
Efficient Custom Instructions Generation
for System-Level Design

Huynh Phung Huynh1 Yun Liang2 Tulika Mitra3

1A*STAR Institute of High Performance Computing 2Advanced Digital Sciences Center 3School of Computing
Singapore Illinois at Singapore National University of Singapore

huynhph@ihpc.a-star.edu.sg, eric.liang@adsc.com.sg, tulika@comp.nus.edu.sg

Abstract—Customizable embedded processors, where the processor core
can be enhanced with application-specific instructions, can provide high
performance similar to custom design circuits with the flexibility of
software solutions. The acceptability of customizable processors, however,
critically hinges on the availability of design automation tools that can
identify high-quality custom instructions from the software specification of
an application. Automated customization has enjoyed significant research
and commercial progress in the recent past. However, this process is
currently not closely coupled with the overall system-level design flow.
We propose an iterative solution that enables rapid feedback between the
custom instructions generation and the system-level design decision. A
key component of our solution is an efficient algorithm inspired by multi-
level graph partitioning that can quickly produce high-quality custom
instructions for the critical regions and thereby alleviate the system
performance bottleneck.

I. INTRODUCTION

Customizable processors are slowly emerging as the preferred
choice for many embedded systems. Instruction-set customization
extends the current instruction set of the processor core with ap-
plication specific instructions. Custom instructions capture frequently
executed computation patterns of an application. They are synthesized
as custom functional units, which are tightly coupled to the existing
functional units in the datapath of processor core.

The success of customizable processors critically hinges on the
presence of tool chains that can expose high-quality custom instruc-
tions to the designer from the software level specification of an
application. The customization process, however, has largely remained
decoupled from the system-level design flow. Let us consider a
canonical embedded application consisting of a set of concurrent tasks
mapped to a single customizable processor. A typical design flow
to accelerate this application with customization takes a bottom-up
approach. The designer first generates a set of custom instructions for
each individual task with the help of automated tool chains. This is
followed by a system-level design space exploration to select a subset
of custom instructions for each task such that the overall performance
and/or energy objectives of the system are satisfied [3].

Obviously, the bottom-up approach spends enormous effort in
generating custom instructions for all the tasks. However, many of
these tasks do not contribute to the system performance bottleneck and
indeed the custom instructions generated for such tasks are effectively
ignored in the global selection phase. Therefore, we investigate
iterative custom instruction generation scheme that provides a close
coupling between the customization process and the system-level
design flow. We advocate a top-down approach where the system
level performance requirements guide the customization process to
zoom into the critical tasks and the critical paths within such tasks.
Our approach is “iterative” in the sense that we generate custom
instructions in an on-demand basis. In other words, the iterative
approach can quickly come up with a first-cut solution that can be
iteratively refined (through inclusion of additional custom instructions)
at the request of the designer.

It is relatively easy to identify critical tasks and the critical paths
within such tasks in an embedded system. The main challenge
for our iterative approach is quick generation of a set of quality
custom instructions for the critical region. As customization process

has traditionally been used in an off-line fashion, most techniques
available in the literature are not suitable for our purpose. Custom
instruction generation algorithms typically expose computational pat-
terns at all possible granularity levels. In particular, these algorithms
are computationally expensive as they generate many small patterns
(consisting of a few native operations) with the hope that such
patterns will recur multiple times within the scope of the application.
Instead, our goal is to quickly identify large patterns that can give us
the required performance boost. Therefore, we design an algorithm
that can efficiently partition the dataflow graph corresponding to
the critical region into few large custom instructions. Our algorithm
is named MLGP as it is inspired by multilevel graph partitioning
algorithms [4] and satisfies the constraint of generating high-quality
custom instructions with minimal effort.

II. CUSTOM INSTRUCTIONS GENERATION

We consider a system consisting of a task graph and a timing
requirement. Without loss of generality, let us assume that the task
graph cannot be scheduled to meet the timing requirement. Under this
scenario, processor customization can provide the requisite perfor-
mance boost to help meet the deadline. The objective of our iterative
approach in this context is to quickly come up with a set of custom
instructions CI so as to meet the deadline. The set CI is returned to
the designer as the first working solution. If the designer so desires,
our scheme will successively introduce additional custom instructions
to CI so as to further improve the performance. In case it is infeasible
to meet the deadline, the iterative approach improves the performance
as much as possible.

The input to our custom instructions generation algorithm are: (i) a
subsequence of basic blocks S along the critical path of the program
corresponding to the critical task Ti, (ii) the amount ∆ by which
we need to reduce the execution time of S through customization,
and (iii) the set the custom instructions already created CI. The last
input is required to identify isomorphic custom instructions generated
during different iterations and take advantage of hardware area
sharing, which is similar to the hardware reuse in conventional custom
instruction generation techniques.

The goal of the custom instruction generation routine is to reduce
the execution time of the basic blocks sequence S by amount ∆.
If further performance gain is not achievable from the current task
Ti, it is excluded from the task set. If we fail to meet the timing
requirement even after exploring all the tasks, then we simply return
the set of custom instructions selected so far.

A. Definitions

A Data Flow Graph (DFG) G(V,E) represents the computation
flow of data within a basic block. The nodes V represent the
operations and the edges E represent the dependencies among the op-
erations. G(V,E) is always a directed acyclic graph. The architectural
constraints may not allow some types of operations (e.g., memory
access and control transfer operations) to be included as part of a
custom instruction. These operations are considered as invalid nodes.
We let the invalid nodes partition the DFG into multiple regions.
Given a DFG G(V,E), we define a region R(V ′, E′) as a maximal

subgraph of G such that (1) V ′ contains only valid nodes, (2) there
exists an undirected path between any pair of nodes in V ′, and (3)
there does not exist any edge between a node in V ′ and a valid node
in (V − V ′). Invalid nodes do not belong to any region. Note that
DFG of a region is not necessary to be convex.

A custom instruction CI is a subgraph that belongs to a region
within a DFG. Let IN(CI) and OUT (CI) be the number of
input and output operands of CI , respectively. Also, for any custom
instruction, let Nin and Nout be the maximum number of input and
output operands allowed, respectively. This constraint arises due to the
limited number of register file ports available on a processor. Any legal
custom instruction CI must satisfy the constraints IN(CI) ≤ Nin

and OUT (CI) ≤ Nout. Moreover, a custom instruction must be
a convex subgraph as non-convex subgraphs cannot be executed
atomically. CI is convex if there exists no path in the DFG from
a node m ∈ CI to another node n ∈ CI , which contains a node
p /∈ CI .

B. Region Selection

Given a subsequence of basic blocks S along the critical path of
a task, we explore the basic blocks in S in descending order of
weight. That is, the basic block with the highest weight is selected for
custom instruction generation first. Recall that the weight of a basic
block is defined by its contribution (in terms of execution time) to
the critical path. We partition the selected basic block into multiple
regions. These regions are again sorted in descending order based
on their weights. The weight of a region is defined by the number
of operations contained within that region. Then, we select the region
with highest weight for generating custom instructions. Intuitively, we
are selecting the region that has the maximum potential to reduce the
length of the critical path by ∆ amount. Now, the objective of our
problem is to generate a set of custom instructions from the selected
region so as to reduce the most execution time. We describe a solution
to this problem in the next subsection.

If the custom instructions generated for the selected region can
reduce the execution time by at least ∆, then we can simply return
those custom instructions along with the gain. Otherwise, we continue
custom instruction generation for the next highest weight region of the
current basic block or the next highest weight basic block if current
basic block has been fully explored.

C. MLGP Algorithm

Overview: Given a critical region, the goal of our custom
instruction generation algorithm is to quickly reduce the execution
time of the region as much as possible. As analysis time is a major
concern for our iterative scheme, we cannot spend substantial effort
required in exploring all possible custom instructions corresponding to
the region and then selecting the optimal ones. Thus, our objective is
to generate a set of coarse-grained but legal custom instructions from
the region. We observe that our goal can be achieved by partitioning
the data flow graph (DFG) corresponding to the region into one or
more partitions. Each partition should satisfy the number of input and
output operands constraints as well as the convexity constraint. That
is, each partition can be treated as a custom instruction.

Graph partitioning is a well studied problem in the algorithm
research community. In particular, the closest problem to ours is
the k-way graph partitioning problem where the vertices of a graph
are partitioned into k roughly equal partitions such that the number
of edges connecting vertices in different partitions is minimized.
However, our problem differs from k-way graph partitioning problem
in several important aspects. First of all, we do not have any basis to
choose a particular value of k — any value of k is fine with us as long

G1
’

G2
’

G2
G1

CI0

CI1

Coarsening Phase

Uncoarsening Phase

Initial Partitioning

G0

CI1

CI0

CI0

CI1

CI1

CI0

CI1

CI0

0 1

2

5

3

6

4

98

7

10

0 1

2

5

3

6

4

98

7

10

0 1

2 3

6

4

98

7

10

0

2

1

0

1

2

5

3

4

0

1

2

5

3

4

G3G0
’

G0
’’

5

0

2

1

Fig. 1. Illustration of Multi-Level Graph Partitioning. The dashed lines show
the projection of a vertex from a coarser graph to a finer graph.

the corresponding partition maximizes the performance gain. Second,
the partitions in k-way graph partitioning problem are not constrained
by input, output, convexity constraints. Third, instead of generating
equal-sized partitions and minimizing edge-cut, our objective is to
maximize the performance speedup. Finally, we are dealing with a
directed graph and not an undirected graph as expected by k-way
partitioning problem.

Nevertheless, it turns out that the basic structure used by multilevel
recursive bisection algorithms employed to solve k-way graph par-
titioning problem can be quite effective in our context. Specifically,
our custom instruction generation algorithm is inspired by a recently
proposed multi-level algorithm due to Karypis and Kumar [4]. The
basic structure of the algorithm is as follows. The graph G is first
coarsened down to a small number of vertices (coarsening phase),
the coarsest graph is partitioned into k parts (partitioning phase), and
then this partitioning is projected back towards the original graph
by periodically refining the k-partitioning (un-coarsening phase). The
k-partitioning is refined on finer graphs as finer graphs have more
degrees of freedom and hence provide more opportunity to improve
the partitioning.

We adapt this multi-level paradigm to partition a directed graph into
a small number of legal partitions so as to maximize the performance
gain. We call our algorithm Multi-Level Graph Partitioning (MLGP).
To avoid artificially binding k to a particular value, we eliminate the
k-partitioning phase from the MLGP algorithm. Instead, we simply
set the number of partitions as the number of vertices in the coarsest
graph. Figure 1 shows an illustration of the MLGP algorithm applied
on the DFG of a region. The original graph has 11 vertices, which
are coarsened into 2 vertices or 2 partitions. These partitions are
successively refined in the uncoarsening phase to generate the final
custom instructions.

Coarsening phase: During the coarsening phase, a sequence
of smaller graphs Gi = (Vi, Ei) are constructed from the original
directed graph G0 = G = (V,E) such that |Vi+1| < |Vi|. A vertex
v′ ∈ Vi+1 in a coarse graph Gi+1 is formed by either combining two
vertices v, u ∈ Vi of finer graph Gi or by simply setting it to vertex
v ∈ Vi of Gi. In addition, a directed edge is built between two coarse
vertices v and u in coarse graph Gi+1 if there exists directed edge(s)

between their constituent vertices in graph Gi.
Each vertex v′ in a coarse graph is a subgraph of G0 when projected

from the constituent vertices of v′ in the finer graph. A coarse vertex
can potentially become a candidate for custom instruction. Therefore,
when combining two vertices v and u to form v′, we have to ensure
that the subgraph corresponding to v′ projected into the original graph
G0 satisfies input, output, and convexity constraints. Let IN(v′) and
OUT (v′) be the number of input and output edges, respectively of
the projected subgraph of v′ in G0. Note that IN(v′) and OUT (v′)
are not the sum of input and output edges of coarse vertices v and u.

Our matching heuristic visits the vertices of Gi in random order. If a
vertex u ∈ Vi has not been matched yet, then we select it for matching
to form a vertex v′ in the coarser graph Gi+1. First, we identify the
adjacent unmatched vertices of u that when combined with u will
satisfy all the three constraints. Then we match u with the adjacent
vertex v such that the ratio of performance gain to hardware area
(gain-area ratio in short) of v′ is maximum. We define performance
gain: gain = sw ltc(v′) − hw ltc(v′). sw lts(v′) is the software
latency of v′ by summing up the software latency of all the vertices in
the subgraph of v′; hw ltc(v′) is the hardware latency of v′ estimated
from the critical path of the subgraph of v′. Hardware area is the sum
of hardware area of all vertices in the subgraph of v′. On the other
hand, if u cannot find a feasible matching, v′ = u. In Figure 1,
vertices 0 and 2 of G1 are matched to form vertex 0 of G2.

The coarsening phase ends when Gi+1 = Gi. Let Gm = (Vm, Em)
be the coarsest graph. Initial partitioning simply selects each vertex
v ∈ Vm as a custom instruction. These initial custom instructions will
be refined as we go through un-coarsening phase to project back to
G0. In Figure 1, coarsening phase creates a sequence of coarse graphs
{G0, G1, G2, G3} and the initial partitioning partitions G3 into two
custom instructions CI0 and CI1.

Uncoarsening Phase: During the uncoarsening phase, the par-
titioning of the coarsest graph Gm is projected back to the original
graph by going through a sequence of finer graphs Gm−1, . . . , G0.
In Figure 1, we label the graph during uncoarsening phase with G′m
for easy explanation. But in reality, G′m = Gm. Consider a graph
Gi = (Vi, Ei). Its partitioning is represented by a partitioning vector
Pi of length |Vi| where for each vertex v ∈ Vi, Pi[v] is an integer
between 1 and |Vm| (the number of partitions defined by the number
of vertices in the coarsest graph). Pi[v] indicates the partition to which
vertex v belongs in graph Gi. In the coarsest graph Gm, each vertex
belongs to its own partition.

Let V v
i be the set of vertices of Gi (in our case one or two

vertices) that have been combined to form a single vertex v in the next
level coarser graph Gi+1. Then during un-coarsening, Pi is initially
obtained from Pi+1 by simply assigning the partitioning of v in the
coarser graph (Pi+1[v]) to the partitioning of each vertex in V v

i . That
is, Pi[u] = Pi+1[v], ∀u ∈ V v

i .
However, at every level of un-coarsening, we have the option of

improving the projected partitioning Pi by moving some vertices from
one partition to another. It is possible to improve the partitioning
Pi compared to Pi+1. This is because, Gi is a finer graph and it
allows more degrees of freedom to move the vertices. Local refinement
based on Kernighan-Lin (KL) [5] or Fiduccia-Mattheyses (FM) [2]
partitioning algorithms tend to produce good results for bi-partition.
However, using KL or FM for refining multiple partitions is signifi-
cantly more complicated because vertices can move from a partition to
many others. Therefore, we propose a simple and efficient refinement
algorithm (similar in spirit to the greedy refinement proposed in [4])
to target the objective and constraints of our problem.

Given Gi = (Vi, Ei) with partitioning solution Pi, a vertex v ∈ Vi

is a boundary vertex of partition Pi[v] if it has at least one adjacent
vertex u ∈ Vi such that v and u belong to different partitions, i.e.,
Pi[v] 6= Pi[u]. Otherwise, v is an internal vertex. For G′1 in Figure
1, vertices {2,4} are the boundary vertices of partition CI0 while
{0,1} are the internal ones. Note that G′1 is at the same coarse level
of G1. Our refinement algorithm visits boundary vertices in random
order. If v is selected, let pv is the subgraph of Gi w.r.t. current
partition containing v and NP [v] be the set of subgraphs of Gi

w.r.t. neighborhood partitions to which vertices adjacent to v belong.
Algorithm 1 tries to move v to neighborhood partitions if it is possible.

Algorithm 1: Moving vertex v

Input: Gi = (Vi, Ei), Pi and NP [v]
Result: Update Pi

1 best ratio improv = 0;
2 p′

v ← pv \ {v};
3 if p′

v satifies all constraints then
4 for p ∈ NP[v] do
5 p′ ← p ∪ {v};
6 if IN(p′) > Nin then
7 Reduce number inputs(p′);

8 if OUT(p′) > Nout then
9 Reduce number outputs(p′);

10 if p′ satisfies all constraints then

11 ratio improv← gain(p′)
area(p′) −

gain(p)
area(p)

+
gain(p′v)

area(p′v)
− gain(pv)

area(pv)
;

12 if ratio improv > best ratio improv then
13 best ratio improv ← ratio improv;
14 Update best solution;

15 if best ratio improv then
16 Update Pi;

Let p′ be the resulting partition after moving v to a neighborhood
partition p. p′ may violate constraints. If input constraint is violated
by adding v (line 6), we try to reduce the number of inputs (line 7)
by continuously adding vertices (in breadth first traversal order) of
the backward subgraph rooted at v to p′. At each level (in breadth
first traversal), the vertices are ordered w.r.t. the number of edges
connecting the vertex to the partition p′. If a vertex is connected with
p′ via multiple edges, it has highest potential to reduce the number
of inputs of p′. We define permanent inputs as the inputs of the
original graph G0. We stop adding vertices to p′ if either (1) input
constraint is surely violated because number of permanent inputs of
p′ is more than Nin, or (2) input constraint is satisfied, or (3) either
convexity or output constraint is violated. In G′1 of Figure 1, if we
move vertex 2 to CI1, input constraint is violated (i.e., IN(CI1) is
5> 4). Then, we continue adding vertex 0 and number of permanent
inputs is greater than 4, we stop adding vertices. G′0 is the finer graph
which is projected from G′1. In G′0, after moving vertex 9 to CI1,
we continue adding vertices 6,7 which results in valid subgraph CI1
in G′′0 . Because G′′0 has higher gain-area ratio improvement than G′0,
G′′0 is the result of multi-level partitioning instead of G′0.

Similarly, if output constraint is violated by adding v (line 8), we
try to reduce the number of outputs (line 9) by continuously adding
vertices of the forward subgraph rooted at v in order of breadth first
traversal. Then, if p′ is a valid subgraph, we compute its ratio improve-
ment, ratio improv (lines 10-11). Note that performance gain of p′v
is equal to 0 if p′v is invalid custom instruction. If ratio improvement
is better than best ratio improvement (best ratio improv) so far, we
update best ratio improvement and the corresponding solution (lines
12-14). If there exists best ratio improvement, we update Pi (lines
15-16). Intuitively, we move vertex v to the neighborhood partition
which has the best ratio improvement.

1.18

1.2 g721decode

1.14

1.16

1.1

1.12

ed
up

1.06

1.08

Sp
ee

1.02

1.04 MLGP
IS

1

1 6 11

IS

Analysis Time (Seconds)

1

1.2

1.4

1.6

1.8

2

2.2

2.4

1 2 3 4

Sp
ee

du
p

Analysis Time (Seconds)

jfdctintMLGP
IS 1 6

1.7 blowfishMLGP
IS

1.5

1.6 IS

1 3

1.4

ed
up

1.2

1.3

Sp
ee

1.1

1
1 10 100

Analysis Time (Seconds)

1.9
2 md5MLGP

IS

1.7
1.8 IS

1.5
1.6

ed
up

1.3
1.4

Sp
ee

1.1
1.2

1
1 10 100 1000 10000

Analysis Time (Seconds)

1.9
2 shaMLGP

IS

1.7
1.8 IS

1.5
1.6

ed
up

1.3
1.4

Sp
ee

1.1
1.2

1
1 10 100 1000 10000

Analysis Time (Seconds)

2 2

2.4 3desMLGP

2

2.2 IS

1.8

du
p

1 4

1.6

Sp
ee

d

1.2

1.4S

1
1 100 10000

Analysis Time (Seconds)

Fig. 2. Speedup versus Analysis Time

III. EXPERIMENTAL EVALUATION
A. Experimental Setup

We modify Trimaran 4.0 compiler infrastructure [1] to generate
custom instructions. Given an application, we first compile the appli-
cation and generate the intermediate machine code. Then, we build
the program control flow graph and corresponding syntax tree from
the intermediate machine code. Subsequently, custom instructions
generation is completed. Custom instructions do not include memory
references or conditional branches. We assume a single-issue, in-
order core with perfect cache and branch prediction as the baseline
processor. We use Synopsys design tools with 0.18 micron CMOS
cell libraries to synthesize the primitive operations (e.g., addition,
multiply, etc.) and get their hardware area and latency. Based on the
values of the primitive operations, we estimate the latency and area of
the custom instructions. Each custom instruction can have at most 4
input operands and 2 output operands. Execution cycles of a custom
instruction is its latency normalized against a MAC operation, which
takes 1 cycle to execute in our baseline processor running at 120MHz.
We conduct all the experiments on a 3GHz Pentium 4 CPU system
with 2GB memory.
B. Efficiency of MLGP Algorithm

In this section, we show that MLGP can quickly generate high qual-
ity custom instructions. To substantiate this claim, we compare MLGP
with a state-of-the-art custom instruction generation algorithms, called
IS algorithm [6]. IS generates almost the optimal set of high quality
custom instructions in practice without paying for the exponential
computational complexity of the optimal algorithm [6].

We have implemented both the algorithms (MLGP, IS) in the
Trimaran infrastructure as discussed in Section III-A. The same
synthesis tool and cell libraries have been used for all the algorithms.
Moreover, two algorithms have been restricted to generate connected
custom instructions with at most 4 input register operands and 2 output
register operands. For each benchmark (from MiBench, MediaBench
and Trimaran benchmarks), we profile separately with representative
inputs and annotate each basic block with its execution frequency.
MLGP and IS both work on the “hot” basic blocks in terms of
execution frequency. Each benchmark is considered as a task.

Let B be the set of basic block in a task and let xi and si be the ex-
ecution frequency and software execution time of the basic block Bi,
respectively. Then the software execution time SW =

∑
B xi×si. Let

hi be the execution time of Bi after applying processor customization.
Then the reduced execution time HW =

∑
B xi × hi. The speedup

of the task due to processor customization is then speedup = SW
HW

.
Figure 2 plots the progress of MLGP and IS as they generate custom

instructions for a task. X-axes show the analysis time of the algorithms

each time they generate new custom instructions. For IS, a custom
instruction is generated after each iteration while MLGP generates a
set of custom instructions after processing a region in the basic block.
This partially explains the faster analysis time of MLGP compared to
IS.

The first observation is that MLGP returns a set of quality custom
instructions within one second and more custom instructions are
quickly added as analysis time progresses. For most tasks, MLGP
returns the complete set of custom instructions within 10 seconds.
On the other hand, IS takes much longer to return the first custom
instruction for complex tasks (in the order of 1,000 seconds). Subse-
quent custom instructions are generated slowly. Indeed, for 3des with
2,745 instructions in a basic block, IS fails to generate the full set
of custom instructions even after running for half a day. Therefore,
we show only partial results (see the red highlighted rectangles). The
second observation is that MLGP even obtains better speedup for
some tasks (e.g., 3des, sha, blowfish, jfdctint).

IV. CONCLUSIONS

We propose an iterative scheme to generate custom instructions in
an on-demand basis guided by the system-level performance require-
ments. Our approach zooms into the critical region that is causing
the performance bottleneck and starts the customization process from
that region. We provide a close coupling between the system-level
design and the customization algorithm. Our efficient algorithm based
on multi-level graph partitioning can generate the custom instructions
on-the-fly. Experimental results validate that MLGP is quite effective
in quickly producing good quality solutions. Therefore, MLGP is a
perfect match with iterative scheme.

V. ACKNOWLEDGEMENTS

This work was partially supported by research grants R-252-000-
387-112 & R-252-000-409-112.

REFERENCES

[1] L. N. Chakrapani et al. Languages and Compilers for High Performance
Computing, chapter Trimran: An Infrastructure for Research in Instruction-
Level Parallelism. 2005.

[2] C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for
improving network partitions. In DAC, 1982.

[3] H. P. Huynh and T. Mitra. Instruction-set customization for real-time
embedded systems. In DATE, 2007.

[4] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for
irregular graphs. Journal of Parallel and Distributed Computing, 1998.

[5] B. W. Kernighan and S. Lin. An efficient heuristic procedure for
partitioning graphs. The Bell System Technical Journal, 1970.

[6] L. Pozzi, K. Atasu, and P. Ienne. Exact and approximate algorithms for
the extension of embedded processor instruction sets. IEEE TCAD, 25(7),
July 2006.

