
Communications Infrastructure Generation for Modular FPGA
Reconfiguration

Author:
Koh, Shannon; Diessel, Oliver

Publication details:
Proceedings of the IEEE International Conference in Field Programmable
Technology '06
pp. 321-324
0780397282 (ISBN)

Event details:
IEEE International Conference in Field Programmable Technology
Bangkok, Thailand

Publication Date:
2006

Publisher DOI:
http://dx.doi.org/10.1109/FPT.2006.270338

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/39664 in https://
unsworks.unsw.edu.au on 2024-04-27

http://dx.doi.org/http://dx.doi.org/10.1109/FPT.2006.270338
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/39664
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au


Communications Infrastructure Generation for
Modular FPGA Reconfiguration

Shannon Koh and Oliver Diessel

School of Computer Science and Engineering
University of New South Wales, Sydney, Australia

Embedded, Real-Time, and Operating Systems (ERTOS) Program
National ICT Australia∗

{shannonk,odiessel}@cse.unsw.edu.au

Abstract— Modules that are swapped dynamically at run-time
on an FPGA have varying communication needs over time. In
order to support this, we aim to generate a wiring infrastructure
that caters for the dynamically-changing module interfaces. This,
however, imposes a regular structure for laying out modules
on a device, which may result in longer inter-module wiring
paths as compared to traditional methods where the netlists
are flattened. This paper studies placing modules within a
structured layout to compare resulting circuit speeds with those
obtained by traditional methods. Our results indicate that the
difference in critical path delay is high at very low utilisation,
but that the overhead is absorbed as the number of modules and
interconnection density increases to realistic levels. We conclude
that implementing such a wiring infrastructure has manageable
overheads while having the added advantage of being amenable
to dynamic reconfiguration.

I. INTRODUCTION

A. Overview

Module-based dynamic reconfiguration of FPGAs exploits
the on-going scaling of FPGA devices and allows the reuse
of smaller devices for economic reasons. However, dynamic
reconfiguration of modules is hindered by traditional logic-
placement methods that encourage the compaction of module
logic. This is because more data may have to be loaded
during reconfiguration than is necessary due to the nature of
reconfiguration mechanisms in FPGAs. In addition, as module
interfaces change over time, it is difficult to ensure that these
dynamically-placed modules can be connected effectively at
run-time. In order to overcome these barriers, we proposed
a regular module placement structure and a wiring harness
supporting the communications needs of dynamically-placed
modules in [1] (see Section I-C).

Implementing such a regular structure and wiring harness
may result in long routing paths being placed as compared to
traditional methods where logic is placed in optimal locations
freely about the device. In this paper, we outline an approach
to laying out module-based circuits to facilitate rapid recon-
figuration and assess the communication overheads that our
structured approach incurs.

B. Contributions

Our contributions in this paper are:

• We present our solution for placing modules into fixed
pages (amenable to dynamic reconfiguration) on a device
such that the wiring path lengths and channel width
are minimised. At present, this solution is for a single
configuration.

• We determine the communications overheads of im-
plementing a wiring infrastructure which supports the
communications needs of modules placed in these fixed
pages.

• We assess these results and show that the overheads can
be absorbed as the amount of connectivity increases to a
realistic level. This is also true as device sizes scale.

• We show how the solution for the case of a single
configuration forms the basis for the dynamic case where
there are multiple configurations.

C. The COMMA Methodology

In the following, we present an overview of the COMMA
methodology as previously described in [1]. We also state how
this relates to the experimental work assessed in this paper.

1) Implementation Target: We target the Xilinx Virtex-4
FPGAs, which have fixed-length, 41 quad-byte word config-
uration frames spanning 16 CLB rows (20 CLB rows for
Virtex-5). These are tiled about the device into independently
configurable pages that span half the device width, allowing
us to readily place modules as shown in Figure 1(a). Pages
can also be aggregated (e.g. M3) or sub-divided (e.g. M1 and
M2). External I/O banks (depicted as dark vertical bars) are
located towards the left and right edges of the device and in
the centre columns.

We have used the slot layout shown in Figure 1(b) for
our experiments. The dark area surrounding each slot is
reserved for the wiring harness which is customised to support
the commmunications needs of the modules. To take care
of different module interfaces, each module is connected to
the harness through thin wrappers (see “Reconfigurable Data
Ports” (RDPs) in [1]) that map logical module ports to selected
wiring paths in the wiring harness at reconfiguration time.

2) Design Flow: The COMMA methodology is embedded
within a module-oriented design flow as illustrated in Fig-
ure 2. The first step partitions an application into its natural



(a) XC4VLX15 pages (b) XC4VLX15 slot layout
Fig. 1. Device page and infrastructure layout diagrams.

Fig. 2. COMMA Design Flow

functional units of design, resulting in a communications
graph. In the next step, this graph is then scheduled into
a sequence of smaller graphs, each representing a single
configuration. A communications infrastructure consisting of
module placements, one or more wiring harnesses, RDPs
and slice macros is then generated in the “Communications
Infrastructure Generation” step, while taking care to minimise
reconfiguration delays by judiciously placing modules and
maximising wire reuse. This infrastructure is then merged with
the module logic as per the Xilinx Partial Reconfiguration
design flow [2], thereby generating the infrastructure (base)
and module bitstreams.

II. IMPLEMENTING A COMMUNICATIONS GRAPH

A. Problem Definition

The main problem tackled in this paper is to map a
single communications graph to a Virtex-4 FPGA organised
according to COMMA principles. The inputs to the problem
are a communications graph and the device layout (the device
size and channel width available for the wiring harness as
in Figure 1(b)). The output is a placement of the modules
into slots such that the wire availability given by the device
layout and wire resource model is not exceeded, and that
all propagation delays of the wires used to implement the
communications link are less than some maximum delay
D, the reciprocal of the desired operating frequency of the
application. These are represented as a mapping from modules
to slots, and a mapping from each arc in the communications
graph to a set of wire resources.

B. Implementation Flow

The implementation flow is a two-step process. The first
step assigns modules to slots using an Integer Linear Program
(ILP) applied twice as suggested by Fekete et al. in [3]. The
goal of the first ILP is to minimise the maximum number
T of wires interconnecting nonadjacent slots crossing each
horizontal dashed line in Figure 1(b). In the second step,
a placement is sought that minimises the maximum wire
distance subject to the constraint that no more than T wires
in total occupy the vertical channels between adjacent rows
of module slots. There are several differences between our
formulation and that of [3] — we model wires as leaving from
or arriving at the midpoints along the edges of slot boundaries;
we also model external I/O using actual IOB pin locations, and
do not include communications between adjacent modules as
these do not need to use vertically-aligned wires in the vertical
wiring channels.

In the second step (routing), slice macros are placed on
the slot boundaries and RDPs are generated to connect the
wires to the modules. The wires to be used to implement
the wiring harness are then finally selected. This could be
done using a custom router, or using some sort of FPGA
Editor script, or using ISE’s PAR tool. This follows on to
the “Module Mapping and Bitstream Generation” stage as
specified in Section I-C.2 and depicted in Figure 2.

C. Related Work

There are some other noteworthy approaches to supporting
communications for dynamic modules discussed in detail
in [1]. These invariably propose solutions for earlier device
families, or are viewed as impractical at present. To our
knowledge this is the first study of the runtime overheads of a
commmunications infrastructure for dynamic reconfiguration
of modules.

III. EXPERIMENTAL EVALUATION

A. Purpose of Evaluation

Placing modules according to COMMA principles may re-
sult in long wiring paths that are unavoidable (e.g. if there are 8



modules to be placed onto the device in Figure 1(b), there may
be an unavoidable routing path between, say, slot X0Y0 and
slot X1Y3). In contrast, if a general ISE flow were to be used,
the module logic would typically be flattened, distributed, and
placed in optimal locations on the device. To assess this, we
have created an automated testbench (targeted to the Virtex-
4 LX-15 as in Figure 1(b)) to place-and-route synthetic task
graphs. Since we are assessing inter-module routing paths, the
logic within the modules is not important. Using synthetic task
graphs allows many different communications scenarios to be
tested at this early stage of the work.

B. Experimental Setup

The following parameters were used: communication graphs
with 2, 4, 6 or 8 modules; graphs with 10%, 20%, 40% and
80% of the full module interconnection pattern (n × (n − 1)
edges); graphs in which 25%, 50%, 75% and 100% of the
modules have inputs from or outputs to IOBs. We define
the total external connectivity as the sum of the percentages
of modules having external inputs and external outputs. Arc
weights were chosen uniformly at random from the set { 2,
4, 8, 16 }. A co-located set of IOBs was chosen for each
external connection, but the sets were randomly distributed
about the IOB space. 10 graphs were generated per parameter
combination and the results averaged. Allowing for some
parameter combinations that did not make sense, over 2500
graph implementations were assessed.

As per Section II-B, each task graph was processed by
the ILP with an exhaustive in-house solver. The graph and
placement were then input to a VHDL generator to produce
thin modules (comprised of XOR gates), slice macros, and
slot placements. The code was then synthesised and placed-
and-routed. The maximum pin-to-pin delay, (i.e. the maximum
delay of the wiring harness) was obtained for both the general
ISE flow and the COMMA flow using the constraints described
in Section II.

C. Results

ISE usually obtained a lower delay, but sometimes COMMA
did better. This is expected since both flows use the heuristic
PAR tool. In analysing the results we found that the best
indicator of relative performance is the total number of wires
(interconnection density). For the range of module numbers
explored, Figure 3 illustrates the average increase in the
critical path delay of COMMA relative to ISE with respect
to percentage internal connectivity between the modules. The
plots suggest that the overheads are relatively high for low
interconnectivity and decrease as interconnectivity increases.

Figure 4 plots contour maps of the average critical path
delay for both ISE and COMMA against the number of wires
in the graph and the average wire length. The white region in
the upper right half of each map corresponds to a region for
which no data was obtained.

The average peak delay in both cases occurs at an average
wire length of 30 ± 5 CLBs and 490 ± 35 wires (5.134 ns
average critical path delay for ISE vs 5.174 ns for COMMA (<

Fig. 3. COMMA vs ISE Critical Path

(a) ISE delays (ns) (b) COMMA delays (ns)
Fig. 4. Critical path delay contours for ISE & COMMA.

1% overhead)). This is consistent with Figure 3 and indicates
that the overhead is absorbed at high interconnection densities.

The worst case average overhead for COMMA occurs at an
average wire length of 40±5 CLBs and a population of 350±
35 wires (ISE:3.344 ns, COMMA:4.651 ns (39% overhead)).
Although this relative overhead is high, the actual overhead
of 1.307 ns can be considered to be small in realistic FPGA
applications.

COMMA had an average overhead of 12.5% across all
the regions. This is a remarkably good result considering the
benefit of the COMMA approach is that modules are easily
replaced, whereas in the flattened ISE circuits, the modules are
difficult to efficiently reconfigure. The maps also indicate that
the COMMA wire delays increase more gradually than ISE
with increasing interconnection density. This is likely due to
the imposed regularity and explains the relative improvement
with higher interconnectivity observed in Figure 3.

We believe the reason for these observations is that ISE is
free to place module logic and module pins as close as possible
to communicating peers and IOBs. COMMA, however, is
constrained to placing module logic within the slots and slice
macros on the slot boundaries. This, and the fact that the IOB
sets were randomly distributed, forced COMMA to implement



long wiring paths irrespective of its slot location. The ISE
(left) and COMMA (right) circuits in Figure 5(a) illustrate
such an example. The overhead here was significant (2.235
ns critical path delay for ISE vs 4.992 ns for COMMA).
The smaller figures on the right of the two circuits show the

(a) High Overhead

(b) COMMA Surpassing ISE
Fig. 5. Circuit Examples

longest paths for ISE (top) and COMMA (bottom). We can
see that for COMMA the longest path connects a module at
slot X1Y0 to an IOB on the top left of the device. This is
a graph with 8 modules, low internal connectivity (10%) and
high total external connectivity (150%). All the slots were used
and COMMA had no choice but to place the module at slot
X1Y0, thereby yielding this expected result.

In contrast, the circuits in Figure 5(b) depict an example
where the COMMA layout (figure right) was significantly bet-
ter (8 modules, 80% internal connectivity, 125% total external
connectivity; results: ISE:5.243 ns, COMMA:3.339 ns). The
longest path in the COMMA circuit is again an external I/O
connection and that for the ISE circuit is also again a module-
to-module connection. In this case, the COMMA structure
allows longer wires to be used to good effect, whereas ISE
needs to employ several shorter wires to route around the
heuristically-placed module logic.

In conclusion, we deduce the longest path for COMMA,
given sufficient channel width, should be the sum of the full
width and height of the FPGA. This delay may be lower than
a local minimum found in ISE, and is usually due to the
fixed locations of IOBs or relative module placements. As the
number of nets increase, we believe that this overhead becomes

insignificant as routing algorithms struggle to find shorter
paths and opportunities for logic replication are diminished.

D. Implications on Device Scaling

With the organisation of Figure 1(b), the slot sizes grow
in width as we consider larger devices. This means we
could pack more logic into a single module and thereby
reduce intermodule communication. Larger devices also offer a
greater number of configuration “pages” and thus more slots,
accommodating larger applications with more modules and
thus more intermodule wires. Our results suggest COMMA
will perform well under such conditions. There may be longer
paths to external IOBs, but these may be mitigated by co-
locating a module’s external connections and trying to pack
modules with closely located IOBs into the same slot. Alterna-
tive slot/channel organisations may also help. The additional
resource availability provides more opportunities for ISE to
replicate and place logic in good locations, while longer wiring
paths in COMMA will lead to greater wire delays, but this
effect could be mitigated with suitable buffering of COMMA
interconnections.

IV. CONCLUSION AND FURTHER WORK

In this paper we presented our method for automatically
generating a communications infrastructure to suit a page-
oriented layout of modularised circuits. The method employs
an ILP to place the modules and ISE to route the inter-
connections between module ports and external IOBs. We
have determined the runtime overheads of using the generated
infrastructure, and have assessed our results with synthetic
communications graphs. We observed an additional critical
path delay that is significant at low utilisation, but which
decreases as module and interconnection densities rise. As the
number of modules, module sizes and interconnections densi-
ties reach realistic levels, we believe these overheads become
insignificant and are more than offset by the reconfiguration
benefits of separating module logic from intermodule wiring
paths.

The goal of dynamically reconfigurable applications is to
generate a wiring infrastructure that supports a sequence of
graphs representing the temporally active module configura-
tions with minimum reconfiguration overheads. Techniques for
achieving this goal are currently being developed.

∗ACKNOWLEDGEMENTS

National ICT Australia is funded through the Australian Gov-
ernment’s Backing Australia’s Ability initiative, in part through the
Australian Research Council.

REFERENCES

[1] S. Koh and O. Diessel, “COMMA: A communications methodology for
dynamic module-based reconfiguration of FPGAs,” in 19th International
Conference on Architecture of Computing Systems (ARCS), Workshop
Proceedings, 2006, pp. 173–182.

[2] Xilinx, “Early access partial reconfiguration user guide,” Xilinx Inc.,
Xilinx User Guide UG208, 2006.

[3] S. Fekete, J. van der Veen, M. Majer, and J. Teich, “Minimizing
communication cost for reconfigurable slot modules,” in FPL, 2006.


	Introduction
	Overview
	Contributions
	The COMMA Methodology
	Implementation Target
	Design Flow


	Implementing a Communications Graph
	Problem Definition
	Implementation Flow
	Related Work

	Experimental Evaluation
	Purpose of Evaluation
	Experimental Setup
	Results
	Implications on Device Scaling

	Conclusion and Further Work
	References

