FPGA Implementation of a Statically Reconfigurable Java
Environment for Embedded Systems

Shinsuke Nino Takayuki Mori

YoungHun Ko

Yuichiro Shibata Kiyoshi Oguri

Department of Computer and Information Sciences, Nagasaki University
1-14 Bunkyo-machi Nagasaki 852-8521, Japan
E-mail: {nino,mori,younghun shibata,oguri}@pca.cis.nagasaki-u.ac.jp

Abstract

A demand for low power and high performance Java
environments is now growing in the embedded systems
field. One approach is dedicated Java processors which
directly execute Java bytecode. We have proposed a novel
reconfigurable Java environment which consists of a gen-
eral purpose core processor with configurable bytecode
processing units, a bytecode compiler, and a software
Java Virtual Machine (JVM). This paper discusses de-
sign of a memory system for the reconfigurable Java ar-
chitecture focusing on a hardware custom stack. Em-
pirical evaluation using prototype systems reveals that
adding a 2-word hardware stack shows the best results,
achieving the performance enhancement of up to 15.9%
compared to software execution.

1 Introduction

Java is widely used for embedded systems such as mo-
bile phones and PDAs. Although one of the benefits of
using Java is its portability, this platform-independent
model is also disadvantageous in terms of execution
speed. While the increase in the microprocessor clock
frequency has been alleviating this disadvantage for
desktop computers, a demand for high performance and
low power Java environments is still growing in the field
of embedded systems. Reconfigurable computing is one
of the most promising approach to this problem([1, 2].

Our proposed Java environment[3] system consists of
an FPGA-based statically reconfigurable core processor
with bytecode processing hardware for custom instruc-
tions, a bytecode compiler, and a software JVM[4]. A
given class file is analyzed and modified to utilize cus-
tom instructions by the bytecode compiler. At the same
time, hardware modules for the required custom instruc-
tions are generated and the core processor is tailored to
the given class file. The modified class file is interpreted
by the software JVM which runs on the customized pro-
cessor configured on the FPGA. Static reconfigurability
of FPGAs and custom instructions that are directly ex-
ecuted by the dedicated hardware enable a high-speed
Java processing environment at a reasonable hardware

1-4244-1471-7/07/$25.00 © 2007 IEEE

cost, compared to a normal software JVM environment.

Obviously, design of memory structure is a key to
this approach in terms of architecture. Since Java byte-
codes inherently have frequent access to stack structure,
a provision of a hard-wired custom stack in the FPGA
would be effective. However, full hardware implementa-
tion of the Java stack is costly and causes a large over-
head of data consistency process with the memory. In
this paper, performance impacts and hardware costs of
a custom stack are empirically evaluated with several
prototype systems, so that efficient stack structure for a
reconfigurable Java environment is revealed.

The rest of the paper is organized as follows. In Sec-
tion2, an overview of the proposed Java environment
is described. In Section3 and Section4, the prototype
system is presented in detail in terms of hardware and
software. After evaluation results are shown and dis-
cussed in Section 5, the paper is concluded in Section 6.

2 OQOverview of the environment

The heart of hardware of the proposed Java envi-
ronment is a customizable MIPS-based RISC processor
configured on an FPGA, to which desired custom in-
structions can easily be added. Hardware direct execu-
tion of frequently used bytecodes is carried out by the
added custom instruction hardware modules. In addi-
tion, convectional optimization techniques such as byte-
code folding [5] can also be used to make a new single
custom instruction which executes a series of processes
for multiple bytecodes to boost the performance. Since
JVMs are stack machines, the frequency of stack access
is inherently high. A provision of a hard-wired custom
stack in the FPGA is an effective approach to mitigate
the stack access overhead.

Figure 1 shows an overview of the proposed Java en-
vironment. An execution flow on this system is as fol-
lows. At first, a class file to be executed is analyzed
by the bytecode compiler. Then, the byte compiler re-
places some of the bytecodes in the class file with custom
instruction codes. The compiler also generates Verilog-
HDL files for the instruction modules corresponding to

FPT 2007

Optimized
Class files Bytecode compiler &—p class files

——
Software
JVM | execution Degods

= 1 3
= j d =

MIPS instruction Custom instruction | |

execution execution :

Core processor {

Figure 1: Overview of the proposed system

the inserted custom instructions. The bytecode decod-
ing functions of the JVM are also modified so as to sup-
port the custom instructions. The instruction codes for
the custom instructions are assigned from the reserved
instruction space of the MIPS architecture and the JVM
issues these instructions via inline assembly. The other
original bytecodes are processed with a sequence of nor-
mal MIPS instructions.

3 Hardware design

We have implemented an original core processor for
executing a JVM on an FPGA. The interface of custom
instruction modules is designed not to disturb a normal
instruction flow in the main pipeline. In addition, a
custom stack and a stack controller are provided to store
the data that are frequently accessed by Java programs.
3.1 Core processor and caches

The architecture of the core processor is based on the
32-bit five-stage pipelined MIPS R3000, which has 32
general purpose registers as well as some special regis-
ters. Figure2 shows a conceptual diagram of the core
processor. A special decoder for custom instructions is
reconfigurable and attached in the instruction decode
(ID) stage of the main pipeline.

Core processor y |
IF ID EX ’_UEM WB
Special I
Decoder
Stack Resister
controller I’—’ stack

Figure 2: Core processor with custom instruction mod-
ules

In the FPGA, a couple of single level direct mapped
write-back caches for instruction and data, each of which
has a capacity of 4KB, are provided.

3.2 Custom stack

A custom stack is a technique to speedup stack ac-
cess by caching some stack entries in hardware registers.
Also, the custom stack provides a wide data bandwidth
for custom instructions by allowing to access multiple

318

stack entries at the same time. Figure 3 shows the struc-
ture of custom stack.

Access to the custom stack is managed by a stack con-
troller. To keep consistency to the original stack on the
main memory, the stack controller initiates memory ac-
cess when the value of the stack pointer is updated. This
transaction can be overlapped with process of normal
instructions of the core processor, but following stack
access is stalled until the transaction is completed.

Memory region
L]
k)

-

Stack painter

4

.
-

e

%

Custom stack

Stack [3]

Custom Stack (3]

Stack [2]

e

Custom Stack [2]
Custom Stack [1]

-~

Stack [1]

-~

Custom Stack [0) Stack {0]

Pr

Figure 3: Structure of the custom stack

Core processor

memory

Stack
controller

Resister stack

Stack
access,

memory
access

Figure 4: Structure of the stack controller

Figure4 shows the structure of the stack controller.
The stack controller supports the following three oper-
ations.

1. Data access: If data requested by the processor is
in the custom stack, the stack controller gives the
corresponding data to the processor. Otherwise the
controller accesses the cache.

Stack set: This operation fills the custom stack with
the upper data of the original stack in the memory.

Stack data manipulation: Some Java bytecodes re-
quire to manipulate stack data. An example is a
swap operation of the top two entries of the stack.
3.3 Custom instructions

When a software JVM processes a single bytecode,
a bunch of native MIPS instructions are executed. For
example, even a simple bytecode such as addition on
stack data requires the following processes.

1. Stack data on the main memory are popped out
and stored in the registers for arithmetic.

2. The arithmetic operation is performed on the reg-
istered data.
3. The result value is pushed back into the stack struc-
ture on the main memory.
To reduce the time required for the stack data opera-
tions, custom instructions are introduced in the proces-
sor. This combines the above mentioned processes into
a single custom instruction. Figure5 shows the effect
of using a custom instruction in stead of a sequence of
native MIPS instructions. Currently, our processor sup-
ports custom instructions for arithmetic on stack data,
that is, IADD, ISUB, IOR, IXOR, ISHR, ISHL, and
IUSHR.

w v0,-8(s2)

Iw v1,-4(s2)

nop

addu v0,v0,v1
sw v0,-8(s2)
addiu 52,52,-4
08002bb6 j aed8 (+0x2bec)
26730001 addiu s3,s3,1

Traditional iadd order

F8e42ma

| Bed3tftc
| 00000000
| 00431021
| aed2fff8

6000020 0Xx6¢000020
| 08002b23 jac8c (+0x229a0)
26730001 addiu s3,53,1

5 instruction
reduction !

2652t ffc

Gustom iadd order /g

Figure 5: An example use of custom instructions

4 Software environments
4.1 Waba

Waba [6] is a lightweight Java virtual machine mainly
developed for portable devices. Since the grammar of
Waba is completely a subset of that of Java, Waba pro-
grams can be developed using standard programming
tools for Java. In order to optimize the execution perfor-
mance for portable devices, functionalities that are not
frequently used for these devices are omitted in Waba.

Operation cords supported by Waba are a set of Java
standard operation cords except for those related to ex-
ceptions and threads. The Waba virtual machine does
not support 64-bit data types (long and double), the
quick operation and the reserved operation. The Waba
virtual machine were easily ported to our processor to-
gether with the Red Hat newlib standard library.

Our modification to the original Waba virtual ma-
chine allows to execute custom instructions which are
directly processed by the processor. Using GCC inline
assembly as shown in Figure 6, machine codes for cus-
tom instructions are inserted.

case OP_iadd:
asm(”.word 0x6c000020");
pct+;
break;

Figure 6: Use of a custom instruction in source code

4.2 A bytecode compiler

In order to enable bytecode execution with custom in-
structions, given class files must be modified. Therefore,
we have developed a bytecode compiler using the Byte
Code Engineering Library (BCEL)[7] by the Jakarta
project which provides an easy-to-use API to bytecodes
in class files.

319

The bytecode compiler analyzes a given class file and
replaces targets codes with new custom bytecodes us-
ing the undefined bytecode space of Java. Use of some
conventional optimization techniques such as instruction
folding [5] are partially supported at present.

The compiler also generates Verilog-HDL files for ad-
ditional functional units which are required to execute
the custom instructions that are used in the given class
files. To keep the hardware cost of the processor core
low, only enough circuits to execute the given class files
are generated. In other words, structure of the processor
core can be statically tailored to each class file.

5 Evaluation
5.1 Hardware costs

We have implemented four prototype architectures
parameterizing the number of entries of the custom
stack. The base architecture only supports normal soft-
ware execution. On the other hand, the hard2, hard{,
and hard8 architectures provide 2, 4, and 8-word cus-
tom stacks, respectively, enabling bytecode processing
by custom instructions. Here, the word size is 4 bytes
for all the architectures. Eight simple arithmetic in-
structions are implemented as custom instructions as
described in Section 3.3.

Table 1 shows the implementation results of these ar-
chitectures. The target device is Xilinx Virtex-II Pro
XC2VP7, and ise-8.2i is used for synthesis and place-
and-route processing.

By adding custom instruction units and the custom
stack hardware, 18 to 28% of FPGA slices are increased.
In addition, the operational frequency is degraded by
14 to 15%. The stack controller between the processor
and the memory gave a critical path. Therefore, the
frequency was independent on the number of entries of
the custom stack.

Table 1: Implementation results
name | slices FFs | 4input LUTs | frequency
base 3086 | 1920 5829 | 52.95MHz
hard2 | 3646 | 2034 6910 | 45.07MHz
hard4 | 3724 | 2105 7067 | 45.07MHz
hard8 | 3963 | 2250 7525 | 45.47MHz

5.2 Breakdown of bytecodes executed

Here, effects of the proposed architecture are evalu-
ated using four benchmark program; FFT, DCT, MD5
and SHA-1. Figure 7 shows frequency of bytecodes exe-
cuted for each benchmark program. The bytecode group
that treats the stack, that is, the load, arithmetic, store,
and constant push account for a large percentage of the
total bytecodes executed. Since load instructions also
require local variables as well as the stack data, they
are not targets of custom instructions at present. Al-
though Figure7 suggests a merit of hardware execution
of these instructions, this would cause a large increase in
hardware and would require another detailed trade-off
analysis.

88 load

B arithmetic

| constant push
store

M field operation

50

Figure 7: Frequency of bytecodes executed

Figure8 illustrates the frequency of the aforemen-
tioned eight custom bytecodes executed for each bench-
mark program. On average, 14.4% of the bytecodes were
executed using custom instructions on the core proces-
sor.

% jushr

B ishr
ishl

B ixor

ior

iand
‘ B isub
| §¥iadd

15

Figure 8: Frequency of custom bytecodes

20i%)

5.3 Performance evaluation

Execution performance of the benchmark programs
on the prototype system is measured and summarized
in Figure9, where the data are normalized to the base
architecture. Access latencies for the custom stack and
the cache are 1 and 2 clock cycles, respectively, while
access to the main memory requires 15 clock cycles.

The best performance gain of 15.9% was achieved by
DCT for the hard2 architecture. Since the DCT pro-
gram is dominated by ALU arithmetic operations which
can be processed with custom instructions and the cus-
tom stack, performance improvement for this applica-
tion is relatively high. FFT also improves the perfor-
mance by 10%. However, the effect of the custom stack
for MD5 and SHA-1 is not very clear.

MD5 and SHA1 have a small number of bytecode in-
structions, and this would be a factor in exposing an
overhead of the bytecode processing. However, increas-
ing in supported custom instructions including instruc-
tion folding can cancel this overhead to some extent, by
making the best use of a wide bandwidth to the custom
stack.

In terms of the number of entries of the custom stack,

320

@
>

~ B base
i hard2
hard4
hardg

relative performance
o =
- o

o
N

MD5
Figure 9: Performance comparison

FFT DCT SHA-1

the 2-word stack (hard2) showed the best performance
in all the evaluated architectures. This is attributed to
the following two reasons. First, access of the virtual
machine is generally concentrated to the upper part of
the stack. Therefore, the number of entries required
to speedup the stack access is essentially small. Second,
our stack controller accesses the data cache whenever the
value of the stack pointer is changed in order to keep the
consistency. Since this overhead grows proportionally
to the stack size, the 8-word stack (hard8) degrades the
performance compared to the small size custom stacks.

6 Conclusion

In this paper, we presented a cost-effective Java
framework using static reconfigurability of FPGAs fo-
cusing design of a hardware stack. Empirical evaluation
based on the prototype systems revealed that adding a
2-word hardware stack showed the best results, achiev-
ing the performance enhancement of 15.9% in spite of
some optimization techniques such as instruction fold-
ing had not been implemented yet. Our future work in-
cludes supporting more custom instructions, supporting
instruction folding, introducing of additional registers
for storing local variables, and evaluation using larger
benchmark applications.

References

[1] M. Schoeberl, “Evaluation of a Java processor,” Tagungsband
Austrochip 2005, pp. 127-134, Oct. 2005.
[2] J.Kreuzinger, U.Brinkschulte, M.Pfeffer, S.Uhrig, and

T.Ungerer, “Real-time event-handling and scheduling on a
multithreaded Java microcontroller,” Microprocessors and
Microsystems, vol. 27, no. 1, pp. 19-31, 2003.

S. Nino, J. Sakamoto, T. Mori, Y. Shibata, and K. Oguri,
“A reconfigurable Java environment for embedded systems,”
Proc. COOL Chips, p. 189, Apr. 2006.

T.Lindholm and F.Uellim, The Java Virtual Machine Specifi-
cation, 2nd ed. Prentice Hall PTR, 1999.

L.-R. Ton, L.-C. Chang, M.-F. Kao, H.-M. Tseng, S.-S. Shang,
R.-L. Ma, D.-C. Wang, and C.-P. Chung, “Instruction folding
in Java processor,” Proc. ICPADS, pp. 138-143, 1997.

[6] “Wabasoft,” http://www.wabasoft.com/.
[7] “Jakarta BCEL,” http://jakarta.apache.org/bcel/.

3]

4
[5]

	01
	02
	03
	04

