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Abstract

The constrained operating environments of many FPGA-

based embedded systems require flexible security that can

be configured to minimize the impact on FPGA area and

power consumption. In this paper, a security approach for

external memory in FPGA-based embedded systems that ex-

ploits FPGA configurability is presented. Our FPGA-based

security core provides both confidentiality and integrity for

data stored externally to an FPGA which is accessed by a

processor on the FPGA chip. The benefits of our security

core are demonstrated using four embedded applications

implemented on a Stratix II device. Each application re-

quires a collection of tasks with varying memory security re-

quirements. Our security core is used in conjunction with a

NIOS II soft processor running the MicroC/OS II operating

system. An average memory and energy savings of about

64% and 16%, respectively, is achieved for the four applica-

tions versus a non-configurable, uniform security approach.

1 Introduction

FPGAs are quickly becoming ubiquitous components in

many low-cost embedded systems. These systems often

contain little more than an FPGA, external memory, I/O

ports, and interfaces to sensors and monitors. In addition to

standard concerns regarding system performance and power

consumption, security has become a leading issue for many

embedded applications. Although the programmed contents

of FPGAs are frequently protected with bitstream encryp-

tion [13], external memory transfers can easily be observed

and may reveal important application information. Some

memory protection can be provided by simply encrypting

data prior to external memory transfer. Although data en-

cryption techniques are widely known and used, simply

modifying the values of data and instructions is generally

thought to be insufficient to provide full protection against

information leakage [2].

An important aspect of FPGA-based systems that distin-

guishes them from their ASIC-based counterparts is their

ability to exactly meet designer hardware requirements on

a per application basis. This flexibility has been shown

to reduce application power consumption and improve sys-

tem performance for a variety of FPGA-based systems [10].

However, the implementation of specific security policies in

FPGAs [3] has only recently received attention. As FPGA

use in embedded systems grows, the need to efficiently im-

plement security protocols that can be easily updated be-

comes important.

In this paper, we describe a new FPGA-based approach

which provides security to off-chip instruction and data ac-

cesses made by a processor on the FPGA chip (soft or hard

core). A hardware-based security core determines the ap-

propriate data security level as memory accesses occur in

conjunction with an embedded real-time operating system.

Our approach allows for the optimization of security core

size on a per application basis based on memory footprint

and security level requirements. The implementation has

been parameterized to allow for straightforward adaptation

to a variety of applications. To demonstrate the effective-

ness of our approach, we implement four versions of the

core with four different multi-task applications, each requir-

ing different mixes of security levels. These designs have

been tested using an Altera NIOS II soft processor [1] on a

Stratix II based prototyping board. The NIOS II runs the

MicroC/OS II operating system [5] to schedule tasks for

each application. The new approach is optimized for FP-

GAs, which allow secure dynamic reconfiguration via an

encrypted bitstream versus ASICs which have a fixed con-

figuration.

The paper is organized as follows. Section 2 describes

data security issues for embedded systems and previous ap-

proaches to address memory protection. Section 3 provides

details of our security core. In Section 4 we describe the

integration of our core with NIOS II and its use with four

embedded applications. A description and analysis of ex-

perimental results are provided in Section 5. Section 6 con-

cludes the paper.



PE-ICE [4] XOM [6] AEGIS [8]

Software execution loss 50% >50% >50%

External memory increase 50% 50% >50%

Security level 1/2
32

1/2
128 or 1/2

160
1/2

160

Table 1: Security and performance levels for memory protection

2 Background

2.1 Embedded System Memory Threats

The external memory of an embedded system can face a

variety of attacks [4] resulting from either the probing of the

interface between a processor and the memory or physical

attacks on the memory itself (fault injection). Bus probing

results in the collection of address and data values which

can be used to uncover processor behavior. The encryp-

tion of data values using algorithms such as the Advanced

Encryption Standard (AES) or Triple Data Encryption Stan-

dard (3DES) prior to their external transfer guarantees data

confidentiality. Data encrypted with these algorithms can-

not be retrieved without the associated key. However, even

encrypted data and their associated addresses leave mem-

ory values vulnerable to attack. Well-known attacks [4] in-

clude spoofing, relocation, and replay attacks. A spoofing

attack occurs when an attacker places a random data value

in memory, causing the system to malfunction. A reloca-

tion attack occurs when a valid data value is copied to one

or more additional memory locations. A replay attack oc-

curs when a data value which was previously stored in a

memory location is substituted for a new data value which

overwrote the old location. For all three cases, it may be

possible for an embedded system to successfully decrypt

data, but system behavior will be negatively impacted. Pro-

cessor instructions are particularly vulnerable to relocation

attacks since specific instruction sequences can be repeated

in an effort to force a system to a specific state. Specific ap-

proaches that maintain the integrity of data from these types

of attacks are needed to secure embedded systems. Integrity

checking guarantees that a data value has not been altered

during storage or transfer. Like many previous efforts, our

threat model does not consider side channel or fault injec-

tion attacks on a trusted region of a chip. These attacks can

be addressed with alternate countermeasures.

2.2 Related Work

A number of techniques have been developed that pro-

vide data confidentiality and integrity in processor-based

systems. For these systems [4] [6] [8] [9], confidentiality

is provided via data encryption using AES or 3DES. Data

is encrypted prior to off-chip transfer and decrypted follow-

ing data retrieval from memory. Data integrity is typically

maintained by hashing data values in a hierachical fashion

[4] [6] [8] [9]. The security level of these schemes measures

the likelihood that an attacker could break the provided in-

tegrity using a changed data value that could pass the in-

tegrity check. Even though these solutions have been shown

Hardware Security Core

SMM

Ca
ch

e m
em

or
y

processor

AES-TASC
unit

Time stamp
memory

IC
unit

IC tag
memory

Logic control

Task 2 code

Task n code

Task 1 code

OS code

Task 3 code

Task 2 stack

Task n stack
Task 3 stack

OS data
Task 1 stack

No protectionConfidentiality onlyConfidentiality & integrity
Memory security level

Figure 1: Memory security system overview

to be effective, the cost of security can be high in terms of

secure off-chip memory space needed to store hash and tag

values for each data item and increased read latency due to

integrity checking. As summarized in Table 1, performance

and off-chip memory overheads involved can often be 50%

or higher, constraining embedded systems. On-chip mem-

ory usage for these approaches is not significant.

A distinguishing feature of our new low-overhead ap-

proach is its ability to offer configurable data security lev-

els for different tasks in the same application. The confi-

dentiality and integrity approach in AEGIS [9] most closely

matches our approach. AEGIS also allows for the selection

of different security levels for different portions of mem-

ory. This memory mapping must be identified during com-

pilation and new instructions are added to the processor for

operating system use. These instructions take advantage of

hardware security primitives to enter and access OS ker-

nel primitives. Overall, this approach adds complexity to

both the processor architecture and the operating system.

Although it appears that other data confidentiality and in-

tegrity approaches [4] [6] could be easily extended to mul-

tiple tasks, selective security based on memory addresses

has not been reported for them.

The scope of our work is limited by the same threat

model assumed by the earlier approaches. Our approach

targets replay, relocation, and spoofing attacks. We assume

that the FPGA is physically secure from attack and has been

properly configured.

3 Memory Security Architecture

Our approach, shown in Figure 1, relies on a hardware

security core (HSC) fashioned from FPGA logic and em-

bedded memory which is able to manage different security

levels depending on the data address received from the pro-

cessor. A small lookup table (the security memory map or

SMM) is included in the core to store the security level of

memory segments accessed by tasks. Three security lev-

els are possible for each memory segment: confidentiality-

only, confidentiality and integrity, or no security. The im-

plementation of the security policy in the SMM is indepen-

dent of the processor and associated operating system. The



configuration of the SMM and the rest of the core is con-

tained in the encrypted FPGA bitstream. The isolation of

the SMM makes it secure from software modification at the

expense of software-level flexibility. New multi-task ap-

plications require a new FPGA bitstream to achieve a new

memory security protocol.

3.1 Security Level Management

The increased use of soft and hard-core processors in FP-

GAs has facilitated the use of operating systems in FPGA-

based systems. The use of an OS provides a natural par-

titioning of application code and data. Based on this par-

titioning, developers can specify a desired security parti-

tioning for each. In Figure 1, the application instructions

and stack data of Task 1 have different security levels. In

this case, the application designer may wish to keep task

processor data secure to prevent copying. The application

code may be less sensitive, eliminating a need for security.

Our approach is designed to be used in conjunction with a

memory management unit (MMU). This unit ensures that

a task will not read or write memory segments that are not

associated with it, creating a security risk if security lev-

els differ. The availability of configurable security levels

provides a benefit over requiring all memory to perform

at the highest security level of confidentiality and integrity

checking. The amount of on-chip memory required to store

tags for integrity checking can be reduced if only external

memory that requires security is protected. Additionally,

the latency and dynamic power of unprotected memory ac-

cesses is minimized since unneeded security processing is

avoided. FPGA reconfigurability allows for the optimiza-

tion of the required on-chip storage and modification via a

new bitstream.

3.2 Memory Security Core Architecture

Our FPGA core for management of memory security lev-

els is an extension of a preliminary version [11] [12] which

provides uniform security for all tasks and memory seg-

ments and uses one-time pad (OTP) operations [8] for confi-

dentiality and cyclic redundancy checks (CRC) for integrity

checking. The linearity of CRC operations has been found

to expose data to integrity check failures in some cases.

Confidentiality in our new system is similar to the AES-

based encryption scheme called Binary Additive Stream Ci-

pher [7]. Rather than encrypting write data directly, our

approach first generates a keystream using AES, which op-

erates using a secret key stored in the FPGA bitstream. In

our implementation, a time stamp value, the data address,

and the segment ID of the write data are used as input to

an AES encryption circuit to generate the keystream. This

keystream is then XORed with the data to generate cipher-

text which can be transferred outside the FPGA. The time

stamp is incremented during each cache line write. The

same segment ID is used for all cache lines belonging to

a particular application segment. The benefit of the AES-

TASC (AES in time address segment counter mode) ap-

proach versus direct data encryption of the write data can

be seen during data reads. The keystream generation can

start immediately after the read address is known for read

accesses. After the data is retrieved, a simple, fast XOR

operation is needed to recover the plaintext. If direct data

encryption was used, the decryption process would require

many FPGA cycles after the encrypted data arrives at the

FPGA. Thus, the use of AES-TASC significantly reduces

the read latency of security. One limitation of this approach

is a need to store the time stamp (TS) values for each data

value (usually a cache line) in on-chip storage so it can be

used later to verify data reads. A high-level view of the

placement of security blocks is seen in Figure 1.

A step-by-step description of AES-TASC protected data

reads and writes are shown in Algorithm 1 (steps 2-4) and

Algorithm 2 (steps 1, 3, 5). From a security standpoint,

it is essential that the keystream applied to encrypt data is

used only one time. Since the keystream is obtained with

AES, the AES inputs also need to be used just one time. If

the same keystream is used several times, information leak-

age may occur since an attacker may be able to determine

if data encrypted with the same keystream have the same

values. The use of the data memory address in the gen-

eration of the keystream (Figure 2) protects the data value

from relocation attacks. To prevent replay attacks, a simple

time stamp generator, such as a counter, is used. As shown

in Algorithm 1, the TS value associated with each data ad-

dress is incremented by 1 after each write to the memory.

For each new cache line memory write request, the system

will compute a different keystream since the value of TS is

incremented. During a read, the original TS value is used

for comparative purposes (Algorithm 2). The retrieved TS

value is provided to AES during the read request. The AES

result will give the same keystream as the one produced for

the write request and the encrypted data will become plain-

text after being XORed (Algorithm 2, step 5).

Algorithm 1 - Cache memory write request:

1 − Integrity tag computation : IC tag =

IC AES {plaintext}

2 − T ime stamp incrementation : TS = TS + 1

3 − Keystream = AES {TS, address,Segment ID}

4 − Ciphertext = plaintext ⊕ keystream

5 − Ciphertext ⇒ external memory

6 − T ime stamp storage : TS ⇒ TS memory

7 − Integrity tag storage : IC tag ⇒ IC memory

Read-only data, such as processor instructions, do not

require protection from replay attacks because these data
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Figure 2: Hardware Security Core architecture

are never modified. No TS values are needed for these data

so the amount of on-chip TS memory space can be reduced

accordingly. Read-only data may be the target of relocation

attacks but the address used to compute the AES-TASC

guarantees protection against these attacks. The use of

time stamps and data addresses for AES-TASC protects

read/write data against replay and relocation attacks. If

a data value is replayed, the TS used for ciphering will

differ from the one used for deciphering. If a data value

is relocated, its address will differ from the one used to

generate the keystream. In both cases, the deciphered data

will be invalid.

Algorithm 2 - Cache memory read request:

1 − TS loading : TS ⇐ TS memory

2 − IC tag loading : IC tag ⇐ IC tag memory

3 − Keystream = AES {TS, address, Segment ID}

4 − Ciphertext loading : Ciphertext ⇐ external memory

5 − Deciphered data = Ciphertext ⊕ keystream

6 − Integrity checking : IC tag =

IC AES {Deciphered data}

7 − Deciphered data ⇒ cache memory

The need for unique time stamps creates a problem if the

time stamp generation counter rolls over and starts reusing

previously-issued time stamps. A typical solution to this

issue involves the reencryption of stored data with new time

stamps [14]. Recently, an AES-TASC solution which uses

multiple time stamp generator counters [14] was proposed.

If a time stamp counter reaches its maximum value, only

about half the data must be reencrypted. With our security
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approach, the same idea can be applied based on segment

IDs. If a times tamp associated with a segment rolls over,

the segment ID value is incremented. All the data included

in the segment are reencrypted with the new segment ID

value. The use of the segment ID in keystream generation

helps avoid the issue of matching time stamp values in this

case. If reencryption due to counter rollover is needed, only

a portion of the external memory is affected. This feature

can help reduce the down time of an embedded system.

The memory security core must be able to detect that a

deciphered data value is correct following a memory read.

Our core includes an extension to AES-TASC encryption

that evaluates data integrity. As shown in Figure 3, the in-

tegrity checking unit is composed of one AES round. The

integrity check (IC) tag is composed of bits from the AES-

round output. These output bits are selected in such a way

that if any data input bit changes, multiple output bits are

affected.

The IC tag of the cache line to be encrypted (step 1 in Al-

gorithm 1) is stored in the IC memory (step 7 in Algorithm



Confidentiality and Integrity Confidentiality No protection

App. Code Data Code Data Code Data

kB Tasks Segs kB Tasks Segs kB Tasks Segs kB Tasks Segs kB Tasks Segs kB Tasks Segs

Image 25 2 5 33 2 3 7 2 1 10 2 1 38 1 1 16 1 1

VOD 26 5 3 113 6 4 58 1 1 0 0 0 68 1 1 318 1 1

Comm 71 6 1 28 0 2 0 0 0 40 6 1 0 0 0 0 0 0

Hash 0 0 0 0 0 0 92 5 1 0 0 0 0 0 0 55 5 1

Table 2: Application memory protection details by protection level

1) prior to keystream generation. Later, when the processor

core requests a read, the IC tag result of the final XOR op-

eration is compared with the integrity check value stored in

the memory (step 6 in Algorithm 2). If data is changed fol-

lowing storage by a replay or relocation attack, the IC tag of

the retrieved value will differ from the stored value, so the

attack is detected.

The storage required for integrity check values impacts

the security level provided. In this case, a 128 bit data input

and a 32 bit IC tag are used. As each cache line is composed

of 256 bits, an attacker only has a 1 out of 2
64 probability

of successfully modifying the encrypted value and achiev-

ing the original IC tag value. This security level is similar

to values for previous area-intensive approaches shown in

Table 1, which are appropriate for FPGAs. As shown in

Figure 2, the data paths in the security core are controlled

by the SMM output. The SMM receives the base address

of the cache line and sends signals to configure the correct

data path inside the core.

4 Experimental Approach

In order to validate the benefits of our approach, an archi-

tecture based on an Altera NIOS II soft processor [1] was

developed. Our security core and associated memory was

implemented in FPGA logic and embedded memory and in-

terfaced to the processor via an Avalon bus. In separate sets

of experiments, the NIOS II was first allocated instruction

and data caches of 2 KB bytes and then 512 bytes. The cur-

rent implementation of NIOS II does not use an MMU. The

widely-used MicroC/OS-II [5] embedded operating system

was used to validate our approach. MicroC/OS-II is a scal-

able, preemptive and multitasking kernel. The OS can be

configured by the designer during application design to use

only the OS features that are needed. A priority-based

scheduling is used to evaluate which one of up to 64 tasks

runs at a specific point in time. MicroC/OS-II uses a hard-

ware timer to produce ticks which force the scheduler to

run.

To explore the impact of the security management on

performance, area, and power consumption, 4 multi-task

applications were used. These applications include:

- Image processing - This application selects one of two

values for a pixel and combines the pixels into shapes. Pixel

groups that are too small are removed from the image. This

process is called morphological image processing.

- Video on demand (VOD) - This application includes a

Application Tasks Mem Total mem (kB)

Segs. Code Data

Image 5 12 80 59

VOD 7 10 152 431

Comm 6 4 71 68

Hash 5 2 92 55

Table 3: Application memory overview

sequence of operations needed to receive transmitted en-

crypted video signals. Specific operations include Reed

Solomon (RS) decoding, AES decryption, and MPEG-2 de-

coding with artifact correction.

- Communications - This application includes a series of

tasks needed to send and receive digital data. Specific op-

erations include Reed Solomon decoding, AES encryption,

and Reed Solomon encoding.

- Hash - This application can perform selective hashing

based on a number of common algorithms. Supported hash

algorithms include MD5, SHA-1 and SHA-2.

Each of these applications can benefit from a selective

memory security policy that can be uniquely implemented

in separate FPGA bitstreams. For the image processing ap-

plication, image data and application code used to filter data

is protected, but data and code used to transfer information

to and from the system is not. For the VOD application,

deciphered image data and AES specific information (e.g.

the encryption key) is considered critical. Also, the MPEG

algorithm is considered proprietary and its source code is

encrypted, while MPEG data and RS code and data are left

unprotected. For the communications application, all data

is considered sensitive and worthy of protection. In order to

guarantee correct operation, the code must not be changed,

so confidentiality and integrity checking is applied to all

code. Application data is only protected for confidential-

ity. Hash application code is only encrypted (confidential-

ity) and application data has no protection. For example, a

company may wish to protect its code from visual inspec-

tion. Since there is no need for integrity checking for this

application, no storage for time stamps or IC tag values is

needed. The TS input to the AES core, shown in Algorithms

1 and 2, are set to zeroes for this case. In all applications

except Hash, the operating system code and data use both

confidentiality and integrity checking. For the Hash appli-

cation, only confidentiality is used for the OS instructions.

Tables 2 and 3 summarize the task, external memory

count, and number of memory segments for the applica-

tions. Note that tasks only represent application tasks, not

operating system tasks, but memory segments include ap-

plication and OS external memory segments. All four appli-



Programmable protection

Application Total AES-TASC unit IC unit SMM Control

ALUTs FFs ALUTs FFs ALUTs FFs ALUTs FFs ALUTs FFs

Image 3328 1048 1584 434 319 153 144 31 1281 430

VOD 3311 1042 1586 432 319 153 108 27 1298 430

Comm 3273 1042 1608 439 320 154 41 10 1304 430

Hash 2355 898 1282 434 0 0 8 1 1005 413

Uniform protection

Application Total AES-TASC unit IC unit SMM Control

ALUTs FFs ALUTs FFs ALUTs FFs ALUTs FFs ALUTs FFs

Image 3149 1020 1501 433 319 154 15 3 1314 430

VOD 3299 1054 1561 440 407 177 19 3 1312 434

Comm 3141 1022 1503 436 317 153 13 3 1308 430

Hash 2613 904 1518 438 0 0 14 3 1021 413

Table 4: Detailed breakdown of hardware security core (HSC) resource usage

cations were successfully implemented on a Stratix II De-

velopment Kit board containing a 2S60 FPGA device. Area

and embedded memory counts were determined following

compilation with Altera Quartus II. Power measurements

were determined using the experimental setup and using Al-

tera PowerPlay. Core power for the FPGA was provided

by a Tektronix power supply. A multimeter configured as

an ammeter was used to measure the current. Other board

peripherals (flash memory, DDR SDRAM memory) were

powered with a standard power supply input.

5 Experimental Results

For comparison purposes, a NIOS II based system

without a security core was compiled to a Stratix II

2S60 FPGA. This base configuration includes data and in-

struction caches, a timer, flash memory controller, DDR

SDRAM memory controller and an JTAG interface. After

compilation with Quartus II it was determined that the base

configuration with 512 byte caches consumes 4909 ALUTs

and operates at a clock frequency of 121 MHz. A base con-

figuration with 2 KB caches requires 4 additional ALUTs

and operates at the same clock frequency.

As stated in Section 3, the availability of a security core

which allows for different security levels for different mem-

ory segments provides for security versus resource trade-

offs. In our analysis we consider three specific scenarios:

- No protection (NP) - This is the base NIOS II configura-

tion with no memory protection.

- Programmable protection (PP) - This NIOS II and security

core configuration provides exactly the security required by

each application memory segment (Section 4).

- Uniform protection (UP) - This NIOS II and security core

configuration provides the highest level of security required

by a memory segment to all memory segments. Since all

segments use the same security level, the SMM is smaller.

The logic overhead of the security core in the pro-

grammable protection case is not constant since the size of

the SMM depends on the number of defined security areas.

5.1 Area Overhead of Security

As shown in Table 5 for configurations with 512 byte

caches, in most cases the hardware security core (HSC)

Uniform protection Programmable protection

Archi NIOS + HSC HSC NIOS + HSC HSC

ALUT FF ALUT FF ALUT FF ALUT FF

Image 7971 4569 3149 1020 8165 4603 3328 1048

VOD 8159 4602 3299 1054 8157 4592 3311 1042

Comm 7975 4576 3141 1022 8112 4584 3273 1042

Hash 7326 4405 2553 854 7086 4397 2295 848

Table 5: Architectural parameters for different security levels

logic required for programmable protection is greater than

for uniform protection due to the inclusion of the SMM.

The same clock frequency as the base configuration (121

MHz) was achieved for enhanced configurations. Area re-

sults for 2 KB caches are nearly identical and have been

omitted. A detailed breakdown of the size of individual

units in the HSC is provided in Table 4 for both uniform

and programmable protection. It is notable that the ALUTs

required for IT storage for the programmable protection ver-

sion of VOD is reduced versus uniform protection since the

amount of IT storage is reduced. For the Hash application,

integrity checking is not performed for either uniform or

programmable protection so no hardware material is needed

for the IC unit.

5.2 Performance Cost of Security

The run time of each NIOS II-based system for each ap-

plication was determined using counters embedded within

the FPGA hardware. Table 6 shows the run time of each

application on each configuration and an assessment of per-

formance loss versus the base configuration. Experiments

were performed for all three security approaches using both

512 byte and 2 KB caches.

The percentage performance loss due to security is

higher for configurations which include smaller caches.

This is expected, since smaller caches are likely to have a

larger number of memory accesses, increasing the average

fetch latency. Some per-application variability is seen. Both

image processing and VOD applications show a substantial

performance reduction (23% and 21%, respectively) with

uniform protection even though both contain data segments

which require no protection. The use of programmable pro-

tection allows these data segments to have less of an impact

on application performance. Modest performance reduc-

tions (14% and 13%) are reported for these configurations.



No Uniform Programmable

protection protection protection

(ms) (ms) (ms)

Image 512 93.3 121.4 -23% 108.7 -14%

Image 2k 65.5 80.4 -18% 73.5 -11%

VOD 512 8186.5 10307.7 -21% 9405.6 -13%

VOD 2k 5369.0 6387.0 -14% 6076.0 -12%

Comm 512 42.8 53.1 -20% 49.0 -13%

Comm 2k 26.4 29.5 -10% 28.8 -8%

Hash 512 5.3 6.4 -18% 6.2 -15%

Hash 2k 3.9 4.5 -15% 4.3 -14%

Table 6: Application execution time and performance reduction

Note that for the 2 KB cache versions of the com-

munication application, the performance loss for the pro-

grammable protection version is only 2% less than the uni-

form protection version. Table 2 shows that all data and

code for this application must be protected with either con-

fidentiality or confidentiality and integrity, so the benefit of

programmability is limited.

5.3 Memory Cost of Security

As stated in Section 4, memory overhead is the result of

on-chip storage of time stamp and integrity tags. Equation 1

provides formulae needed to obtain the amount of on-chip

memory which will be needed to store these values. For

our experimentation, the IC unit input size is 128 bits, the

IC unit output size is 32 bits, the cache line size is 256 bits,

and the time stamp size is 32 bits. Using the values from Ta-

ble 2, it is possible to determine the size of required on-chip

memory based on the selected security policy. An example

of TS and IC tag overhead calculation is shown for the im-

age processing application with programmable protection.

Figure 4 assesses the on-chip memory overhead of

security. Since time stamp and IC tag values consume

secured on-chip embedded memory, the availability of

embedded memory for other applications is reduced. For

the VOD application, 150 kB of on-chip memory are saved

by using programmable protection rather than uniform

protection. The large savings primarily results from the

presence of a large unprotected memory segment in the

VOD application which doesn’t require protection. Note

that the programmable protection version of the Hash

application does not require any memory storage since no

data values require integrity protection and TS values are

not needed for read-only application code.

Equation 1 - Security memory equation

Size of IC memory for code:

1 − IC overhead =
cache line size

IC unit input size
∗IC unit output size

cache line size

2 − IC code = Total code ∗ IC overhead

Size of IC memory for data:

3 − IC data = Total data ∗ IC overhead
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Figure 4: On-chip security memory footprint

No Programmable Uniform

Application protection protection protection

Image 512 84 mJ 112 mJ +33% 125 mJ +49%

Image 2k 60 mJ 77 mJ +27% 84 mJ +38%

VOD 512 7.02 J 9.7 J +38% 12.4 J +76%

VOD 2k 4.9 J 6.3 J +28% 7.7 J +57%

Comm 512 34 mJ 53 mJ +58% 58 mJ +72%

Comm 2k 22 mJ 31 mJ +42% 33 mJ +47%

hash 512 4.7 mJ 6.7 mJ +42% 7 mJ +50%

hash 2k 3.5 mJ 4.7 mJ +33% 4.9 mJ +40%

Table 7: Energy consumption comparison

Size of TS memory for data:

4 − TS overhead = TS size

cache line size

5 − TS data = Total data ∗ TS overhead

Example for image processing with programmable protection:

IC overhead =
256

128
∗32

256
= 0.25

IC code = 25kB ∗ 0.25 = 6.25kB

IC data = 33kB ∗ 0.25 = 8.25kB

TS overhead = 32

256
= 0.125

TS data = (33kB + 10kB) ∗ 0.125 = 5.4kB

5.4 Energy Cost of Security

Table 7 provides an energy comparison of the four ap-

plications, as physically measured in the lab. Energy, in-

stead of power, is used here to take into account the different

run times of the applications for different security policies.

Cache size has a significant impact on the energy results

since larger cache sizes require fewer memory transactions.

Our security core is designed to avoid dynamic power

consumption via clock gating when it is not active. The per-

centage of energy saved by programmable protection versus

uniform protection depends on the application. Since VOD

uses a substantial amount of unprotected memory it exhibits

only a 28% energy increase versus the base configuration

versus a 57% energy increase for uniform protection with a

512 byte cache. The communications application contains

no unprotected memory and therefore shows only a few

percentage points energy savings between programmable

and uniform protection implementations. With larger cache



memories, the overhead is less important. The image pro-

cessing application does not show large savings since the

amount of on-chip memory is relatively small. Most of the

energy savings comes from a reduced number of HSC ac-

cesses.

5.5 Appropriateness for Reconfigurable Systems

Although the security approach described in this paper

could possibly be used for a processor-based ASIC, it cur-

rently is optimized for FPGA implementation. As stated in

Section 4, each application has a custom-sized SMM and

time stamp and IC tag storage. If a new application is tar-

geted to the FPGA, the configuration bitstream is changed

and a new memory security policy is put in place. The bit-

stream encryption capabilities of the FPGA allow for this

secure change in security policy. Although not covered in

this paper, we envision our memory security approach as a

first step towards providing a capability to securely down-

load a new FPGA configuration remotely to an embedded

FPGA, which then operates in a fashion that ensures ap-

plication and data security. Each new design is memory-

protected with minimal system resource usage, a substantial

benefit for many resource-constrained embedded systems.

In contrast, the implementation of our new memory se-

curity approach on an ASIC, although possible, would be

more difficult and lead to inefficiencies. Such an ASIC

would likely be built to support a number of applications,

not just one, to minimize overhead. As a result, the SMM

and associated time stamp and IC tag storage would have

to be sized to fit the maximum size required by an applica-

tion. For example, if the ASIC needed to be able to switch

between the four applications described in Section 5, a total

memory of at least 48.8 KB must be allocated for TS and IC

tag storage. Unlike the FPGA implementation, which only

requires a new encrypted bitstream, switching between ap-

plications for the ASIC requires added encryption circuitry

to prevent unwanted misconfigurations of the SMM and tag

storage, a potential burden for the ASIC designer. Addi-

tionally, an ASIC implementation precludes the possibility

of increasing tag and SMM storage or modifying security

steps if new memory protection approaches are discovered

after device deployment.

6 Conclusions

In this paper we present a security approach for external

memory in FPGA-based embedded systems. Our FPGA-

based security core provides both confidentiality and in-

tegrity for data stored externally to an FPGA which is ac-

cessed by an on-chip processor under operating system con-

trol. The benefits of our security core are demonstrated us-

ing four embedded applications implemented on a Stratix II

device. Average memory and energy savings of about 64%

and 16%, respectively, are achieved for the four applications

versus a uniform security approach. Overall, the inclusion

of security slows application performance by 12% versus

execution with unprotected external memory. This value

compares favorably to previous approaches which exhibit

over a 50% penalty.
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