the iteration of a for-loop across the 
threads in a parallel region based on the schedule type 
specified. Currently, unlike the Handel-C implementation,  
only static schedule with a chunk size of one is implemented. 
For a region of n threads, thread i gets the (I + n × j) iterations 
of the loop where j = 0,1,2,3,… 
 

3)  #pragma omp sections 
Each block of code is moved to its respective thread at compile 
time, and since each thread has different sections of code, the 
circuit generated for each thread is more compact than in the 
case of duplicating all sections of the code for each thread and 
testing which section should be executed for a specific thread 
at run-time. There is an implicit barrier at the end of the 
sections region. 
 

4)   #pragma omp single 
In our implementation, the first thread which arrive at the 
single construct will execute the single region. In the event that 
two or more threads arrive at the single contruct in the 
same clock cycle, the thread with the smaller thread number 
will execute the single region. A coordinator performs this 
selection. 
 

5)   #pragma omp critical 
This is implemented in a similar manner as the single construct 
except that every thread will get a turn to execute the code in 
the critical region. 
 

6)   #pragma omp master 
This construct specifies that a block of code is only executed 
by the master thread. In our implementation, only the master 
thread process contains this block of code, which means that 
only one copy of the generated circuit exists.  
 

7)  #pragma omp atomic 
This construct specifies that a storage location is updated 
atomically. 

#pragma omp atomic 
x = x + expr 

This is handled by transforming it into a critical section. 
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Fig. 3. Parallel matrix multiply in Handel-C. 
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Fig. 4. Parallel Sieve of Eratosthenes in Handel-C. 
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Fig. 5. Parallel Mandelbrot in Handel-C. 

8)   #pragma omp barrier 
This is implemented as a logical-and of a bit array. Threads 

arriving at the barrier set its own bit to one, and test whether 
the logical-and of the bit array is equal to 1 at every clock 
cycle. Once the logical and is asserted, a thread will then set 
its bit to 0 and proceed to the next state. 

. 

V. EXPERIMENTAL EVALUATION 
Both Handel-C and VHDL implementation were tested on 

the Celoxica RC100 FPGA development board [2]. The 
RC100 board has a 200,000 gate Xilinx Spartan II FPGA, two 
off-chip Synchronous Static RAM (SSRAM) banks, Flash 
RAM, video decoder, video output subsystem as well as PS/2 
ports for a keyboard and mouse. The board can be connected 
to the host computer using a parallel port cable where parallel 
port I/O can be performed between the host computer and the 
board. The Celoxica and Xilinx tool chains were needed to 
complete the synthesis and test cycles. 

 As a comparison, we also executed the same 
OpenMP code on a Sun Microsystem SunFire 4800 server. 
This Symmetrical Multiprocessor machine has eight 
UltraSPARC III 1.2-GHz processors and 8GB of shared 
memory. The Sun C compiler supports OpenMP natively. 
Optimizations were turned off. We believe this gives a fairer 
picture as our OpenMP implementations do not do much 
optimization at the moment either.  

A. Performance of Handel-C Implementation 
For the Handel-C implementation, we chose the matrix 

multiply, summation, reduction, prime testing and Mandelbrot 
set generation as our tests. Table III shows the actual 
hardware resources utilized on the FPGA for each of our 
Handel-C test programs. It shows the minimum clock period 
achieved, maximum clock rate achieved as well as the number 
of clock cycles used for program execution excluding clock 
cycles used for I/O and the calculated execution time on the 
FPGA. 

For the parallel matrix multiply (see Fig. 3), we tested it on 
a 62×15 by 15×7 array multiply. We were limited by the 
resources of the RC100 board. The Handel-C implementation 
achieved a speedup of 5.9 for 8 threads. The software 
implementation, on the other hand, on the Sun server showed 
a slight slowdown. In the summation tests, because of the use 
of critical sections, the Handel-C implementation only 
achieved a speedup of 1.14.  

For the Sieves of Eratosthenes (Fig. 4), the Handel-C 
implementation showed a speedup of about 14% while the 
software OpenMP version showed a siginificant slow-down.  

For Mandelbrot (Fig. 5), the speedups for Handel-C and the 
software versions were 4.09 and 2.18, respectively. 

B.  Performance of VHDL Implementation 
For the VHDL implementation, we included one more 

benchmarks – the infinite impulse response filter. For the 
other benchmarks, the results were similar as that for Handel-
C.  Across the tests, we achieved clock speeds of around 23 to 
45 MHz.  

Table IV shows the execution time for the prime sieving 
benchmarks. A fixed 20MHz clock was used in all the VHDL 
designs. 

Table V shows the execution time for the infinite impulse 
filter benchmarks.  

It should be pointed out that the aim of these tests is not to 
show that hardware implementation will always be better. An 



important caveat is that because of the sizes of our problems 
are limited by the FPGA board we are working on, they 
translate to communication and synchronization bound 
programs on the Sun server. Therefore, the comparison is not 
altogether fair for the software version. The tests do reveal 
however, that (a) our implementation is correct; and (b) it is 
physical evidence that the primary proposal of this paper, 
namely the use of OpenMP as a high level hardware 
description language is a feasible one. 
 

TABLE IV  

PARALLEL SIEVE OF ERATOSTHENES IN VHDL 

No. of 
threads 

 VHDL 
time 
(ms) 

OpenMP 
time 
(ms) 

1 0.5725 0.283 
2 0.4301 3.906 
3 0.32985 7.976 
4 0.26185 15.085 
5 0.28485 22.461 
6 0.28085 29.332 
7 0.25285 36.841 
8 0.24985 44.287 

 
TABLE V  

INFINITE IMPULSE FILTER IN VHDL 

No. of 
threads 

Clock 
period 
(ms) 

Clock 
freq 
(MHz) 

VHDL 
time 
(ms) 

OpenMP 
time 
(ms) 

1 12.463 80.238 0.02085 0.184 
2 14.95 66.89 0.0241 1.003 
3 15.537 64.362 0.02435 1.64 
4 23.195 43.113 0.02525 1.755 
5 24.065 41.554 0.02395 2.945 
6 26.677 37.485 0.0241 3.866 

 
 

VI. RELATED WORKS 
The need for high-level descriptions of hardware has been 

recognized widely by the industry and academia [14]. The 
hope is that this will enable reuse with the same ease as 
software, resulting in greater productivity. Besides the very 
popular Verilog and VHDL, several hardware description 
languages based on Java [1], Lola [4], C [5], ML [6], and 
Ruby [8] have been proposed. There are also new languages 
like Pebble [9]. 

Dziurzanski and Beletskyy [3] first proposed the subseting 
and extending OpenMP for the purpose of hardware 
description. However, as far as we know, ours is the only 
actual implementation of OpenMP as a high level hardware 
description language via translations to Handel-C and VHDL. 
We showed actual benchmarks using our implementations. 

 

VII. CONCLUSION 
In this paper, we proposed the use of OpenMP as a 

hardware description language. OpenMP leverages on the idea 
of “active comments” as the key to transit from sequential to 
(shared-memory) parallel programs. An OpenMP program 
should, in principle, compile and run transparently on a 
sequential or a parallel processor. We believe that this is an 
attractive philosophy for a medium grain, rapid prototyping 
high level hardware description language. It is unlikely that an 
OpenMP hardware description will yield the most optimal 
hardware. But it helps speed up the process of obtaining a 
working prototype, especially if there is already some 
software counter-part. We hope that this will be a useful 
addition to the repertoire of hardware description languages 
available to hardware designers. 
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