
Generating Hardware From OpenMP Programs
Y.Y. Leow, C.Y. Ng, and W.F. Wong

 Department of Computer Science
National University of Singapore

3, Science Drive 2, Singapore 117543
wongwf@comp.nus.edu.sg

Abstract— Various high level hardware description languages
have been invented for the purpose of improving the productivity
in the generation of customized hardware. Most of these
languages are variants, usually parallel versions, of popular
software programming languages. In this paper, we describe our
effort to generate hardware from OpenMP, a software parallel
programming paradigm that is widely used and tested. We are
able to generate FPGA hardware from OpenMP C programs via
synthesizable VHDL and Handel-C. We believe that the addition
of this medium-grain parallel programming paradigm will bring
additional value to the repertoire of hardware description
languages.

I. INTRODUCTION
Along with Moore’s Law and the need to contain recurring

engineering cost as well as a quick time to market, there has
been a significant push for the use of high-level hardware
description languages for the purpose of hardware synthesis.
The holy grail in this front is to be able to automatically
generated hardware from programs written and debugged in
traditional software programming languages. Years of
development in software engineering and programming have
made it possible for a large number of software designers to
collaborate and produce very large applications. However,
even after overcoming the barriers of behavioral synthesis
[11], there is still the issue that much of the traditional
software code is written in sequential languages. Research in
automatic parallelization has only met limited success.

To overcome the above issues, many high-level hardware
description languages have been proposed. Many of these are
essentially parallel versions of traditional programming
languages such as C together with bit-width extensions.

In this paper, we describe the use of OpenMP [10] as a
hardware description language. OpenMP works on the basis
of pragmas – or “active” comments – added to a sequential
program with the aim of parallelizing the code. There are
several key advantages in taking this approach. First, the
programs themselves will execute “as is” on any processor.
This helps enhance the productivity of the software
development process by leveraging on software functional and
performance debugging facilities. Secondly, OpenMP is
supported on a wide range of multicore, shared memory
processors, clusters as well as compilers, including
forthcoming versions of GCC. With the rise of multicore
processing in the main stream processor market, one would
expect that a parallelization paradigm such as OpenMP that

already enjoyed significant support will be gaining further
grounds.

 We have created backends that generate
synthesizable VHDL [12] or Handel-C [13] code from
OpenMP C programs. We have successfully executed these on
a FPGA platform. We shall first give a very brief introduction
of OpenMP. This will be followed by the descriptions of our
Handel-C and VHDL backends. In the Section 5, we will
describe results from experimenting with our tool. This will be
followed by a description of the related works and the
conclusion.

II. OPENMP
OpenMP [10] is a specification jointly defined by a number

of major hardware and software vendors. It is a set of
compiler directives, runtime library routines and environment
variables that can be used to specify shared memory
parallelism in Fortran and C/C++ programs. It uses a thread-
based shared memory programming model where objects in
an OpenMP program are either shared or private to each
thread. Shared objects are accessible by all threads but private
objects are only accessible to the thread that owns the objects.
Any data transfer between the shared memory and the thread’s
local memory is transparent to the programmer and most
synchronization are implicit.

Every OpenMP directive has the following grammar in
general:

#pragma omp directive_name [clause[[,]clause]…]

The directives, shown in Table I can be divided into the

following categories: parallel constructs, worksharing
constructs, parallel worksharing constructs, master and
synchronization directives. If a directive allows some clauses,
then these clauses can control the number of threads executing
a parallel region, the scheduling for a loop construct and the
OpenMP data environment. The memory model used by
OpenMP follows a memory consistency model where each
thread has its own view of the shared memory.
Synchronization can take place to make a thread’s view of
memory consistent.

Parallelism in OpenMP can be modeled as a fork and join
model where a parallel region of code is replicated for each
thread executing the parallel region. The number of threads
executing the parallel region is determined on entry to the
parallel region. The master thread spawns a team of slave

TABLE I
OPENMP DIRECTIVES

OpenMP Directive/Clause Explanation
#pragma omp parallel Parallel construct

#pragma omp for Worksharing construct
#pragma omp sections Worksharing construct

#pragma omp parallel for Parallel Worksharing construct
#pragma omp parallel sections Parallel Worksharing construct

#pragma omp single Worksharing construct
#pragma omp master Master construct

#pragma omp critical Critical construct, used for critical sections of code
#pragma omp atomic Atomic construct, similar to critical construct, but a critical section has only one

statement
#pragma omp ordered Ordered Construct, for ordered execution in a loop or parallel loop construct
#pragma omp flush Flush directive, for memory synchronization

#pragma omp barrier Barrier directive, for thread execution synchronization
#pragma omp threadprivate Threadprivate directive, for global private variables to a thread

if(expression) Decides whether parallel region is serialized
num_threads(expression) Number of threads for a parallel region

schedule(kind,expression) Scheduling for a loop or parallel loop construct
ordered Indicates the presence of an ordered region for a loop and parallel loop construct
nowait Indicates that a worksharing construct has no implicit barrier

private(variable_list) Declares local variables for each thread
firstprivate(variable_list) Same as private clause, but local variables are initialized
lastprivate(variable_list) Same as private clause, but original variables are updated
copyprivate(variable_list) The thread that executes the single construct broadcasts the values of its copies of the

variables in variable_list to other threads
default(shared | none) Indicates sharing attributes for visible data
shared(variable_list) Indicates that variables in variable_list are shared

reduction(op:variable_list) Reduction operation
copyin(variable_list) A mechanism to copy the master thread’s threadprivate variables to other threads.

threads to execute the parallel region. The code in the parallel
region is replicated for each thread executing the region. On
exit from the parallel region, the threads are synchronized and
the slave threads are kept in a thread pool to be reused for
another parallel region.

OpenMP is ideally suited for medium granularity, loop
parallelism. Given that a lot of behavioral synthesis works
have focused on loop-level parallelism, we believe that this is
the right level of approach the problem from a high level
perspective.

III. GENERATING HANDEL-C CODE FROM
OPENMP PROGRAMS

Handel-C is a C-based behavioral hardware description
language sold by Celoxica. The advantage of using Handel-C
is that it comes with various board support packages and tools
that enables us to perform rapid prototyping on FPGA boards.
Since we chose the C-variant of OpenMP, the exercise is
therefore one of translation. To facilitate this, we used C-
Breeze [7], a C compiler infrastructure. C-Breeze parses a C
program into an abstract syntax tree (AST). The lexer and
parser in the C-Breeze was extended to parse OpenMP C
pragmas in accordance to the OpenMP API 2.5 standard. New
AST node classes are added to represent each OpenMP
construct, including the data clauses that come with some of
the constructs. We shall now highlight some interesting cases
in the translation process.

 We start with a parallel construct. The following is
an OpenMP parallel construct:

#pragma omp parallel
{
 /* Code executed in parallel */
}

This is translated simply as:

par(tid = 0;tid < np;tid++) {
seq {
 {
 /* Code executed in parallel */
 }
 }
}

The number of threads is determined by the

OMP_NUM_THREADS environment variable. At the exit
from the parallel construct, there is an implicit barrier. This is
already indirectly taken care of by Handel-C’s par replicator,
which has an implicit barrier on exit from the par replicator.
Nested parallelism and dynamic adjustment of threads are not
supported at the moment.
 The parallel-for construct is used to describe parallel loops
in OpenMP:

COMPONENT main

COMPONENT f
CLK

RST

F_MAIN_RST

F_START

F_DONE

F_OUTPUT

CLK

RST

MAIN_RST

START

DONE

OUTPUT

Fig. 1. Function call implementation.

#pragma omp for
for (i = 0;i < 50;i++)
{
 /* parallel code */
}

This is translated into the following Handel-C code:

int 32 start; /* start of chunk */
int 32 end; /* end of chunk */

end = 50/np;
start = (0@tid)*end;
end = end * np;
end = 50 - end;

if ((unsigned)tid < (unsigned)end<-2)
{
 if (start != 0)
 start += 0@tid;
 end = start + 50/np + 1;
}
else if (end != 0 &&
 (unsigned)tid >= (unsigned)end<-2)
{
 start += end;
 end = start + 50/np;
}
else if (end == 0)
 end = start + 50/np;

for (i = start;i < end && i < 50;i++)
{
 /* parallel code */
}

barrier(tid);

The iteration space is divided among the threads as follows:

• Each thread is assigned one chunk of iterations.
• The size of each chunk assigned to each thread is

approximately the same.
• Since the for construct does not have the nowait

clause, a barrier function call is inserted.
 The code snippet below illustrates how a log(n) barrier is
implemented.

unsigned int 1 comm[np][np] = {0};
macro proc barrier(tid) {
 unsigned int 2 i;
 unsigned int 3 j;
 unsigned int 1 input;

 /* Each thread synchronizes with tid + 2^i
 where i is the round number*/
 i = 0;
 while(i != 2) {
 // precompute tid + 2^i
 // decode computes 2^i
 j = (tid<-3) + (decode(i)<-3);
 while(comm[i][j<-2])
 delay;
 // set partner's flag
 if (j < np)
 comm[i][j<-2] = 1;
 else
 comm[i][(j-np)<-2] = 1;
 while(!comm[i][(unsigned)(tid<-2)])
 delay;
 comm[i][(unsigned)(tid<-2)] = 0;
 i++;
 }
}

 In addition to the above, we have also implemented

translation for parallel sections, master-slave, critical sections,
data sharing and log(n) reduction constructs.

The implementation in Handel-C shows how readily
OpenMP code can be mapped to an existing C-based
hardware description language. There are still some
components missing in OpenMP when we compare it to a
hardware description language like Handel-C that was
designed from “ground up” for the purpose of specifying
hardware. In particular, there is an absence of bit-width
specifications, bit-wise and bit-parallel operations. We believe
these operations may be too low level when coding in
OpenMP. However, in the spirit of OpenMP, it is possible to
achieve bit width specifications by means of pragmas. Bit-
wise and bit-parallel operations can be realized as macros or
(inlined) procedure calls.

IV. GENERATING SYNTHESIZABLE VHDL FROM OPENMP
PROGRAMS

In order to widen the choices of platform, we implemented
a translation to synthesizable VHDL as well. Our
implementation of OpenMP in VHDL uses the one-hot
method. Each C function is initialized as a VHDL component
using a pass-by-value implementation. The input parameters
of a function are specified as input ports to the component. In
addition to these ports, the ports in Table II are common to all
generated components.

 Fig. 1 is a visual representation of the generated
VHDL component for a function call in which main() calls
f(). The CLK and RST signals are globally routed to all
components, while F_MAIN_RST, F_START, F_DONE and
F_OUTPUT are internal signals of the main() component
used to control its child component f().

A. Private and Shared Variables
We have only implemented the int type, which represent

32-bit integers. This corresponds to the integer type in
VHDL. Arrays of integers are also allowed, but only up to two
dimensions, as the synthesis tool we used only allowed a
maximum of three dimensional bit arrays (two dimensions for
actual array and one dimension of 32 bits for integer).

TABLE II

COMMON INPUT AND OUTPUT SIGNAL FOR ALL VHDL COMPONENTS

CLK a global clock signal used to
drive all components for the
circuit;

RST a synchronous global reset
signal which is set to high for 1
clock cycle at the start of the
execution of a VHDL program
to reset all FSMs to their initial
states;

MAIN_RST a local reset signal used to
reset a child component or
process to its initial state;

START a signal sent by a parent
component to a child
component to signal the start
of its execution;

DONE a signal sent by a child
component to a parent
component to signal the end of
its execution;

OUTPUT return value of a component,
which is set together with the
DONE signal when a child
component completes
execution.

CLK

X_Coord_State

x[1][2]

x[5][6]

ack[0]

ack[1]

T0_State

req[0]

data[0]

dim1[0]

dim2[0]

T1_State

req[1]

data[1]

dim1[1]

dim2[1]

1 2 3 4 5

0 1 0 1 0

22

44

0 1

22

1

2

44

5

6

0 1

CLK

X_Coord_State

x[1][2]

x[5][6]

ack[0]

ack[1]

T0_State

req[0]

data[0]

dim1[0]

dim2[0]

T1_State

req[1]

data[1]

dim1[1]

dim2[1]

1 2 3 4 5

0 1 0 1 0

22

44

0 1

22

1

2

44

5

6

0 1

Fig. 2. Clock cycle analysis of a shared array write.

 Global variables are currently not supported due to
the absence of a memory system in VHDL. However, a
restricted form of shared variables internal to a function is
allowed, namely shared variables written to by different
threads. Due to the fact that in actual hardware registers, only
a single signal input source is allowed, a register cannot be
directly written to by more than one thread. To overcome this
limitation, we implemented explicit multiplexing. A thread
writing to a shared variable sends request signals together
with their data to a multiplexer which we call a coordinator.
The coordinator chooses a thread request in a clock cycle and
sends an acknowledgement signal to the chosen thread.

 Array writes are implemented as exclusive writes
across all elements in an array. That is, only a particular
element of an array may be written in a clock cycle. For arrays,
the thread needs to supply the indices as the address to select
the element of the array to write to. This is illustrated in the
following code snippet.

Coordinator Thread Process i
State 0:
1. Scans request signal array,

chooses thread process i

2. if (has_request == 1)
 ack[i] 1;
 x[x_dim1[i],
 x_dim2[i]]
 x_data[i];
 Go to State 1.

State 1:
1. Do nothing. Wait for chosen

thread process to de-assert
request signal.

2. Go to State 0.

State n:
1. req[i] 1;
 x_data[i] 10;
 x_dim1[i] 1;
 x_dim2[i] 2;
2. if ack[i]== 1 then
 req[i] 0;
 go to State n+1;

State n+1:
 (next statement to execute)
 ….
 ….

In Fig. 2, we show the clock cycle analysis diagram for the
following array write to a shared array x. Thread 0 is
attempting to write the value 22 to x[1][2] while thread 1
wants to write 44 to x[5][6].

 At the end of clock cycle 1, the coordinator sees that
both thread 0 and thread 1 has req[0] and req[1]
asserted. It selects the value of thread 0 to write, and at the
start of the clock cycle 2, it asserts ack[0] to inform thread
0 that the write is complete. x[1][2] is also updated with
the value of data[0] by the coordinator. At the end of clock
cycle 2, thread 0 sees that the coordinator has asserted
ack[0], hence at the start of clock cycle 3 it de-asserts
req[0] to stop its request, and proceed on to the next state.
At the end of clock cycle 3, thread 1 finally gets a chance to
write to the array. The coordinator selects thread 1 as the next
write, asserts ack[1] and write data[1] to x[5][6]. At
the end of clock cycle 4, thread 1 sees that ack[1] is
asserted, hence at the start of clock cycle 5 it de-asserts
req[1] to stop requesting, and moves to the next state.

B. Dealing with control flows
Due to the differences in the paradigms, there is a need to

reduce control flows in the original C program into state
machine operations. This is illustrated by the following code
template:

1) Original C code

 if (a) then stmt1 else stmt2;

2) C-Breeze’s MIR code
 after dismantling

 If (a) then goto label1;
 goto label 2;
 label1:
 stmt1;
 goto label3;
 label2:
 stmt2;
 label 3:

3) Our modified MIR code
 after dismantling

 Label0: {
 if (a) then goto label1;
 else goto label2;
 }
 Label1: {
 stmt1;
 goto label3;
 }
 Label2: {
 stmt2;
 goto label3;
 }
 Label3:
 …….

4) Final VHDL code

 case state is
 when S0=>
 if (a) then
 state <= S1;
 else
 state <= S2;
 end if;
 when S1=>
 stmt1;
 state <= S3;
 when S2=>
 stmt2;
 state <= S3;
 when S3 =>
 ……..

C. Dealing with OpenMP pragmas
The subsections below give the details on how we dealt

with the OpenMP pragmas. In most cases, one-hot finite-state
machines are used.
 Each computational expression is assigned a state. When
the control FSM goes into that state, the logic circuit
implementing that expression will be executed. Currently, each
state only has one executing statement, but future optimization
efforts can greatly reduce the number of states so as to reduce
the clock cycles needed to run the program.

1) #pragma omp parallel
Each thread is implemented as a separate FSM, with the main
thread controlling the execution of its child threads. There is an
implicit barrier at the end of the parallel region. Currently a
parallel region is restricted to its static region; it does not apply
to functions called within a parallel region. Also, nested
parallelism is currently not supported.

2) #pragma omp for
This construct distributes the iteration of a for-loop across the
threads in a parallel region based on the schedule type
specified. Currently, unlike the Handel-C implementation,
only static schedule with a chunk size of one is implemented.
For a region of n threads, thread i gets the (I + n × j) iterations
of the loop where j = 0,1,2,3,…

3) #pragma omp sections
Each block of code is moved to its respective thread at compile
time, and since each thread has different sections of code, the
circuit generated for each thread is more compact than in the
case of duplicating all sections of the code for each thread and
testing which section should be executed for a specific thread
at run-time. There is an implicit barrier at the end of the
sections region.

4) #pragma omp single
In our implementation, the first thread which arrive at the
single construct will execute the single region. In the event that
two or more threads arrive at the single contruct in the
same clock cycle, the thread with the smaller thread number
will execute the single region. A coordinator performs this
selection.

5) #pragma omp critical
This is implemented in a similar manner as the single construct
except that every thread will get a turn to execute the code in
the critical region.

6) #pragma omp master
This construct specifies that a block of code is only executed
by the master thread. In our implementation, only the master
thread process contains this block of code, which means that
only one copy of the generated circuit exists.

7) #pragma omp atomic
This construct specifies that a storage location is updated
atomically.

#pragma omp atomic
x = x + expr

This is handled by transforming it into a critical section.

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

Number of Threads

Ex
ec

ut
io

n
Ti

m
e

(m
s)

OMP-Orig OMP-HC

Fig. 3. Parallel matrix multiply in Handel-C.

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8

Number of Threads

E
xe

cu
tio

n
Ti

m
e

(m
s)

OMP-Orig OMP-HC

Fig. 4. Parallel Sieve of Eratosthenes in Handel-C.

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8

Number of Threads

E
xe

cu
tio

n
Ti

m
e

(m
s)

OMP-Orig OMP-HC

Fig. 5. Parallel Mandelbrot in Handel-C.

8) #pragma omp barrier
This is implemented as a logical-and of a bit array. Threads

arriving at the barrier set its own bit to one, and test whether
the logical-and of the bit array is equal to 1 at every clock
cycle. Once the logical and is asserted, a thread will then set
its bit to 0 and proceed to the next state.

.

V. EXPERIMENTAL EVALUATION
Both Handel-C and VHDL implementation were tested on

the Celoxica RC100 FPGA development board [2]. The
RC100 board has a 200,000 gate Xilinx Spartan II FPGA, two
off-chip Synchronous Static RAM (SSRAM) banks, Flash
RAM, video decoder, video output subsystem as well as PS/2
ports for a keyboard and mouse. The board can be connected
to the host computer using a parallel port cable where parallel
port I/O can be performed between the host computer and the
board. The Celoxica and Xilinx tool chains were needed to
complete the synthesis and test cycles.

 As a comparison, we also executed the same
OpenMP code on a Sun Microsystem SunFire 4800 server.
This Symmetrical Multiprocessor machine has eight
UltraSPARC III 1.2-GHz processors and 8GB of shared
memory. The Sun C compiler supports OpenMP natively.
Optimizations were turned off. We believe this gives a fairer
picture as our OpenMP implementations do not do much
optimization at the moment either.

A. Performance of Handel-C Implementation
For the Handel-C implementation, we chose the matrix

multiply, summation, reduction, prime testing and Mandelbrot
set generation as our tests. Table III shows the actual
hardware resources utilized on the FPGA for each of our
Handel-C test programs. It shows the minimum clock period
achieved, maximum clock rate achieved as well as the number
of clock cycles used for program execution excluding clock
cycles used for I/O and the calculated execution time on the
FPGA.

For the parallel matrix multiply (see Fig. 3), we tested it on
a 62×15 by 15×7 array multiply. We were limited by the
resources of the RC100 board. The Handel-C implementation
achieved a speedup of 5.9 for 8 threads. The software
implementation, on the other hand, on the Sun server showed
a slight slowdown. In the summation tests, because of the use
of critical sections, the Handel-C implementation only
achieved a speedup of 1.14.

For the Sieves of Eratosthenes (Fig. 4), the Handel-C
implementation showed a speedup of about 14% while the
software OpenMP version showed a siginificant slow-down.

For Mandelbrot (Fig. 5), the speedups for Handel-C and the
software versions were 4.09 and 2.18, respectively.

B. Performance of VHDL Implementation
For the VHDL implementation, we included one more

benchmarks – the infinite impulse response filter. For the
other benchmarks, the results were similar as that for Handel-
C. Across the tests, we achieved clock speeds of around 23 to
45 MHz.

Table IV shows the execution time for the prime sieving
benchmarks. A fixed 20MHz clock was used in all the VHDL
designs.

Table V shows the execution time for the infinite impulse
filter benchmarks.

It should be pointed out that the aim of these tests is not to
show that hardware implementation will always be better. An

important caveat is that because of the sizes of our problems
are limited by the FPGA board we are working on, they
translate to communication and synchronization bound
programs on the Sun server. Therefore, the comparison is not
altogether fair for the software version. The tests do reveal
however, that (a) our implementation is correct; and (b) it is
physical evidence that the primary proposal of this paper,
namely the use of OpenMP as a high level hardware
description language is a feasible one.

TABLE IV

PARALLEL SIEVE OF ERATOSTHENES IN VHDL

No. of
threads

 VHDL
time
(ms)

OpenMP
time
(ms)

1 0.5725 0.283
2 0.4301 3.906
3 0.32985 7.976
4 0.26185 15.085
5 0.28485 22.461
6 0.28085 29.332
7 0.25285 36.841
8 0.24985 44.287

TABLE V

INFINITE IMPULSE FILTER IN VHDL

No. of
threads

Clock
period
(ms)

Clock
freq
(MHz)

VHDL
time
(ms)

OpenMP
time
(ms)

1 12.463 80.238 0.02085 0.184
2 14.95 66.89 0.0241 1.003
3 15.537 64.362 0.02435 1.64
4 23.195 43.113 0.02525 1.755
5 24.065 41.554 0.02395 2.945
6 26.677 37.485 0.0241 3.866

VI. RELATED WORKS
The need for high-level descriptions of hardware has been

recognized widely by the industry and academia [14]. The
hope is that this will enable reuse with the same ease as
software, resulting in greater productivity. Besides the very
popular Verilog and VHDL, several hardware description
languages based on Java [1], Lola [4], C [5], ML [6], and
Ruby [8] have been proposed. There are also new languages
like Pebble [9].

Dziurzanski and Beletskyy [3] first proposed the subseting
and extending OpenMP for the purpose of hardware
description. However, as far as we know, ours is the only
actual implementation of OpenMP as a high level hardware
description language via translations to Handel-C and VHDL.
We showed actual benchmarks using our implementations.

VII. CONCLUSION
In this paper, we proposed the use of OpenMP as a

hardware description language. OpenMP leverages on the idea
of “active comments” as the key to transit from sequential to
(shared-memory) parallel programs. An OpenMP program
should, in principle, compile and run transparently on a
sequential or a parallel processor. We believe that this is an
attractive philosophy for a medium grain, rapid prototyping
high level hardware description language. It is unlikely that an
OpenMP hardware description will yield the most optimal
hardware. But it helps speed up the process of obtaining a
working prototype, especially if there is already some
software counter-part. We hope that this will be a useful
addition to the repertoire of hardware description languages
available to hardware designers.

REFERENCES
[1] P. Bellows and B. Hutchings, “JHDL - an HDL for

recongurable systems", in Proc. FCCM98, IEEE Computer
Society Press, 1998.

[2] Celoxica Inc., The RC100 Hardware Reference Manual.

[3] P. Dziurzanski and V. Beletskyy, “Defining Synthesizable
OpenMP Directives and Clauses”, M. Bubak et al. (Eds.): ICCS
2004, LNCS 3038, pp. 398–407, 2004.

TABLE III.

ACTUAL HARDWARE RESOURCES REQUIRED BY HANDEL-C BENCHMARKS

Program Gates FFs LUTs Slices
Clock
Cycles

Clock
Period
(ns)

Clock
Rate
(MHz) Execution

omp_mm.hcc 46052 1363 4685 2350 327 46.123 21.681 0.015082
sumup.hcc 40911 1339 3953 2350 217 39.694 25.193 0.008613
sumup_reduce.hcc 42045 1440 4011 2350 187 40.236 24.853 0.007524
PrimesOMP.hcc 43714 756 4021 2350 466 79.472 12.853 0.037034
mandel.hcc 46793 809 4576 2350 16933 42.152 23.724 0.713749

[4] S. Gehring and S. Ludwig, “The Trianus system and its
application to custom computing”, in Field-Programmable
Logic, Smart Applications, New Paradigms and Compilers,
LNCS 1142, Springer, 1996.

[5] M. Gokhale and E. Gomersall, “High-Level compilation for
fine-grained FPGAs”, in Proc. FCCM97, IEEE Computer
Society Press, 1997.

[6] Y. Li and M. Leeser, “HML: an innovative hardware description
language and its translation to VHDL”, in Proc. CHDL'95,
1995.

[7] C. Lin, S. Z. Guyer, D. Jimenez. The C-Breeze Compiler
Infrastructure. TR-01-43, The University of Texas at Austin,
November, 2001.

[8] W. Luk, S. Guo, N. Shirazi and N. Zhuang, “A framework for
developing parametrised FPGA libraries”, in Field-
Programmable Logic, Smart Applications, New Paradigms and
Compilers, LNCS 1142, Springer, 1996.

[9] W. Luk and S. McKeever, “Pebble: a language for parametrised
and reconfigurable hardware design”, in Field-Programmable
Logic and Applications, R.W. Hartenstein and A. Keevallik
(editors), LNCS 1482, pp. 9-18, Springer, 1998.

[10] OpenMP. http://www.openmp.org.

[11] I. Page, “Constructing hardware-software systems from a single
description”. Journal of VLSI Signal Processing, 12(1), pp. 87-
107, 1996.

[12] D. L. Perry, VHDL, 2nd edition. McGraw-Hill series on
computer engineering) ; New York, 1994.

[13] C. Peters, “Overview: Hardware Compilation and the Handel-C
language”.
http://web.comlab.ox.ac.uk/oucl/work/christian.peter/overview_
handelc.html.

[14] R.A. Walker, R. Camposano, A Survey of High-Level Synthesis
Systems, Kluwer Academic Publishers, Boston, Ma, 1991.

